Comments Julien

This commit is contained in:
Pierre-Francois Loos 2019-04-23 22:55:57 +02:00
parent 628925e6e6
commit 3421d7ce07

View File

@ -192,7 +192,7 @@ Here, we only provide the main working equations.
We refer the interested reader to Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18} for a more formal derivation. We refer the interested reader to Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18} for a more formal derivation.
Let us assume we have both the energy $\E{\modY}{\Bas}$ and density $\n{\modZ}{\Bas}$ of a $\Ne$-electron system described by two methods $\modY$ and $\modZ$ (potentially identical) in an incomplete basis set $\Bas$. Let us assume we have both the energy $\E{\modY}{\Bas}$ and density $\n{\modZ}{\Bas}$ of a $\Ne$-electron system described by two methods $\modY$ and $\modZ$ (potentially identical) in an incomplete basis set $\Bas$.
According to Eq.~(15) of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, assuming that $\E{\modY}{\Bas}$ and $\n{\modZ}{\Bas}$ are reasonable approximations of the FCI energy and density within $\Bas$, the exact ground state energy $\E{}{}$ may be \titou{approximated} as According to Eq.~(15) of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, assuming that $\E{\modY}{\Bas}$ and $\n{\modZ}{\Bas}$ are reasonable approximations of the FCI energy and density within $\Bas$, the exact ground state energy $\E{}{}$ may be approximated as
\begin{equation} \begin{equation}
\label{eq:e0basis} \label{eq:e0basis}
\E{}{} \E{}{}
@ -208,7 +208,7 @@ where
\end{equation} \end{equation}
is the basis-dependent complementary density functional, $\hT$ is the kinetic operator and $\hWee{} = \sum_{i<j} r_{ij}^{-1}$ is the interelectronic repulsion operator. is the basis-dependent complementary density functional, $\hT$ is the kinetic operator and $\hWee{} = \sum_{i<j} r_{ij}^{-1}$ is the interelectronic repulsion operator.
In Eq.~\eqref{eq:E_funcbasis}, $\wf{}{\Bas}$ and $\wf{}{}$ are two general $\Ne$-electron normalized wave functions belonging to the Hilbert space spanned by $\Bas$ and the complete basis set (CBS), respectively. In Eq.~\eqref{eq:E_funcbasis}, $\wf{}{\Bas}$ and $\wf{}{}$ are two general $\Ne$-electron normalized wave functions belonging to the Hilbert space spanned by $\Bas$ and the complete basis set (CBS), respectively.
Both wave functions yield the same target density $\n{}{}$ (assumed to be representable in \trashPFL{the basis set} $\Bas$). Both wave functions yield the same target density $\n{}{}$ (assumed to be representable in $\Bas$).
Importantly, in the CBS limit (which we refer to as $\Bas \to \infty$), we have, for any density $\n{}{}$, $\lim_{\Bas \to \infty} \bE{}{\Bas}[\n{}{}] = 0$. Importantly, in the CBS limit (which we refer to as $\Bas \to \infty$), we have, for any density $\n{}{}$, $\lim_{\Bas \to \infty} \bE{}{\Bas}[\n{}{}] = 0$.
This implies that This implies that
\begin{equation} \begin{equation}
@ -217,18 +217,18 @@ This implies that
\end{equation} \end{equation}
where $\E{\modY}{}$ is the energy associated with the method $\modY$ in the CBS limit. where $\E{\modY}{}$ is the energy associated with the method $\modY$ in the CBS limit.
In the case where $\modY = \FCI$ in Eq.~\eqref{eq:limitfunc}, we have a strict equality as $\E{\FCI}{} = \E{}{}$. In the case where $\modY = \FCI$ in Eq.~\eqref{eq:limitfunc}, we have a strict equality as $\E{\FCI}{} = \E{}{}$.
Provided that the functional $\bE{}{\Bas}[\n{}{}]$ is known exactly, the only source of error at this stage lies in the potential approximate nature of the methods $\modY$ and $\modZ$, \titou{and the lack of self-consistency.} Provided that the functional $\bE{}{\Bas}[\n{}{}]$ is known exactly, the only source of error at this stage lies in the potential approximate nature of the methods $\modY$ and $\modZ$, and the lack of self-consistency.
The functional $\bE{}{\Bas}[\n{}{}]$ is obviously \textit{not} universal as it depends on $\Bas$. The functional $\bE{}{\Bas}[\n{}{}]$ is obviously \textit{not} universal as it depends on $\Bas$.
