This commit is contained in:
Pierre-Francois Loos 2019-04-01 13:29:55 +02:00
parent 376a7d1e9b
commit 2f9f38a7d5
45 changed files with 32052 additions and 0 deletions

9
G09/C2/C2_v5z.inp Normal file
View File

@ -0,0 +1,9 @@
#p ROCCSD(T) cc-pV5Z pop=full gfprint
G2
0,1
C
C,1,CC
CC=1.2425

730
G09/C2/C2_v5z.out Normal file
View File

@ -0,0 +1,730 @@
Entering Gaussian System, Link 0=g09
Input=C2_v5z.inp
Output=C2_v5z.out
Initial command:
/share/apps/gaussian/g09d01/nehalem/g09/l1.exe "/mnt/beegfs/tmpdir/42372/Gau-39970.inp" -scrdir="/mnt/beegfs/tmpdir/42372/"
Entering Link 1 = /share/apps/gaussian/g09d01/nehalem/g09/l1.exe PID= 39971.
Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013,
Gaussian, Inc. All Rights Reserved.
This is part of the Gaussian(R) 09 program. It is based on
the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),
the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
University), and the Gaussian 82(TM) system (copyright 1983,
Carnegie Mellon University). Gaussian is a federally registered
trademark of Gaussian, Inc.
This software contains proprietary and confidential information,
including trade secrets, belonging to Gaussian, Inc.
This software is provided under written license and may be
used, copied, transmitted, or stored only in accord with that
written license.
The following legend is applicable only to US Government
contracts under FAR:
RESTRICTED RIGHTS LEGEND
Use, reproduction and disclosure by the US Government is
subject to restrictions as set forth in subparagraphs (a)
and (c) of the Commercial Computer Software - Restricted
Rights clause in FAR 52.227-19.
Gaussian, Inc.
340 Quinnipiac St., Bldg. 40, Wallingford CT 06492
---------------------------------------------------------------
Warning -- This program may not be used in any manner that
competes with the business of Gaussian, Inc. or will provide
assistance to any competitor of Gaussian, Inc. The licensee
of this program is prohibited from giving any competitor of
Gaussian, Inc. access to this program. By using this program,
the user acknowledges that Gaussian, Inc. is engaged in the
business of creating and licensing software in the field of
computational chemistry and represents and warrants to the
licensee that it is not a competitor of Gaussian, Inc. and that
it will not use this program in any manner prohibited above.
---------------------------------------------------------------
Cite this work as:
Gaussian 09, Revision D.01,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
******************************************
Gaussian 09: ES64L-G09RevD.01 24-Apr-2013
1-Apr-2019
******************************************
-------------------------------------
#p ROCCSD(T) cc-pV5Z pop=full gfprint
-------------------------------------
1/38=1/1;
2/12=2,17=6,18=5,40=1/2;
3/5=16,6=3,11=2,16=1,24=100,25=1,30=1,116=101/1,2,3;
4//1;
5/5=2,38=5/2;
8/5=-1,6=4,9=120000,10=1/1,4;
9/5=7,14=2/13;
6/7=3/1;
99/5=1,9=1/99;
Leave Link 1 at Mon Apr 1 11:09:52 2019, MaxMem= 0 cpu: 0.1
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l101.exe)
--
G2
--
Symbolic Z-matrix:
Charge = 0 Multiplicity = 1
C
C 1 CC
Variables:
CC 1.2425
NAtoms= 2 NQM= 2 NQMF= 0 NMMI= 0 NMMIF= 0
NMic= 0 NMicF= 0.
Isotopes and Nuclear Properties:
(Nuclear quadrupole moments (NQMom) in fm**2, nuclear magnetic moments (NMagM)
in nuclear magnetons)
Atom 1 2
IAtWgt= 12 12
AtmWgt= 12.0000000 12.0000000
NucSpn= 0 0
AtZEff= 0.0000000 0.0000000
NQMom= 0.0000000 0.0000000
NMagM= 0.0000000 0.0000000
AtZNuc= 6.0000000 6.0000000
Leave Link 101 at Mon Apr 1 11:09:52 2019, MaxMem= 33554432 cpu: 0.3
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l202.exe)
Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 6 0 0.000000 0.000000 0.000000
2 6 0 0.000000 0.000000 1.242500
---------------------------------------------------------------------
Stoichiometry C2
Framework group D*H[C*(C.C)]
Deg. of freedom 1
Full point group D*H NOp 8
Largest Abelian subgroup D2H NOp 8
Largest concise Abelian subgroup C2 NOp 2
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 6 0 0.000000 0.000000 0.621250
2 6 0 0.000000 0.000000 -0.621250
---------------------------------------------------------------------
Rotational constants (GHZ): 0.0000000 54.5598479 54.5598479
Leave Link 202 at Mon Apr 1 11:09:52 2019, MaxMem= 33554432 cpu: 0.0
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l301.exe)
Standard basis: CC-pV5Z (5D, 7F)
Ernie: Thresh= 0.10000D-02 Tol= 0.10000D-05 Strict=F.
Ernie: 8 primitive shells out of 84 were deleted.
AO basis set (Overlap normalization):
Atom C1 Shell 1 S 9 bf 1 - 1 0.000000000000 0.000000000000 1.173992360055
0.9677000000D+05 0.4625203266D-04
0.1450000000D+05 0.3324069183D-03
0.3300000000D+04 0.1767277677D-02
0.9358000000D+03 0.7354171702D-02
0.3062000000D+03 0.2611963959D-01
0.1113000000D+03 0.7807287867D-01
0.4390000000D+02 0.1959607249D+00
0.1840000000D+02 0.3683568961D+00
0.8054000000D+01 0.4404591813D+00
Atom C1 Shell 2 S 7 bf 2 - 2 0.000000000000 0.000000000000 1.173992360055
0.9358000000D+03 -0.5149307386D-04
0.3062000000D+03 -0.1884316386D-03
0.1113000000D+03 -0.2667334384D-02
0.4390000000D+02 -0.1333849355D-01
0.1840000000D+02 -0.7549891227D-01
0.8054000000D+01 -0.2599952349D+00
0.3637000000D+01 -0.6974918333D+00
Atom C1 Shell 3 S 1 bf 3 - 3 0.000000000000 0.000000000000 1.173992360055
0.1656000000D+01 0.1000000000D+01
Atom C1 Shell 4 S 1 bf 4 - 4 0.000000000000 0.000000000000 1.173992360055
0.6333000000D+00 0.1000000000D+01
Atom C1 Shell 5 S 1 bf 5 - 5 0.000000000000 0.000000000000 1.173992360055
0.2545000000D+00 0.1000000000D+01
Atom C1 Shell 6 S 1 bf 6 - 6 0.000000000000 0.000000000000 1.173992360055
0.1019000000D+00 0.1000000000D+01
Atom C1 Shell 7 P 4 bf 7 - 9 0.000000000000 0.000000000000 1.173992360055
0.1018000000D+03 0.6748259919D-02
0.2404000000D+02 0.5283486105D-01
0.7571000000D+01 0.2398548186D+00
0.2732000000D+01 0.7877211236D+00
Atom C1 Shell 8 P 1 bf 10 - 12 0.000000000000 0.000000000000 1.173992360055
