minor
This commit is contained in:
parent
52cf00f5fb
commit
3b0b9d53af
@ -354,7 +354,7 @@ inspired by the recent functional proposed by some of the authors \cite{FerGinTo
|
||||
The difference between the ECMD functional defined in Ref.~\onlinecite{FerGinTou-JCP-18} and the present expression \eqref{eq:epsilon_cmdpbe}-\eqref{eq:beta_cmdpbe} is that we approximate here the on-top pair density by its UEG version, i.e.~$\n{2}{\Bas}(\br{},\br{}) \approx \n{2}{\UEG}(0,\qty{\n{\sigma}{}(\br{})})$, where $0$ refers to $r_{12}=0$ and $\n{2}{\UEG}(0,\qty{n_\sigma}) \approx 4 \; n_{\uparrow} \; n_{\downarrow} \; g(0,n)$ with the parametrization of the UEG on-top pair-distribution function $g(0,n)$ given in Eq.~(46) of Ref.~\onlinecite{GorSav-PRA-06}.
|
||||
This represents a major computational saving without loss of accuracy for weakly correlated systems as we eschew the computation of $\n{2}{\Bas}(\br{},\br{})$.
|
||||
|
||||
Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\modZ}{\Bas}]$ is \titou{then \trashMG{evaluated as} \manu{approximated by}} $\bE{\LDA}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ where $\rsmu{}{\Bas}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}.
|
||||
Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\modZ}{\Bas}]$ is \titou{approximated by} $\bE{\LDA}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ where $\rsmu{}{\Bas}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}.
|
||||
|
||||
%=================================================================
|
||||
%\subsection{Frozen-core approximation}
|
||||
@ -385,7 +385,7 @@ with
|
||||
and the corresponding FC range-separation function \titou{$\rsmuFC{}{\Bas}(\br{}) = (\sqrt{\pi}/2) \WFC{}{\Bas}(\br{},\br{})$}.
|
||||
It is \titou{noteworthy} that, within the present definition, $\WFC{}{\Bas}(\br{1},\br{2})$ still tends to the regular Coulomb interaction when $\Bas \to \infty$.
|
||||
|
||||
Defining $\nFC{\modZ}{\Bas}$ as the FC (i.e.~valence-only) one-electron density obtained with a method $\modZ$ \titou{in $\Bas$}, the FC contribution of the complementary functional is then evaluated as $\bE{\LDA}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$.
|
||||
Defining $\nFC{\modZ}{\Bas}$ as the FC (i.e.~valence-only) one-electron density obtained with a method $\modZ$ \titou{in $\Bas$}, the FC contribution of the complementary functional is then \titou{approximated by} $\bE{\LDA}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$.
|
||||
|
||||
%=================================================================
|
||||
%\subsection{Computational considerations}
|
||||
|
Loading…
Reference in New Issue
Block a user