Moreover, as $\bE{}{\Bas}[\n{}{}]$ aims at fixing the incompleteness of $\Bas$, its main role is to correct Moreover, as $\bE{}{\Bas}[\n{}{}]$ aims at fixing the incompleteness of $\Bas$, its main role is to correct
for the lack of \titou{cusp (i.e.~discontinuous derivative) in $\wf{}{\Bas}$} at the e-e coalescence points, a universal condition of exact wave functions. for the lack of cusp (i.e.~discontinuous derivative) in $\wf{}{\Bas}$ at the e-e coalescence points, a universal condition of exact wave functions.
Because the e-e cusp originates from the divergence of the Coulomb operator at $r_{12} = 0$, a cuspless wave function could equivalently originate from a Hamiltonian with a non-divergent two-electron interaction at coalescence. Because the e-e cusp originates from the divergence of the Coulomb operator at $r_{12} = 0$, a cuspless wave function could equivalently originate from a Hamiltonian with a non-divergent two-electron interaction at coalescence.
Therefore, as we shall do later on, it feels natural to approximate $\bE{}{\Bas}[\n{}{}]$ by a short-range density functional which is complementary to a non-divergent long-range interaction. Therefore, as we shall do later on, it feels natural to approximate $\bE{}{\Bas}[\n{}{}]$ by a short-range density functional which is complementary to a non-divergent long-range interaction.
Contrary to the conventional RS-DFT scheme which requires a range-separation \textit{parameter} $\rsmu{}{}$, here we use a range-separation \textit{function} $\rsmu{}{\Bas}(\br{})$ that automatically adapts to quantify the incompleteness of $\Bas$ in $\mathbb{R}^3$. Contrary to the conventional RS-DFT scheme which requires a range-separation \textit{parameter} $\rsmu{}{}$, here we use a range-separation \textit{function} $\rsmu{}{\Bas}(\br{})$ that automatically adapts to quantify the incompleteness of $\Bas$ in $\mathbb{R}^3$.
The first step of the present basis-set correction consists of obtaining an effective two-electron interaction $\W{}{\Bas}(\br{1},\br{2})$ ``mimicking'' the Coulomb operator in an incomplete basis $\Bas$. The first step of the present basis-set correction consists of obtaining an effective two-electron interaction $\W{}{\Bas}(\br{1},\br{2})$ ``mimicking'' the Coulomb operator in an incomplete basis $\Bas$.
In a second step, we shall link $\W{}{\Bas}(\br{1},\br{2})$ to $\rsmu{}{\Bas}(\br{})$. In a second step, we shall link $\W{}{\Bas}(\br{1},\br{2})$ to $\rsmu{}{\Bas}(\br{})$.
\titou{As a} final step, we employ short-range density functionals \cite{TouGorSav-TCA-05} with $\rsmu{}{\Bas}(\br{})$ as range-separation function. As a final step, we employ short-range density functionals \cite{TouGorSav-TCA-05} with $\rsmu{}{\Bas}(\br{})$ as range-separation function.
%================================================================= %=================================================================
%\subsection{Effective Coulomb operator} %\subsection{Effective Coulomb operator}
@ -262,10 +262,10 @@ With such a definition, $\W{}{\Bas}(\br{1},\br{2})$ satisfies (see Appendix A of
\mel*{\wf{}{\Bas}}{\hWee{\updw}}{\wf{}{\Bas}} = \frac{1}{2}\iint \W{}{\Bas}(\br{1},\br{2}) \n{2}{\Bas}(\br{1},\br{2}) \dbr{1} \dbr{2}, \mel*{\wf{}{\Bas}}{\hWee{\updw}}{\wf{}{\Bas}} = \frac{1}{2}\iint \W{}{\Bas}(\br{1},\br{2}) \n{2}{\Bas}(\br{1},\br{2}) \dbr{1} \dbr{2},
\end{equation} \end{equation}
where $\hWee{\updw}$ contains only the opposite-spin component of $\hWee{}$. where $\hWee{\updw}$ contains only the opposite-spin component of $\hWee{}$.