0.1085000000D+01 0.1000000000D+01
Atom C1 Shell 9 P 1 bf 13 - 15 0.000000000000 0.000000000000 1.173992360055
0.4496000000D+00 0.1000000000D+01
Atom C1 Shell 10 P 1 bf 16 - 18 0.000000000000 0.000000000000 1.173992360055
0.1876000000D+00 0.1000000000D+01
Atom C1 Shell 11 P 1 bf 19 - 21 0.000000000000 0.000000000000 1.173992360055
0.7606000000D-01 0.1000000000D+01
Atom C1 Shell 12 D 1 bf 22 - 26 0.000000000000 0.000000000000 1.173992360055
0.3134000000D+01 0.1000000000D+01
Atom C1 Shell 13 D 1 bf 27 - 31 0.000000000000 0.000000000000 1.173992360055
0.1233000000D+01 0.1000000000D+01
Atom C1 Shell 14 D 1 bf 32 - 36 0.000000000000 0.000000000000 1.173992360055
0.4850000000D+00 0.1000000000D+01
Atom C1 Shell 15 D 1 bf 37 - 41 0.000000000000 0.000000000000 1.173992360055
0.1910000000D+00 0.1000000000D+01
Atom C1 Shell 16 F 1 bf 42 - 48 0.000000000000 0.000000000000 1.173992360055
0.2006000000D+01 0.1000000000D+01
Atom C1 Shell 17 F 1 bf 49 - 55 0.000000000000 0.000000000000 1.173992360055
0.8380000000D+00 0.1000000000D+01
Atom C1 Shell 18 F 1 bf 56 - 62 0.000000000000 0.000000000000 1.173992360055
0.3500000000D+00 0.1000000000D+01
Atom C1 Shell 19 G 1 bf 63 - 71 0.000000000000 0.000000000000 1.173992360055
0.1753000000D+01 0.1000000000D+01
Atom C1 Shell 20 G 1 bf 72 - 80 0.000000000000 0.000000000000 1.173992360055
0.6780000000D+00 0.1000000000D+01
Atom C1 Shell 21 H 1 bf 81 - 91 0.000000000000 0.000000000000 1.173992360055
0.1259000000D+01 0.1000000000D+01
Atom C2 Shell 22 S 9 bf 92 - 92 0.000000000000 0.000000000000 -1.173992360055
0.9677000000D+05 0.4625203266D-04
0.1450000000D+05 0.3324069183D-03
0.3300000000D+04 0.1767277677D-02
0.9358000000D+03 0.7354171702D-02
0.3062000000D+03 0.2611963959D-01
0.1113000000D+03 0.7807287867D-01
0.4390000000D+02 0.1959607249D+00
0.1840000000D+02 0.3683568961D+00
0.8054000000D+01 0.4404591813D+00
Atom C2 Shell 23 S 7 bf 93 - 93 0.000000000000 0.000000000000 -1.173992360055
0.9358000000D+03 -0.5149307386D-04
0.3062000000D+03 -0.1884316386D-03
0.1113000000D+03 -0.2667334384D-02
0.4390000000D+02 -0.1333849355D-01
0.1840000000D+02 -0.7549891227D-01
0.8054000000D+01 -0.2599952349D+00
0.3637000000D+01 -0.6974918333D+00
Atom C2 Shell 24 S 1 bf 94 - 94 0.000000000000 0.000000000000 -1.173992360055
0.1656000000D+01 0.1000000000D+01
Atom C2 Shell 25 S 1 bf 95 - 95 0.000000000000 0.000000000000 -1.173992360055
0.6333000000D+00 0.1000000000D+01
Atom C2 Shell 26 S 1 bf 96 - 96 0.000000000000 0.000000000000 -1.173992360055
0.2545000000D+00 0.1000000000D+01
Atom C2 Shell 27 S 1 bf 97 - 97 0.000000000000 0.000000000000 -1.173992360055
0.1019000000D+00 0.1000000000D+01
Atom C2 Shell 28 P 4 bf 98 - 100 0.000000000000 0.000000000000 -1.173992360055
0.1018000000D+03 0.6748259919D-02
0.2404000000D+02 0.5283486105D-01
0.7571000000D+01 0.2398548186D+00
0.2732000000D+01 0.7877211236D+00
Atom C2 Shell 29 P 1 bf 101 - 103 0.000000000000 0.000000000000 -1.173992360055
0.1085000000D+01 0.1000000000D+01
Atom C2 Shell 30 P 1 bf 104 - 106 0.000000000000 0.000000000000 -1.173992360055
0.4496000000D+00 0.1000000000D+01
Atom C2 Shell 31 P 1 bf 107 - 109 0.000000000000 0.000000000000 -1.173992360055
0.1876000000D+00 0.1000000000D+01
Atom C2 Shell 32 P 1 bf 110 - 112 0.000000000000 0.000000000000 -1.173992360055
0.7606000000D-01 0.1000000000D+01
Atom C2 Shell 33 D 1 bf 113 - 117 0.000000000000 0.000000000000 -1.173992360055
0.3134000000D+01 0.1000000000D+01
Atom C2 Shell 34 D 1 bf 118 - 122 0.000000000000 0.000000000000 -1.173992360055
0.1233000000D+01 0.1000000000D+01
Atom C2 Shell 35 D 1 bf 123 - 127 0.000000000000 0.000000000000 -1.173992360055
0.4850000000D+00 0.1000000000D+01
Atom C2 Shell 36 D 1 bf 128 - 132 0.000000000000 0.000000000000 -1.173992360055
0.1910000000D+00 0.1000000000D+01
Atom C2 Shell 37 F 1 bf 133 - 139 0.000000000000 0.000000000000 -1.173992360055
0.2006000000D+01 0.1000000000D+01
Atom C2 Shell 38 F 1 bf 140 - 146 0.000000000000 0.000000000000 -1.173992360055
0.8380000000D+00 0.1000000000D+01
Atom C2 Shell 39 F 1 bf 147 - 153 0.000000000000 0.000000000000 -1.173992360055
0.3500000000D+00 0.1000000000D+01
Atom C2 Shell 40 G 1 bf 154 - 162 0.000000000000 0.000000000000 -1.173992360055
0.1753000000D+01 0.1000000000D+01
Atom C2 Shell 41 G 1 bf 163 - 171 0.000000000000 0.000000000000 -1.173992360055
0.6780000000D+00 0.1000000000D+01
Atom C2 Shell 42 H 1 bf 172 - 182 0.000000000000 0.000000000000 -1.173992360055
0.1259000000D+01 0.1000000000D+01
There are 50 symmetry adapted cartesian basis functions of AG symmetry.
There are 16 symmetry adapted cartesian basis functions of B1G symmetry.
There are 30 symmetry adapted cartesian basis functions of B2G symmetry.
There are 30 symmetry adapted cartesian basis functions of B3G symmetry.
There are 16 symmetry adapted cartesian basis functions of AU symmetry.
There are 50 symmetry adapted cartesian basis functions of B1U symmetry.
There are 30 symmetry adapted cartesian basis functions of B2U symmetry.
There are 30 symmetry adapted cartesian basis functions of B3U symmetry.
There are 34 symmetry adapted basis functions of AG symmetry.
There are 13 symmetry adapted basis functions of B1G symmetry.
There are 22 symmetry adapted basis functions of B2G symmetry.
There are 22 symmetry adapted basis functions of B3G symmetry.
There are 13 symmetry adapted basis functions of AU symmetry.
There are 34 symmetry adapted basis functions of B1U symmetry.
There are 22 symmetry adapted basis functions of B2U symmetry.
There are 22 symmetry adapted basis functions of B3U symmetry.
182 basis functions, 298 primitive gaussians, 252 cartesian basis functions
6 alpha electrons 6 beta electrons
nuclear repulsion energy 15.3322973917 Hartrees.
IExCor= 0 DFT=F Ex=HF Corr=None ExCW=0 ScaHFX= 1.000000
ScaDFX= 1.000000 1.000000 1.000000 1.000000 ScalE2= 1.000000 1.000000
IRadAn= 0 IRanWt= -1 IRanGd= 0 ICorTp=0 IEmpDi= 4
NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
Leave Link 301 at Mon Apr 1 11:09:53 2019, MaxMem= 33554432 cpu: 0.1