Because Eq.~\eqref{eq:int_eq_wee} can be \titou{recast} as Because Eq.~\eqref{eq:int_eq_wee} can be recast as
\begin{equation} \begin{equation}
\alert{\iint \frac{ \n{2}{\Bas}(\br{1},\br{2})}{r_{12}} \dbr{1} \dbr{2} = \iint \frac{ \n{2}{\Bas}(\br{1},\br{2})}{r_{12}} \dbr{1} \dbr{2} =
\iint \W{}{\Bas}(\br{1},\br{2}) \n{2}{\Bas}(\br{1},\br{2}) \dbr{1} \dbr{2},} \iint \W{}{\Bas}(\br{1},\br{2}) \n{2}{\Bas}(\br{1},\br{2}) \dbr{1} \dbr{2},
\end{equation} \end{equation}
it intuitively motivates $\W{}{\Bas}(\br{1},\br{2})$ as a potential candidate for an effective interaction. it intuitively motivates $\W{}{\Bas}(\br{1},\br{2})$ as a potential candidate for an effective interaction.
Note that the divergence condition of $\W{}{\Bas}(\br{1},\br{2})$ in Eq.~\eqref{eq:def_weebasis} ensures that one-electron systems are free of correction as the present approach must only correct the basis set incompleteness error originating from the e-e cusp. Note that the divergence condition of $\W{}{\Bas}(\br{1},\br{2})$ in Eq.~\eqref{eq:def_weebasis} ensures that one-electron systems are free of correction as the present approach must only correct the basis set incompleteness error originating from the e-e cusp.
@ -273,7 +273,7 @@ As already discussed in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, $\W{}{\Bas}
Thanks to its definition one can show that (see Appendix B of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}) Thanks to its definition one can show that (see Appendix B of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18})
\begin{equation} \begin{equation}
\label{eq:lim_W} \label{eq:lim_W}
\lim_{\Bas \to \infty}\W{}{\Bas}(\br{1},\br{2}) = \titou{r_{12}^{-1} } \lim_{\Bas \to \infty}\W{}{\Bas}(\br{1},\br{2}) = r_{12}^{-1},
\end{equation} \end{equation}
for any $(\br{1},\br{2})$ such that $\n{2}{\Bas}(\br{1},\br{2}) \ne 0$. for any $(\br{1},\br{2})$ such that $\n{2}{\Bas}(\br{1},\br{2}) \ne 0$.
@ -289,11 +289,7 @@ Although this choice is not unique, we choose here the range-separation function
\label{eq:mu_of_r} \label{eq:mu_of_r}
\rsmu{}{\Bas}(\br{}) = \frac{\sqrt{\pi}}{2} \W{}{\Bas}(\br{},\br{}), \rsmu{}{\Bas}(\br{}) = \frac{\sqrt{\pi}}{2} \W{}{\Bas}(\br{},\br{}),
\end{equation} \end{equation}
such that the long-range interaction of RS-DFT, \titou{$\w{}{\lr,\mu}(r_{12}) = \erf( \mu r_{12})/r_{12}$}, such that the long-range interaction of RS-DFT, $\w{}{\lr,\mu}(r_{12}) = \erf( \mu r_{12})/r_{12}$, coincides with the effective interaction at coalescence, i.e.~$\w{}{\lr,\rsmu{}{\Bas}(\br{})}(0) = \W{}{\Bas}(\br{},\br{})$ at any $\br{}$.
%\begin{equation}
% \w{}{\lr,\mu}(r_{12}) = \frac{\erf( \mu r_{12})}{r_{12}}
%\end{equation}
coincides with the effective interaction at coalescence, i.e.~$\w{}{\lr,\rsmu{}{\Bas}(\br{})}(0) = \W{}{\Bas}(\br{},\br{})$ at any \trashPFL{point} $\br{}$.
%================================================================= %=================================================================
%\subsection{Short-range correlation functionals} %\subsection{Short-range correlation functionals}
@ -315,44 +311,45 @@ with $\hWee{\lr,\rsmu{}{}} = \sum_{i<j} \w{}{\lr,\rsmu{}{}}(r_{ij})$.
The ECMD functionals admit, for any $\n{}{}$, the following two limiting forms The ECMD functionals admit, for any $\n{}{}$, the following two limiting forms
\begin{align} \begin{align}
\label{eq:large_mu_ecmd} \label{eq:large_mu_ecmd}
\lim_{\mu \to \infty} \bE{\titou{\text{c,md}}}{\sr}[\n{}{},\rsmu{}{}] & = 0, \lim_{\mu \to \infty} \bE{\text{c,md}}{\sr}[\n{}{},\rsmu{}{}] & = 0,
& &
% \label{eq:small_mu_ecmd} % \label{eq:small_mu_ecmd}
\lim_{\mu \to 0} \bE{\titou{\text{c,md}}}{\sr}[\n{}{},\rsmu{}{}] & = \Ec[\n{}{}], \lim_{\mu \to 0} \bE{\text{c,md}}{\sr}[\n{}{},\rsmu{}{}] & = \Ec[\n{}{}],
\end{align} \end{align}
where $\Ec[\n{}{}]$ is the usual universal correlation density functional defined in KS-DFT. where $\Ec[\n{}{}]$ is the usual universal correlation density functional defined in KS-DFT.
The choice of \trashPFL{the} ECMD in the present scheme is motivated by the analogy between the definition of $\bE{}{\Bas}[\n{}{}]$ [Eq.~\eqref{eq:E_funcbasis}] and the ECMD functional [Eq.~\eqref{eq:ec_md_mu}]. The choice of ECMD in the present scheme is motivated by the analogy between the definition of $\bE{}{\Bas}[\n{}{}]$ [Eq.~\eqref{eq:E_funcbasis}] and the ECMD functional [Eq.~\eqref{eq:ec_md_mu}].
Indeed, the two functionals coincide if $\wf{}{\Bas} = \wf{}{\rsmu{}{}}$. Indeed, the two functionals coincide if $\wf{}{\Bas} = \wf{}{\rsmu{}{}}$.
Therefore, we approximate $\bE{}{\Bas}[\n{}{}]$ by ECMD functionals evaluated with the range-separation function $\rsmu{}{\Bas}(\br{})$. Therefore, we approximate $\bE{}{\Bas}[\n{}{}]$ by ECMD functionals evaluated with the range-separation function $\rsmu{}{\Bas}(\br{})$.
The local-density approximation (LDA) of the ECMD complementary functional is defined as The local-density approximation (LDA) of the ECMD complementary functional is defined as
\begin{equation} \begin{equation}
\label{eq:def_lda_tot} \label{eq:def_lda_tot}
\bE{\LDA}{\Bas}[\n{}{},\rsmu{}{\Bas}] = \int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\LDA}\qty(\qty{\n{\sigma}{}(\br{})},\rsmu{}{\Bas}(\br{})) \dbr{}, \titou{\bE{\LDA}{\Bas}[\n{}{},\zeta,\rsmu{}{\Bas}] = \int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\LDA}\qty(\n{}{}(\br{}),\zeta(\br{}),\rsmu{}{\Bas}(\br{})) \dbr{},}
\end{equation} \end{equation}
where $\be{\text{c,md}}{\sr,\LDA}(\qty{\n{\sigma}{}},\rsmu{}{})$ is the ECMD correlation energy per electron of the uniform electron gas (UEG) \cite{LooGil-WIRES-16} parametrized in Ref.~\onlinecite{PazMorGorBac-PRB-06} as a function of the spin densities $\qty{\n{\sigma}{}}_{\sigma=\uparrow,\downarrow}$ and the range-separation parameter $\mu$. where \titou{$\zeta = (\n{\uparrow}{} - \n{\downarrow}{})/\n{}{}$ is the spin-polarization and $\be{\text{c,md}}{\sr,\LDA}(\n{}{},\zeta,\rsmu{}{})$} is the ECMD correlation energy per electron of the uniform electron gas (UEG) \cite{LooGil-WIRES-16} parametrized in Ref.~\onlinecite{PazMorGorBac-PRB-06} as a function of the spin densities $\qty{\n{\sigma}{}}_{\sigma=\uparrow,\downarrow}$ and the range-separation parameter $\mu$.
The short-range LDA correlation functional relies on the transferability of the physics of the UEG which is certainly valid for large $\mu$ but is known to over correlate for small $\mu$. The short-range LDA correlation functional relies on the transferability of the physics of the UEG which is certainly valid for large $\mu$ but is known to over correlate for small $\mu$.