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l302.exe)
NPDir=0 NMtPBC= 1 NCelOv= 1 NCel= 1 NClECP= 1 NCelD= 1
NCelK= 1 NCelE2= 1 NClLst= 1 CellRange= 0.0.
One-electron integrals computed using PRISM.
One-electron integral symmetry used in STVInt
NBasis= 182 RedAO= T EigKep= 2.91D-05 NBF= 34 13 22 22 13 34 22 22
NBsUse= 182 1.00D-06 EigRej= -1.00D+00 NBFU= 34 13 22 22 13 34 22 22
Leave Link 302 at Mon Apr 1 11:09:54 2019, MaxMem= 33554432 cpu: 0.5
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l303.exe)
DipDrv: MaxL=1.
Leave Link 303 at Mon Apr 1 11:09:54 2019, MaxMem= 33554432 cpu: 0.1
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l401.exe)
ExpMin= 7.61D-02 ExpMax= 9.68D+04 ExpMxC= 3.06D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00
Harris functional with IExCor= 205 and IRadAn= 4 diagonalized for initial guess.
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Harris En= -75.4760979451417
JPrj=0 DoOrth=F DoCkMO=F.
Initial guess orbital symmetries:
Occupied (SGG) (SGU) (SGG) (SGU) (PIU) (PIU)
Virtual (SGG) (PIG) (PIG) (SGU) (PIU) (PIU) (SGG) (SGG)
(PIG) (PIG) (DLTG) (DLTG) (SGU) (SGU) (PIU) (PIU)
(DLTU) (DLTU) (SGG) (PIG) (PIG) (PIU) (PIU) (SGU)
(SGG) (PIG) (PIG) (SGU) (PHIU) (PHIU) (SGG) (DLTG)
(DLTG) (PIU) (PIU) (PHIG) (PHIG) (DLTG) (DLTG)
(DLTU) (DLTU) (SGG) (PIG) (PIG) (SGU) (PIU) (PIU)
(DLTU) (DLTU) (SGU) (SGG) (SGU) (PIG) (PIG) (PIU)
(PIU) (SGG) (PIG) (PIG) (?A) (?A) (PHIU) (PHIU)
(DLTG) (DLTG) (?B) (?B) (PIU) (PIU) (SGU) (PHIU)
(PHIU) (PIG) (PIG) (DLTU) (DLTU) (PHIG) (PHIG)
(SGG) (PIU) (PIU) (DLTG) (DLTG) (SGG) (PHIG) (PHIG)
(SGU) (DLTG) (DLTG) (DLTU) (DLTU) (PIG) (PIG)
(SGU) (SGU) (DLTU) (DLTU) (PIU) (PIU) (SGG) (SGG)
(PIG) (PIG) (?A) (?A) (PHIU) (PHIU) (?C) (?C)
(?D) (?D) (PIU) (PIU) (DLTG) (DLTG) (PIG) (PIG)
(SGU) (?B) (?B) (SGG) (PIU) (PIU) (DLTU) (DLTU)
(PIG) (PIG) (SGU) (PHIG) (PHIG) (SGG) (PHIU) (PHIU)
(?A) (?A) (PHIU) (PHIU) (PIU) (PIU) (SGU) (SGG)
(?B) (?B) (DLTG) (DLTG) (PHIG) (PHIG) (PHIG) (PHIG)
(DLTG) (DLTG) (DLTU) (DLTU) (PIG) (PIG) (SGU)
(DLTU) (DLTU) (PIG) (PIG) (PIU) (PIU) (DLTG) (DLTG)
(SGU) (SGG) (DLTU) (DLTU) (PIU) (PIU) (SGG) (PIG)
(PIG) (SGU) (SGG) (SGU)
The electronic state of the initial guess is 1-SGG.
Leave Link 401 at Mon Apr 1 11:09:55 2019, MaxMem= 33554432 cpu: 0.8
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l502.exe)
Restricted open shell SCF:
Using DIIS extrapolation, IDIIS= 1040.
Integral symmetry usage will be decided dynamically.
IVT= 212818 IEndB= 212818 NGot= 33554432 MDV= 33422011
LenX= 33422011 LenY= 33358066
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
Fock matrices will be formed incrementally for 20 cycles.
Integral accuracy reduced to 1.0D-05 until final iterations.
Cycle 1 Pass 0 IDiag 1:
FoFJK: IHMeth= 1 ICntrl= 0 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F
IRaf= 990000000 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 1.
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
wScrn= 0.000000 ICntrl= 0 IOpCl= 1 I1Cent= 0 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
E= -75.3262837312204
DIIS: error= 6.49D-02 at cycle 1 NSaved= 1.
NSaved= 1 IEnMin= 1 EnMin= -75.3262837312204 IErMin= 1 ErrMin= 6.49D-02
ErrMax= 6.49D-02 0.00D+00 EMaxC= 1.00D-01 BMatC= 1.50D-01 BMatP= 1.50D-01
IDIUse=3 WtCom= 3.51D-01 WtEn= 6.49D-01
Coeff-Com: 0.100D+01
Coeff-En: 0.100D+01
Coeff: 0.100D+01
Gap= 0.310 Goal= None Shift= 0.000
GapD= 0.310 DampG=1.000 DampE=0.500 DampFc=0.5000 IDamp=-1.
Damping current iteration by 5.00D-01
RMSDP=1.19D-03 MaxDP=5.24D-02 OVMax= 1.32D-01
Cycle 2 Pass 0 IDiag 1:
RMSU= 5.67D-04 CP: 9.70D-01
E= -75.3646837002260 Delta-E= -0.038399969006 Rises=F Damp=T
DIIS: error= 2.93D-02 at cycle 2 NSaved= 2.
NSaved= 2 IEnMin= 2 EnMin= -75.3646837002260 IErMin= 2 ErrMin= 2.93D-02
ErrMax= 2.93D-02 0.00D+00 EMaxC= 1.00D-01 BMatC= 3.84D-02 BMatP= 1.50D-01
IDIUse=3 WtCom= 7.07D-01 WtEn= 2.93D-01
Coeff-Com: -0.876D+00 0.188D+01
Coeff-En: 0.000D+00 0.100D+01
Coeff: -0.619D+00 0.162D+01
Gap= 0.333 Goal= None Shift= 0.000
RMSDP=5.15D-04 MaxDP=1.78D-02 DE=-3.84D-02 OVMax= 2.42D-02
Cycle 3 Pass 0 IDiag 1:
RMSU= 2.72D-04 CP: 9.64D-01 1.77D+00
E= -75.4053499110545 Delta-E= -0.040666210828 Rises=F Damp=F
DIIS: error= 4.75D-03 at cycle 3 NSaved= 3.
NSaved= 3 IEnMin= 3 EnMin= -75.4053499110545 IErMin= 3 ErrMin= 4.75D-03
ErrMax= 4.75D-03 0.00D+00 EMaxC= 1.00D-01 BMatC= 4.52D-04 BMatP= 3.84D-02
IDIUse=3 WtCom= 9.52D-01 WtEn= 4.75D-02
Coeff-Com: 0.994D-01-0.247D+00 0.115D+01
Coeff-En: 0.000D+00 0.000D+00 0.100D+01
Coeff: 0.946D-01-0.236D+00 0.114D+01
Gap= 0.339 Goal= None Shift= 0.000
RMSDP=1.13D-04 MaxDP=7.14D-03 DE=-4.07D-02 OVMax= 1.92D-02
Cycle 4 Pass 0 IDiag 1:
RMSU= 5.69D-05 CP: 9.72D-01 1.75D+00 1.32D+00
E= -75.4063772893765 Delta-E= -0.001027378322 Rises=F Damp=F
DIIS: error= 1.44D-03 at cycle 4 NSaved= 4.
NSaved= 4 IEnMin= 4 EnMin= -75.4063772893765 IErMin= 4 ErrMin= 1.44D-03
ErrMax= 1.44D-03 0.00D+00 EMaxC= 1.00D-01 BMatC= 6.46D-05 BMatP= 4.52D-04
IDIUse=3 WtCom= 9.86D-01 WtEn= 1.44D-02
Coeff-Com: 0.487D-01-0.761D-01-0.466D+00 0.149D+01
Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.100D+01
Coeff: 0.480D-01-0.750D-01-0.460D+00 0.149D+01
Gap= 0.343 Goal= None Shift= 0.000
RMSDP=6.75D-05 MaxDP=4.31D-03 DE=-1.03D-03 OVMax= 8.97D-03
Cycle 5 Pass 0 IDiag 1:
RMSU= 5.59D-06 CP: 9.76D-01 1.71D+00 1.49D+00 1.55D+00
E= -75.4065226733159 Delta-E= -0.000145383939 Rises=F Damp=F
DIIS: error= 8.36D-05 at cycle 5 NSaved= 5.
NSaved= 5 IEnMin= 5 EnMin= -75.4065226733159 IErMin= 5 ErrMin= 8.36D-05
ErrMax= 8.36D-05 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.01D-07 BMatP= 6.46D-05
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: -0.359D-02 0.563D-02 0.412D-01-0.172D+00 0.113D+01
Coeff: -0.359D-02 0.563D-02 0.412D-01-0.172D+00 0.113D+01
Gap= 0.344 Goal= None Shift= 0.000
RMSDP=4.06D-06 MaxDP=2.31D-04 DE=-1.45D-04 OVMax= 4.31D-04
Initial convergence to 1.0D-05 achieved. Increase integral accuracy.
Cycle 6 Pass 1 IDiag 1:
E= -75.4065226702182 Delta-E= 0.000000003098 Rises=F Damp=F
DIIS: error= 1.13D-05 at cycle 1 NSaved= 1.
NSaved= 1 IEnMin= 1 EnMin= -75.4065226702182 IErMin= 1 ErrMin= 1.13D-05
ErrMax= 1.13D-05 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.70D-09 BMatP= 2.70D-09
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: 0.100D+01
Coeff: 0.100D+01
Gap= 0.344 Goal= None Shift= 0.000
RMSDP=4.06D-06 MaxDP=2.31D-04 DE= 3.10D-09 OVMax= 2.44D-05
Cycle 7 Pass 1 IDiag 1:
RMSU= 6.95D-07 CP: 1.00D+00
E= -75.4065226749023 Delta-E= -0.000000004684 Rises=F Damp=F
DIIS: error= 3.03D-06 at cycle 2 NSaved= 2.
NSaved= 2 IEnMin= 2 EnMin= -75.4065226749023 IErMin= 2 ErrMin= 3.03D-06
ErrMax= 3.03D-06 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.50D-10 BMatP= 2.70D-09
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: -0.354D+00 0.135D+01
Coeff: -0.354D+00 0.135D+01
Gap= 0.344 Goal= None Shift= 0.000
RMSDP=1.95D-07 MaxDP=8.43D-06 DE=-4.68D-09 OVMax= 1.07D-05
Cycle 8 Pass 1 IDiag 1:
RMSU= 1.11D-07 CP: 1.00D+00 1.23D+00
E= -75.4065226754832 Delta-E= -0.000000000581 Rises=F Damp=F
DIIS: error= 7.80D-07 at cycle 3 NSaved= 3.
NSaved= 3 IEnMin= 3 EnMin= -75.4065226754832 IErMin= 3 ErrMin= 7.80D-07
ErrMax= 7.80D-07 0.00D+00 EMaxC= 1.00D-01 BMatC= 5.90D-12 BMatP= 2.50D-10
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: -0.450D-01 0.683D-01 0.977D+00
Coeff: -0.450D-01 0.683D-01 0.977D+00
Gap= 0.344 Goal= None Shift= 0.000
RMSDP=2.09D-08 MaxDP=1.23D-06 DE=-5.81D-10 OVMax= 1.99D-06
Cycle 9 Pass 1 IDiag 1:
RMSU= 1.90D-08 CP: 1.00D+00 1.22D+00 9.56D-01
E= -75.4065226754967 Delta-E= -0.000000000014 Rises=F Damp=F
DIIS: error= 1.43D-07 at cycle 4 NSaved= 4.
NSaved= 4 IEnMin= 4 EnMin= -75.4065226754967 IErMin= 4 ErrMin= 1.43D-07
ErrMax= 1.43D-07 0.00D+00 EMaxC= 1.00D-01 BMatC= 5.57D-13 BMatP= 5.90D-12
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: 0.310D-01-0.110D+00-0.644D-01 0.114D+01
Coeff: 0.310D-01-0.110D+00-0.644D-01 0.114D+01
Gap= 0.344 Goal= None Shift= 0.000
RMSDP=1.40D-08 MaxDP=5.65D-07 DE=-1.35D-11 OVMax= 5.89D-07
Cycle 10 Pass 1 IDiag 1:
RMSU= 2.80D-09 CP: 1.00D+00 1.21D+00 8.98D-01 1.43D+00
E= -75.4065226754977 Delta-E= -0.000000000001 Rises=F Damp=F
DIIS: error= 2.85D-08 at cycle 5 NSaved= 5.
NSaved= 5 IEnMin= 5 EnMin= -75.4065226754977 IErMin= 5 ErrMin= 2.85D-08
ErrMax= 2.85D-08 0.00D+00 EMaxC= 1.00D-01 BMatC= 1.49D-14 BMatP= 5.57D-13
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: -0.303D-02 0.135D-01-0.968D-02-0.245D+00 0.124D+01
Coeff: -0.303D-02 0.135D-01-0.968D-02-0.245D+00 0.124D+01
Gap= 0.344 Goal= None Shift= 0.000
RMSDP=2.58D-09 MaxDP=1.06D-07 DE=-1.05D-12 OVMax= 1.43D-07
SCF Done: E(ROHF) = -75.4065226755 A.U. after 10 cycles
NFock= 10 Conv=0.26D-08 -V/T= 2.0002
<Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 0.0000 <S**2>= 0.0000 S= 0.0000
<L.S>= 0.000000000000E+00
KE= 7.539216546640D+01 PE=-2.064466184594D+02 EE= 4.031563292577D+01
Annihilation of the first spin contaminant:
S**2 before annihilation 0.0000, after 0.0000
Leave Link 502 at Mon Apr 1 11:17:27 2019, MaxMem= 33554432 cpu: 285.6
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l801.exe)
Windowed orbitals will be sorted by symmetry type.
GenMOA: NOpAll= 8 NOp2=8 NOpUse= 8 JSym2X=1
FoFJK: IHMeth= 1 ICntrl= 0 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F
IRaf= 0 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 1.
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
wScrn= 0.000000 ICntrl= 0 IOpCl= 1 I1Cent= 0 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
<Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 0.0000 <S**2>= 0.0000 S= 0.0000
ExpMin= 7.61D-02 ExpMax= 9.68D+04 ExpMxC= 3.06D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14
ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
Largest valence mixing into a core orbital is 2.51D-04
Largest core mixing into a valence orbital is 6.57D-05
Largest valence mixing into a core orbital is 2.51D-04
Largest core mixing into a valence orbital is 6.57D-05
Range of M.O.s used for correlation: 3 182
NBasis= 182 NAE= 6 NBE= 6 NFC= 2 NFV= 0
NROrb= 180 NOA= 4 NOB= 4 NVA= 176 NVB= 176
**** Warning!!: The largest alpha MO coefficient is 0.53108980D+02
**** Warning!!: The largest beta MO coefficient is 0.53108980D+02
Singles contribution to E2= -0.9123239933D-15
Leave Link 801 at Mon Apr 1 11:18:17 2019, MaxMem= 33554432 cpu: 31.3
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l804.exe)
Open-shell transformation, MDV= 33554432 ITran=4 ISComp=2.
Semi-Direct transformation.
ModeAB= 4 MOrb= 4 LenV= 32346923
LASXX= 1442880 LTotXX= 1442880 LenRXX= 2914632
LTotAB= 1471752 MaxLAS= 12428640 LenRXY= 0
NonZer= 4357512 LenScr= 7208960 LnRSAI= 12428640
LnScr1= 19005440 LExtra= 0 Total= 41557672
MaxDsk= -1 SrtSym= T ITran= 4
DoSDTr: NPSUse= 1
JobTyp=1 Pass 1: I= 1 to 4.
(rs|ai) integrals will be sorted in core.
Complete sort for first half transformation.
First half transformation complete.
Complete sort for second half transformation.
Second half transformation complete.
ModeAB= 4 MOrb= 4 LenV= 32346923
LASXX= 1442880 LTotXX= 1442880 LenRXX= 2849306
LTotAB= 1406426 MaxLAS= 12428640 LenRXY= 0
NonZer= 4292186 LenScr= 6881280 LnRSAI= 12428640
LnScr1= 19005440 LExtra= 0 Total= 41164666
MaxDsk= -1 SrtSym= T ITran= 4
DoSDTr: NPSUse= 1
JobTyp=2 Pass 1: I= 1 to 4.
(rs|ai) integrals will be sorted in core.
Complete sort for first half transformation.
First half transformation complete.
Complete sort for second half transformation.
Second half transformation complete.
Spin components of T(2) and E(2):
alpha-alpha T2 = 0.2580453902D-01 E2= -0.4520835307D-01
alpha-beta T2 = 0.1611020290D+00 E2= -0.2876756569D+00
beta-beta T2 = 0.2580453902D-01 E2= -0.4520835307D-01
ANorm= 0.1101231632D+01
E2 = -0.3780923630D+00 EUMP2 = -0.75784615038547D+02
(S**2,0)= 0.00000D+00 (S**2,1)= 0.00000D+00
E(PUHF)= -0.75406522675D+02 E(PMP2)= -0.75784615039D+02
Leave Link 804 at Mon Apr 1 11:21:43 2019, MaxMem= 33554432 cpu: 130.3
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l913.exe)
CIDS: MDV= 33554432.
Frozen-core window: NFC= 2 NFV= 0.
IFCWin=0 IBDFC=1 NFBD= 0 0 NFCmp= 0 0 NFFFC= 0 0
Using original routines for 1st iteration, S=T.
Using DD4UQ or CC4UQ for 2nd and later iterations.
Would need an additional 122623077 words for in-memory AO integral storage.
CCSD(T)
=======
Iterations= 50 Convergence= 0.100D-06
Iteration Nr. 1
**********************
DD1Dir will call FoFJK 1 times, MxPair= 44
NAB= 16 NAA= 6 NBB= 6 NumPrc= 1.
FoFJK: IHMeth= 1 ICntrl= 200 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F
IRaf= 990000000 NMat= 44 IRICut= 70 DoRegI=T DoRafI=T ISym2E=-1.
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
wScrn= 0.000000 ICntrl= 200 IOpCl= 0 I1Cent= 0 NGrid= 0
NMat0= 44 NMatS0= 0 NMatT0= 16 NMatD0= 44 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
DD1Dir will call FoFJK 1 times, MxPair= 44
NAB= 16 NAA= 6 NBB= 6 NumPrc= 1.
MP4(R+Q)= -0.26063288D-01
Maximum subspace dimension= 5
Norm of the A-vectors is 1.3696173D-01 conv= 1.00D-05.
RLE energy= -0.3614937819
E3= 0.43424021D-01 EROMP3= -0.75741191018D+02
E4(SDQ)= -0.34032958D-01 ROMP4(SDQ)= -0.75775223975D+02
VARIATIONAL ENERGIES WITH THE FIRST-ORDER WAVEFUNCTION:
DE(Corr)= -0.36073163 E(Corr)= -75.767254306
NORM(A)= 0.10904967D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFJK 1 times, MxPair= 44
NAB= 16 NAA= 6 NBB= 6 NumPrc= 1.
Norm of the A-vectors is 6.6913767D-01 conv= 1.00D-05.
RLE energy= -0.3523927298
DE(Corr)= -0.31833267 E(CORR)= -75.724855349 Delta= 4.24D-02
NORM(A)= 0.10855471D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFJK 1 times, MxPair= 44
NAB= 16 NAA= 6 NBB= 6 NumPrc= 1.
Norm of the A-vectors is 5.1149936D-01 conv= 1.00D-05.
RLE energy= -0.3563368189
DE(Corr)= -0.32708671 E(CORR)= -75.733609389 Delta=-8.75D-03
NORM(A)= 0.10914981D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFJK 1 times, MxPair= 44
NAB= 16 NAA= 6 NBB= 6 NumPrc= 1.
Norm of the A-vectors is 3.8348895D-01 conv= 1.00D-05.
RLE energy= -0.3596248635
DE(Corr)= -0.33501467 E(CORR)= -75.741537344 Delta=-7.93D-03
NORM(A)= 0.11346731D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFJK 1 times, MxPair= 44
NAB= 16 NAA= 6 NBB= 6 NumPrc= 1.
Norm of the A-vectors is 1.2156182D-01 conv= 1.00D-05.
RLE energy= -0.3654561242
DE(Corr)= -0.36891226 E(CORR)= -75.775434933 Delta=-3.39D-02
NORM(A)= 0.11332426D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFJK 1 times, MxPair= 44
NAB= 16 NAA= 6 NBB= 6 NumPrc= 1.
Norm of the A-vectors is 5.9814156D-02 conv= 1.00D-05.
RLE energy= -0.3631982707
DE(Corr)= -0.35997405 E(CORR)= -75.766496721 Delta= 8.94D-03
NORM(A)= 0.11363169D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFJK 1 times, MxPair= 44
NAB= 16 NAA= 6 NBB= 6 NumPrc= 1.
Norm of the A-vectors is 7.4666666D-03 conv= 1.00D-05.
RLE energy= -0.3639093338
DE(Corr)= -0.36381842 E(CORR)= -75.770341092 Delta=-3.84D-03
NORM(A)= 0.11378709D+01
Iteration Nr. 8
**********************
DD1Dir will call FoFJK 1 times, MxPair= 44
NAB= 16 NAA= 6 NBB= 6 NumPrc= 1.
Norm of the A-vectors is 2.0238148D-03 conv= 1.00D-05.
RLE energy= -0.3639204928
DE(Corr)= -0.36392312 E(CORR)= -75.770445796 Delta=-1.05D-04
NORM(A)= 0.11378028D+01
Iteration Nr. 9
**********************
DD1Dir will call FoFJK 1 times, MxPair= 44
NAB= 16 NAA= 6 NBB= 6 NumPrc= 1.
Norm of the A-vectors is 1.2410917D-03 conv= 1.00D-05.
RLE energy= -0.3638938156
DE(Corr)= -0.36389111 E(CORR)= -75.770413787 Delta= 3.20D-05
NORM(A)= 0.11377621D+01
Iteration Nr. 10
**********************
DD1Dir will call FoFJK 1 times, MxPair= 44
NAB= 16 NAA= 6 NBB= 6 NumPrc= 1.
Norm of the A-vectors is 5.7794412D-04 conv= 1.00D-05.
RLE energy= -0.3639072690
DE(Corr)= -0.36390324 E(CORR)= -75.770425920 Delta=-1.21D-05
NORM(A)= 0.11377758D+01
Iteration Nr. 11
**********************
DD1Dir will call FoFJK 1 times, MxPair= 44
NAB= 16 NAA= 6 NBB= 6 NumPrc= 1.
Norm of the A-vectors is 2.3265723D-04 conv= 1.00D-05.
RLE energy= -0.3639099937
DE(Corr)= -0.36390376 E(CORR)= -75.770426432 Delta=-5.13D-07
NORM(A)= 0.11377958D+01
Iteration Nr. 12
**********************
DD1Dir will call FoFJK 1 times, MxPair= 44
NAB= 16 NAA= 6 NBB= 6 NumPrc= 1.
Norm of the A-vectors is 5.9561944D-05 conv= 1.00D-05.
RLE energy= -0.3639106699
DE(Corr)= -0.36391041 E(CORR)= -75.770433082 Delta=-6.65D-06
NORM(A)= 0.11377984D+01
Iteration Nr. 13
**********************
DD1Dir will call FoFJK 1 times, MxPair= 44
NAB= 16 NAA= 6 NBB= 6 NumPrc= 1.
Norm of the A-vectors is 2.1208128D-05 conv= 1.00D-05.
RLE energy= -0.3639108655
DE(Corr)= -0.36391067 E(CORR)= -75.770433350 Delta=-2.68D-07
NORM(A)= 0.11377981D+01
Iteration Nr. 14
**********************
DD1Dir will call FoFJK 1 times, MxPair= 44
NAB= 16 NAA= 6 NBB= 6 NumPrc= 1.
Norm of the A-vectors is 8.1830844D-06 conv= 1.00D-05.
RLE energy= -0.3639104675
DE(Corr)= -0.36391052 E(CORR)= -75.770433199 Delta= 1.52D-07
NORM(A)= 0.11377973D+01
Iteration Nr. 15
**********************
DD1Dir will call FoFJK 1 times, MxPair= 44
NAB= 16 NAA= 6 NBB= 6 NumPrc= 1.
Norm of the A-vectors is 3.9400500D-06 conv= 1.00D-05.
RLE energy= -0.3639103428
DE(Corr)= -0.36391042 E(CORR)= -75.770433096 Delta= 1.03D-07
NORM(A)= 0.11377966D+01
Iteration Nr. 16
**********************
DD1Dir will call FoFJK 1 times, MxPair= 44
NAB= 16 NAA= 6 NBB= 6 NumPrc= 1.
Norm of the A-vectors is 1.3208092D-06 conv= 1.00D-05.
RLE energy= -0.3639102381
DE(Corr)= -0.36391027 E(CORR)= -75.770432946 Delta= 1.49D-07
NORM(A)= 0.11377964D+01
Iteration Nr. 17
**********************
DD1Dir will call FoFJK 1 times, MxPair= 44
NAB= 16 NAA= 6 NBB= 6 NumPrc= 1.
Norm of the A-vectors is 4.4050486D-07 conv= 1.00D-05.
RLE energy= -0.3639102429
DE(Corr)= -0.36391025 E(CORR)= -75.770432924 Delta= 2.27D-08
NORM(A)= 0.11377964D+01
CI/CC converged in 17 iterations to DelEn= 2.27D-08 Conv= 1.00D-07 ErrA1= 4.41D-07 Conv= 1.00D-05
Dominant configurations:
***********************
Spin Case I J A B Value
ABAB 4 4 7 7 -0.281718D+00
Largest amplitude= 2.82D-01