In order to correct such a defect, we propose here a new Perdew-Burke-Ernzerhof (PBE)-based ECMD functional In order to correct such a defect, we propose here a new Perdew-Burke-Ernzerhof (PBE)-based ECMD functional
\begin{multline} \begin{multline}
\label{eq:def_pbe_tot} \label{eq:def_pbe_tot}
\bE{\PBE}{\Bas}[\n{}{},\rsmu{}{\Bas}] = \titou{\bE{\PBE}{\Bas}[\n{}{},s,\zeta,\rsmu{}{\Bas}] =}
\\ \\
\int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\PBE}\qty(\qty{\n{\sigma}{}(\br{})},\qty{\nabla \n{\sigma}{}(\br{})},\rsmu{}{\Bas}(\br{})) \dbr{}, \titou{\int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\PBE}\qty(\n{}{}(\br{}),s(\br{}),\zeta(\br{}),\rsmu{}{\Bas}(\br{})) \dbr{},}
\end{multline} \end{multline}
inspired by the recent functional proposed by some of the authors \cite{FerGinTou-JCP-18} which interpolates between the usual PBE correlation functional, \cite{PerBurErn-PRL-96} $\e{\text{c}}{\PBE}(\qty{\n{\sigma}{}},\qty{\nabla \n{\sigma}{}})$, \titou{at} $\rsmu{}{}=0$ and the exact large-$\rsmu{}{}$ behavior, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGorBac-PRB-06} yielding \titou{(where $s$ is the reduced gradient)} inspired by the recent functional proposed by some of the authors. \cite{FerGinTou-JCP-18}
\titou{$\be{\text{c,md}}{\sr,\PBE}\qty(\n{}{},s,\zeta,\rsmu{}{})$} interpolates between the usual PBE correlation functional, \cite{PerBurErn-PRL-96} \titou{$\e{\text{c}}{\PBE}(\n{}{},s,\zeta)$}, at $\rsmu{}{}=0$ and the exact large-$\rsmu{}{}$ behavior, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGorBac-PRB-06} yielding
\begin{subequations} \begin{subequations}
\begin{gather} \begin{gather}
\label{eq:epsilon_cmdpbe} \label{eq:epsilon_cmdpbe}
\be{\text{c,md}}{\sr,\PBE}(\qty{\n{\sigma}{}},\qty{\nabla \n{\sigma}{}},\rsmu{}{}) = \frac{\e{\text{c}}{\PBE}(\qty{\n{\sigma}{}},\qty{\nabla \n{\sigma}{}})}{1 + \beta(\qty{n_\sigma},\qty{\nabla n_\sigma}) \rsmu{}{3} }, \titou{\be{\text{c,md}}{\sr,\PBE}(\n{}{},s,\zeta,\rsmu{}{}) = \frac{\e{\text{c}}{\PBE}(\n{}{},s,\zeta)}{1 + \beta(\n{}{},s,\zeta) \rsmu{}{3} },}
\\ \\
\label{eq:beta_cmdpbe} \label{eq:beta_cmdpbe}
\beta(\qty{n_\sigma},\qty{\nabla n_\sigma}) = \frac{3}{2\sqrt{\pi} (1 - \sqrt{2} )} \frac{\e{\text{c}}{\PBE}(\qty{\n{\sigma}{}},\qty{\nabla \n{\sigma}{}})}{\n{2}{\UEG}(0,\qty{\n{\sigma}{}})}. \titou{\beta(\n{}{},s,\zeta) = \frac{3}{2\sqrt{\pi} (1 - \sqrt{2} )} \frac{\e{\text{c}}{\PBE}(\n{}{},s,\zeta)}{\n{2}{\UEG}(0,\n{}{},\zeta)}.}
\end{gather} \end{gather}
\end{subequations} \end{subequations}
The difference between the ECMD functional defined in Ref.~\onlinecite{FerGinTou-JCP-18} and the present expression \eqref{eq:epsilon_cmdpbe}-\eqref{eq:beta_cmdpbe} is that we approximate here the on-top pair density by its UEG version, i.e.~$\n{2}{\Bas}(\br{},\br{}) \approx \n{2}{\UEG}(0,\qty{\n{\sigma}{}(\br{})})$, where $0$ refers to $r_{12}=0$ and $\n{2}{\UEG}(0,\qty{n_\sigma}) \approx 4 \; n_{\uparrow} \; n_{\downarrow} \; g(0,n)$ with the parametrization of the UEG on-top pair-distribution function $g(0,n)$ given in Eq.~(46) of Ref.~\onlinecite{GorSav-PRA-06}. The difference between the ECMD functional defined in Ref.~\onlinecite{FerGinTou-JCP-18} and the present expression \eqref{eq:epsilon_cmdpbe}-\eqref{eq:beta_cmdpbe} is that we approximate here the on-top pair density by its UEG version, i.e.~\titou{$\n{2}{\Bas}(\br{},\br{}) \approx \n{2}{\UEG}(0,\n{}{}(\br{}),\zeta(\br{}))$, where $\n{2}{\UEG}(r_{12},\n{}{},\zeta) \approx 4 \n{\uparrow}{} \n{\downarrow}{} g(r_{12},n)$} with the parametrization of the UEG on-top pair-distribution function $g(0,n)$ given in Eq.~(46) of Ref.~\onlinecite{GorSav-PRA-06}.