9
G09/C2/C2_vdz.inp Normal file
View File

@ -0,0 +1,9 @@
#p ROCCSD(T) cc-pVDZ pop=full gfprint
G2
0,1
C
C,1,CC
CC=1.2425

9
G09/C2/C2_vqz.inp Normal file
View File

@ -0,0 +1,9 @@
#p ROCCSD(T) cc-pVQZ pop=full gfprint
G2
0,1
C
C,1,CC
CC=1.2425

9
G09/C2/C2_vtz.inp Normal file
View File

@ -0,0 +1,9 @@
#p ROCCSD(T) cc-pVTZ pop=full gfprint
G2
0,1
C
C,1,CC
CC=1.2425

8
G09/C2/C_v5z.inp Normal file
View File

@ -0,0 +1,8 @@
#p ROCCSD(T) cc-pV5Z pop=full gfprint
G2
0,3
C

8
G09/C2/C_vdz.inp Normal file
View File

@ -0,0 +1,8 @@
#p ROCCSD(T) cc-pVDZ pop=full gfprint
G2
0,3
C

8
G09/C2/C_vqz.inp Normal file
View File

@ -0,0 +1,8 @@
#p ROCCSD(T) cc-pVQZ pop=full gfprint
G2
0,3
C

8
G09/C2/C_vtz.inp Normal file
View File

@ -0,0 +1,8 @@
#p ROCCSD(T) cc-pVTZ pop=full gfprint
G2
0,3
C

10
G09/C2/run_g09.sh Executable file
View File

@ -0,0 +1,10 @@
#! /bin/bash
#SBATCH -p xeonv1_mono -c 1 -n 1 -N 1
module load g09/d01
for INP in $( ls *.inp ); do
MOL=${INP%.*}
g09 ${MOL}.inp ${MOL}.out
done

0
G09/C2/slurm-42372.out Normal file
View File

9
G09/F2/F2_v5z.inp Normal file
View File

@ -0,0 +1,9 @@
#p ROCCSD(T) cc-pV5Z pop=full gfprint
G2
0,1
F
F,1,FF
FF=1.38792514

18403
G09/F2/F2_v5z.out Normal file

File diff suppressed because it is too large Load Diff

9
G09/F2/F2_vdz.inp Normal file
View File

@ -0,0 +1,9 @@
#p ROCCSD(T) cc-pVDZ pop=full gfprint
G2
0,1
F
F,1,FF
FF=1.38792514

1237
G09/F2/F2_vdz.out Normal file

File diff suppressed because it is too large Load Diff

9
G09/F2/F2_vqz.inp Normal file
View File

@ -0,0 +1,9 @@
#p ROCCSD(T) cc-pVQZ pop=full gfprint
G2
0,1
F
F,1,FF
FF=1.38792514

624
G09/F2/F2_vqz.out Normal file
View File

@ -0,0 +1,624 @@
Entering Gaussian System, Link 0=g09
Input=F2_vqz.inp
Output=F2_vqz.out
Initial command:
/share/apps/gaussian/g09d01/nehalem/g09/l1.exe "/mnt/beegfs/tmpdir/42318/Gau-40800.inp" -scrdir="/mnt/beegfs/tmpdir/42318/"
Entering Link 1 = /share/apps/gaussian/g09d01/nehalem/g09/l1.exe PID= 40801.
Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013,
Gaussian, Inc. All Rights Reserved.
This is part of the Gaussian(R) 09 program. It is based on
the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),
the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
University), and the Gaussian 82(TM) system (copyright 1983,
Carnegie Mellon University). Gaussian is a federally registered
trademark of Gaussian, Inc.
This software contains proprietary and confidential information,
including trade secrets, belonging to Gaussian, Inc.
This software is provided under written license and may be
used, copied, transmitted, or stored only in accord with that
written license.
The following legend is applicable only to US Government
contracts under FAR:
RESTRICTED RIGHTS LEGEND
Use, reproduction and disclosure by the US Government is
subject to restrictions as set forth in subparagraphs (a)
and (c) of the Commercial Computer Software - Restricted
Rights clause in FAR 52.227-19.
Gaussian, Inc.
340 Quinnipiac St., Bldg. 40, Wallingford CT 06492
---------------------------------------------------------------
Warning -- This program may not be used in any manner that
competes with the business of Gaussian, Inc. or will provide
assistance to any competitor of Gaussian, Inc. The licensee
of this program is prohibited from giving any competitor of
Gaussian, Inc. access to this program. By using this program,
the user acknowledges that Gaussian, Inc. is engaged in the
business of creating and licensing software in the field of
computational chemistry and represents and warrants to the
licensee that it is not a competitor of Gaussian, Inc. and that
it will not use this program in any manner prohibited above.
---------------------------------------------------------------
Cite this work as:
Gaussian 09, Revision D.01,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
******************************************
Gaussian 09: ES64L-G09RevD.01 24-Apr-2013
1-Apr-2019
******************************************
-------------------------------------
#p ROCCSD(T) cc-pVQZ pop=full gfprint
-------------------------------------
1/38=1/1;
2/12=2,17=6,18=5,40=1/2;
3/5=16,6=2,11=2,16=1,24=100,25=1,30=1,116=101/1,2,3;
4//1;
5/5=2,38=5/2;
8/5=-1,6=4,9=120000,10=1/1,4;
9/5=7,14=2/13;
6/7=3/1;
99/5=1,9=1/99;
Leave Link 1 at Mon Apr 1 13:05:54 2019, MaxMem= 0 cpu: 0.0
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l101.exe)
--
G2
--
Symbolic Z-matrix:
Charge = 0 Multiplicity = 1
F
F 1 FF
Variables:
FF 1.38793
NAtoms= 2 NQM= 2 NQMF= 0 NMMI= 0 NMMIF= 0
NMic= 0 NMicF= 0.
Isotopes and Nuclear Properties:
(Nuclear quadrupole moments (NQMom) in fm**2, nuclear magnetic moments (NMagM)
in nuclear magnetons)
Atom 1 2
IAtWgt= 19 19
AtmWgt= 18.9984033 18.9984033
NucSpn= 1 1
AtZEff= 0.0000000 0.0000000
NQMom= 0.0000000 0.0000000
NMagM= 2.6288670 2.6288670
AtZNuc= 9.0000000 9.0000000
Leave Link 101 at Mon Apr 1 13:05:55 2019, MaxMem= 33554432 cpu: 0.1
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l202.exe)
Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 9 0 0.000000 0.000000 0.000000
2 9 0 0.000000 0.000000 1.387925
---------------------------------------------------------------------
Stoichiometry F2
Framework group D*H[C*(F.F)]
Deg. of freedom 1
Full point group D*H NOp 8
Largest Abelian subgroup D2H NOp 8
Largest concise Abelian subgroup C2 NOp 2
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 9 0 0.000000 0.000000 0.693963
2 9 0 0.000000 0.000000 -0.693963
---------------------------------------------------------------------
Rotational constants (GHZ): 0.0000000 27.6183676 27.6183676
Leave Link 202 at Mon Apr 1 13:05:55 2019, MaxMem= 33554432 cpu: 0.0
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l301.exe)
Standard basis: CC-pVQZ (5D, 7F)
Ernie: Thresh= 0.10000D-02 Tol= 0.10000D-05 Strict=F.
Ernie: 6 primitive shells out of 66 were deleted.
AO basis set (Overlap normalization):
Atom F1 Shell 1 S 8 bf 1 - 1 0.000000000000 0.000000000000 1.311399203773
0.7453000000D+05 0.2873600224D-03
0.1117000000D+05 0.2212038553D-02
0.2543000000D+04 0.1171492028D-01
0.7210000000D+03 0.4706365356D-01
0.2359000000D+03 0.1588429298D+00
0.8560000000D+02 0.3885366083D+00
0.3355000000D+02 0.6570324899D+00
0.5915000000D+01 -0.5118788342D+00
Atom F1 Shell 2 S 7 bf 2 - 2 0.000000000000 0.000000000000 1.311399203773
0.1117000000D+05 -0.1141274556D-04
0.7210000000D+03 -0.5115026431D-03
0.2359000000D+03 -0.2370727647D-02
0.8560000000D+02 -0.2583561698D-01
0.3355000000D+02 -0.1101023293D+00
0.1393000000D+02 -0.4731854536D+00