This represents a major computational saving without loss of accuracy for weakly correlated systems as we eschew the computation of $\n{2}{\Bas}(\br{},\br{})$. This represents a major computational saving without loss of accuracy for weakly correlated systems as we eschew the computation of $\n{2}{\Bas}(\br{},\br{})$.
Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\modZ}{\Bas}]$ is \titou{approximated by} $\bE{\LDA}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ where $\rsmu{}{\Bas}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}. Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\modZ}{\Bas}]$ is approximated by $\bE{\LDA}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ where $\rsmu{}{\Bas}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}.
%================================================================= %=================================================================
%\subsection{Frozen-core approximation} %\subsection{Frozen-core approximation}
@ -380,18 +377,18 @@ with
= \sum_{pqrs \in \BasFC} \SO{p}{1} \SO{q}{2} \Gam{pq}{rs} \SO{r}{1} \SO{s}{2}, = \sum_{pqrs \in \BasFC} \SO{p}{1} \SO{q}{2} \Gam{pq}{rs} \SO{r}{1} \SO{s}{2},
\end{gather} \end{gather}
\end{subequations} \end{subequations}
and the corresponding FC range-separation function \titou{$\rsmuFC{}{\Bas}(\br{}) = (\sqrt{\pi}/2) \WFC{}{\Bas}(\br{},\br{})$}. and the corresponding FC range-separation function $\rsmuFC{}{\Bas}(\br{}) = (\sqrt{\pi}/2) \WFC{}{\Bas}(\br{},\br{})$.
It is \titou{noteworthy} that, within the present definition, $\WFC{}{\Bas}(\br{1},\br{2})$ still tends to the regular Coulomb interaction \titou{as} $\Bas \to \infty$. It is noteworthy that, within the present definition, $\WFC{}{\Bas}(\br{1},\br{2})$ still tends to the regular Coulomb interaction as $\Bas \to \infty$.
Defining $\nFC{\modZ}{\Bas}$ as the FC (i.e.~valence-only) one-electron density obtained with a method $\modZ$ \titou{in $\Bas$}, the FC contribution of the complementary functional is then \titou{approximated by} $\bE{\LDA}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$. Defining $\nFC{\modZ}{\Bas}$ as the FC (i.e.~valence-only) one-electron density obtained with a method $\modZ$ in $\Bas$, the FC contribution of the complementary functional is then approximated by $\bE{\LDA}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$.
%================================================================= %=================================================================
%\subsection{Computational considerations} %\subsection{Computational considerations}
%================================================================= %=================================================================
The most computationally intensive task of the present approach is the evaluation of $\W{}{\Bas}(\br{},\br{})$ at each quadrature grid point. The most computationally intensive task of the present approach is the evaluation of $\W{}{\Bas}(\br{},\br{})$ at each quadrature grid point.
Yet embarrassingly parallel, this step scales, in the general case (i.e.~$\wf{}{\Bas}$ is a \titou{multi}-determinant expansion), as $\Ng \Nb^4$ (where $\Nb$ is the number of basis functions in $\Bas$) but is reduced to $\order*{ \Ng \Ne^2 \Nb^2}$ when $\wf{}{\Bas}$ is a single Slater determinant. Yet embarrassingly parallel, this step scales, in the general case (i.e.~$\wf{}{\Bas}$ is a multi-determinant expansion), as $\Ng \Nb^4$ (where $\Nb$ is the number of basis functions in $\Bas$) but is reduced to $\order*{ \Ng \Ne^2 \Nb^2}$ when $\wf{}{\Bas}$ is a single Slater determinant.
As shown in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, this choice for $\wf{}{\Bas}$ already provides, for weakly correlated systems, a quantitative representation of the incompleteness of $\Bas$. As shown in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, this choice for $\wf{}{\Bas}$ already provides, for weakly correlated systems, a quantitative representation of the incompleteness of $\Bas$.
Hence, we will stick to this choice throughout the \titou{present} study. Hence, we will stick to this choice throughout the present study.
In our current implementation, the computational bottleneck is the four-index transformation to get the two-electron integrals in the MO basis which appear in Eqs.~\eqref{eq:n2basis} and \eqref{eq:fbasis}. In our current implementation, the computational bottleneck is the four-index transformation to get the two-electron integrals in the MO basis which appear in Eqs.~\eqref{eq:n2basis} and \eqref{eq:fbasis}.
Nevertheless, this step usually has to be performed for most correlated WFT calculations. Nevertheless, this step usually has to be performed for most correlated WFT calculations.
Modern integral decomposition techniques (such as density fitting \cite{Whi-JCP-73}) or atomic-orbital-based algorithms could be employed to significantly speed up this step. Modern integral decomposition techniques (such as density fitting \cite{Whi-JCP-73}) or atomic-orbital-based algorithms could be employed to significantly speed up this step.
@ -461,24 +458,24 @@ iii) vanishes in the CBS limit, hence guaranteeing an unaltered CBS limit for a
\label{fig:G2_Ec}} \label{fig:G2_Ec}}
\end{figure*} \end{figure*}
We begin our investigation of the performance of the basis-set correction by computing the atomization energies of \ce{C2}, \ce{N2}, \ce{O2} and \ce{F2} obtained with Dunning's cc-pVXZ basis \trashPFL{sets} (X $=$ D, T, Q and 5). We begin our investigation of the performance of the basis-set correction by computing the atomization energies of \ce{C2}, \ce{N2}, \ce{O2} and \ce{F2} obtained with Dunning's cc-pVXZ basis (X $=$ D, T, Q and 5).
\ce{N2}, \ce{O2} and \ce{F2} are weakly correlated systems and belong to the G2 set \cite{CurRagTruPop-JCP-91} (see below), whereas \ce{C2} already contains a non-negligible amount of strong correlation. \cite{BooCleThoAla-JCP-11} \ce{N2}, \ce{O2} and \ce{F2} are weakly correlated systems and belong to the G2 set \cite{CurRagTruPop-JCP-91} (see below), whereas \ce{C2} already contains a non-negligible amount of strong correlation. \cite{BooCleThoAla-JCP-11}
In a second time, we compute the atomization energies of the entire G2 set \cite{CurRagTruPop-JCP-91} composed by 55 molecules with the cc-pVXZ \titou{basis set family}. In a second time, we compute the atomization energies of the entire G2 set \cite{CurRagTruPop-JCP-91} composed by 55 molecules with the cc-pVXZ basis set family.
This molecular set has been intensively studied in the last 20 years (see, for example, Refs.~\onlinecite{FelPetDix-JCP-08, Gro-JCP-09, FelPet-JCP-09, NemTowNee-JCP-10, FelPetHil-JCP-11, HauKlo-JCP-12, PetTouUmr-JCP-12, FelPet-JCP-13, KesSylKohTewMar-JCP-18}) and can be considered as a representative set of small organic and inorganic molecules. This molecular set has been intensively studied in the last 20 years (see, for example, Refs.~\onlinecite{FelPetDix-JCP-08, Gro-JCP-09, FelPet-JCP-09, NemTowNee-JCP-10, FelPetHil-JCP-11, HauKlo-JCP-12, PetTouUmr-JCP-12, FelPet-JCP-13, KesSylKohTewMar-JCP-18}) and can be considered as a representative set of small organic and inorganic molecules.
As a method $\modY$ we employ either CCSD(T) or exFCI. As a method $\modY$ we employ either CCSD(T) or exFCI.
Here, exFCI stands for extrapolated FCI energies computed with the CIPSI algorithm. \cite{HurMalRan-JCP-73, GinSceCaf-CJC-13, GinSceCaf-JCP-15} Here, exFCI stands for extrapolated FCI energies computed with the CIPSI algorithm. \cite{HurMalRan-JCP-73, GinSceCaf-CJC-13, GinSceCaf-JCP-15}
We refer the interested reader to Refs.~\onlinecite{HolUmrSha-JCP-17, SceGarCafLoo-JCTC-18, LooSceBloGarCafJac-JCTC-18, SceBenJacCafLoo-JCP-18, LooBogSceCafJAc-JCTC-19} for more details. We refer the interested reader to Refs.~\onlinecite{HolUmrSha-JCP-17, SceGarCafLoo-JCTC-18, LooSceBloGarCafJac-JCTC-18, SceBenJacCafLoo-JCP-18, LooBogSceCafJAc-JCTC-19} for more details.
In the case of the CCSD(T) calculations, we have $\modZ = \ROHF$ as we use the restricted open-shell HF (ROHF) one-electron density to compute the complementary basis-set correction energy. In the case of the CCSD(T) calculations, we have $\modZ = \ROHF$ as we use the restricted open-shell HF (ROHF) one-electron density to compute the complementary basis-set correction energy.
In the case of exFCI, the one-electron density is computed from a very large CIPSI expansion containing several millions \trashPFL{of} determinants. In the case of exFCI, the one-electron density is computed from a very large CIPSI expansion containing several millions determinants.
CCSD(T) energies are computed with Gaussian09 using standard threshold values, \cite{g09} while RS-DFT and exFCI calculations are performed with {\QP}. \cite{QP2} CCSD(T) energies are computed with Gaussian09 using standard threshold values, \cite{g09} while RS-DFT and exFCI calculations are performed with {\QP}. \cite{QP2}
For the numerical quadratures, we employ the SG-2 grid. \cite{DasHer-JCC-17} For the numerical quadratures, we employ the SG-2 grid. \cite{DasHer-JCC-17}
Except for the carbon dimer where we have taken the experimental equilibrium bond length (\InAA{1.2425}), all geometries have been extracted from Ref.~\onlinecite{HauJanScu-JCP-09} and have been obtained at the B3LYP/6-31G(2df,p) level of theory. Except for the carbon dimer where we have taken the experimental equilibrium bond length (\InAA{1.2425}), all geometries have been extracted from Ref.~\onlinecite{HauJanScu-JCP-09} and have been obtained at the B3LYP/6-31G(2df,p) level of theory.
Frozen-core calculations are defined as such: a \ce{He} core is frozen from \ce{Li} to \ce{Ne}, while a \ce{Ne} core is frozen from \ce{Na} to \ce{Ar}. Frozen-core calculations are defined as such: a \ce{He} core is frozen from \ce{Li} to \ce{Ne}, while a \ce{Ne} core is frozen from \ce{Na} to \ce{Ar}.
In the context of the basis-set correction, the set of active MOs, $\BasFC$, involved in the definition of the effective interaction \titou{[see Eq.~\eqref{eq:WFC}]} refers to the non-frozen MOs. In the context of the basis-set correction, the set of active MOs, $\BasFC$, involved in the definition of the effective interaction [see Eq.~\eqref{eq:WFC}] refers to the non-frozen MOs.
The FC density-based correction is used consistently when the FC approximation was applied in WFT methods. The FC density-based correction is used consistently when the FC approximation was applied in WFT methods.
To estimate the CBS limit of each method, following Ref.~\onlinecite{HalHelJorKloKocOlsWil-CPL-98}, we perform a two-point X$^{-3}$ extrapolation of the correlation energies using the quadruple- and quintuple-$\zeta$ data that we add up to the HF energies obtained in the largest (i.e.~quintuple-$\zeta$) basis. To estimate the CBS limit of each method, following Ref.~\onlinecite{HalHelJorKloKocOlsWil-CPL-98}, we perform a two-point X$^{-3}$ extrapolation of the correlation energies using the quadruple- and quintuple-$\zeta$ data that we add up to the HF energies obtained in the largest (i.e.~quintuple-$\zeta$) basis.
As the exFCI \titou{atomization energies} are converged with a precision of about 0.1 {\kcal} \trashPFL{on atomization energies}, we can label \titou{these} as near-FCI. As the exFCI atomization energies are converged with a precision of about 0.1 {\kcal}, we can label these as near FCI.
Hence, they will be our references for \ce{C2}, \ce{N2}, \ce{O2} and \ce{F2}. Hence, they will be our references for \ce{C2}, \ce{N2}, \ce{O2} and \ce{F2}.
The results for these diatomic molecules are reported in Fig.~\ref{fig:diatomics}. The results for these diatomic molecules are reported in Fig.~\ref{fig:diatomics}.
The corresponding numerical data can be found in the {\SI}. The corresponding numerical data can be found in the {\SI}.