0.5915000000D+01 -0.4549122484D+00
Atom F1 Shell 3 S 1 bf 3 - 3 0.000000000000 0.000000000000 1.311399203773
0.1843000000D+01 0.1000000000D+01
Atom F1 Shell 4 S 1 bf 4 - 4 0.000000000000 0.000000000000 1.311399203773
0.7124000000D+00 0.1000000000D+01
Atom F1 Shell 5 S 1 bf 5 - 5 0.000000000000 0.000000000000 1.311399203773
0.2637000000D+00 0.1000000000D+01
Atom F1 Shell 6 P 3 bf 6 - 8 0.000000000000 0.000000000000 1.311399203773
0.8039000000D+02 0.3138418892D-01
0.1863000000D+02 0.2185767586D+00
0.5694000000D+01 0.8332559023D+00
Atom F1 Shell 7 P 1 bf 9 - 11 0.000000000000 0.000000000000 1.311399203773
0.1953000000D+01 0.1000000000D+01
Atom F1 Shell 8 P 1 bf 12 - 14 0.000000000000 0.000000000000 1.311399203773
0.6702000000D+00 0.1000000000D+01
Atom F1 Shell 9 P 1 bf 15 - 17 0.000000000000 0.000000000000 1.311399203773
0.2166000000D+00 0.1000000000D+01
Atom F1 Shell 10 D 1 bf 18 - 22 0.000000000000 0.000000000000 1.311399203773
0.5014000000D+01 0.1000000000D+01
Atom F1 Shell 11 D 1 bf 23 - 27 0.000000000000 0.000000000000 1.311399203773
0.1725000000D+01 0.1000000000D+01
Atom F1 Shell 12 D 1 bf 28 - 32 0.000000000000 0.000000000000 1.311399203773
0.5860000000D+00 0.1000000000D+01
Atom F1 Shell 13 F 1 bf 33 - 39 0.000000000000 0.000000000000 1.311399203773
0.3562000000D+01 0.1000000000D+01
Atom F1 Shell 14 F 1 bf 40 - 46 0.000000000000 0.000000000000 1.311399203773
0.1148000000D+01 0.1000000000D+01
Atom F1 Shell 15 G 1 bf 47 - 55 0.000000000000 0.000000000000 1.311399203773
0.2376000000D+01 0.1000000000D+01
Atom F2 Shell 16 S 8 bf 56 - 56 0.000000000000 0.000000000000 -1.311399203773
0.7453000000D+05 0.2873600224D-03
0.1117000000D+05 0.2212038553D-02
0.2543000000D+04 0.1171492028D-01
0.7210000000D+03 0.4706365356D-01
0.2359000000D+03 0.1588429298D+00
0.8560000000D+02 0.3885366083D+00
0.3355000000D+02 0.6570324899D+00
0.5915000000D+01 -0.5118788342D+00
Atom F2 Shell 17 S 7 bf 57 - 57 0.000000000000 0.000000000000 -1.311399203773
0.1117000000D+05 -0.1141274556D-04
0.7210000000D+03 -0.5115026431D-03
0.2359000000D+03 -0.2370727647D-02
0.8560000000D+02 -0.2583561698D-01
0.3355000000D+02 -0.1101023293D+00
0.1393000000D+02 -0.4731854536D+00
0.5915000000D+01 -0.4549122484D+00
Atom F2 Shell 18 S 1 bf 58 - 58 0.000000000000 0.000000000000 -1.311399203773
0.1843000000D+01 0.1000000000D+01
Atom F2 Shell 19 S 1 bf 59 - 59 0.000000000000 0.000000000000 -1.311399203773
0.7124000000D+00 0.1000000000D+01
Atom F2 Shell 20 S 1 bf 60 - 60 0.000000000000 0.000000000000 -1.311399203773
0.2637000000D+00 0.1000000000D+01
Atom F2 Shell 21 P 3 bf 61 - 63 0.000000000000 0.000000000000 -1.311399203773
0.8039000000D+02 0.3138418892D-01
0.1863000000D+02 0.2185767586D+00
0.5694000000D+01 0.8332559023D+00
Atom F2 Shell 22 P 1 bf 64 - 66 0.000000000000 0.000000000000 -1.311399203773
0.1953000000D+01 0.1000000000D+01
Atom F2 Shell 23 P 1 bf 67 - 69 0.000000000000 0.000000000000 -1.311399203773
0.6702000000D+00 0.1000000000D+01
Atom F2 Shell 24 P 1 bf 70 - 72 0.000000000000 0.000000000000 -1.311399203773
0.2166000000D+00 0.1000000000D+01
Atom F2 Shell 25 D 1 bf 73 - 77 0.000000000000 0.000000000000 -1.311399203773
0.5014000000D+01 0.1000000000D+01
Atom F2 Shell 26 D 1 bf 78 - 82 0.000000000000 0.000000000000 -1.311399203773
0.1725000000D+01 0.1000000000D+01
Atom F2 Shell 27 D 1 bf 83 - 87 0.000000000000 0.000000000000 -1.311399203773
0.5860000000D+00 0.1000000000D+01
Atom F2 Shell 28 F 1 bf 88 - 94 0.000000000000 0.000000000000 -1.311399203773
0.3562000000D+01 0.1000000000D+01
Atom F2 Shell 29 F 1 bf 95 - 101 0.000000000000 0.000000000000 -1.311399203773
0.1148000000D+01 0.1000000000D+01
Atom F2 Shell 30 G 1 bf 102 - 110 0.000000000000 0.000000000000 -1.311399203773
0.2376000000D+01 0.1000000000D+01
There are 30 symmetry adapted cartesian basis functions of AG symmetry.
There are 8 symmetry adapted cartesian basis functions of B1G symmetry.
There are 16 symmetry adapted cartesian basis functions of B2G symmetry.
There are 16 symmetry adapted cartesian basis functions of B3G symmetry.
There are 8 symmetry adapted cartesian basis functions of AU symmetry.
There are 30 symmetry adapted cartesian basis functions of B1U symmetry.
There are 16 symmetry adapted cartesian basis functions of B2U symmetry.
There are 16 symmetry adapted cartesian basis functions of B3U symmetry.
There are 22 symmetry adapted basis functions of AG symmetry.
There are 7 symmetry adapted basis functions of B1G symmetry.
There are 13 symmetry adapted basis functions of B2G symmetry.
There are 13 symmetry adapted basis functions of B3G symmetry.
There are 7 symmetry adapted basis functions of AU symmetry.
There are 22 symmetry adapted basis functions of B1U symmetry.
There are 13 symmetry adapted basis functions of B2U symmetry.
There are 13 symmetry adapted basis functions of B3U symmetry.
110 basis functions, 178 primitive gaussians, 140 cartesian basis functions
9 alpha electrons 9 beta electrons
nuclear repulsion energy 30.8830445249 Hartrees.
IExCor= 0 DFT=F Ex=HF Corr=None ExCW=0 ScaHFX= 1.000000
ScaDFX= 1.000000 1.000000 1.000000 1.000000 ScalE2= 1.000000 1.000000
IRadAn= 0 IRanWt= -1 IRanGd= 0 ICorTp=0 IEmpDi= 4
NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
Leave Link 301 at Mon Apr 1 13:05:55 2019, MaxMem= 33554432 cpu: 0.1
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l302.exe)
NPDir=0 NMtPBC= 1 NCelOv= 1 NCel= 1 NClECP= 1 NCelD= 1
NCelK= 1 NCelE2= 1 NClLst= 1 CellRange= 0.0.
One-electron integrals computed using PRISM.
One-electron integral symmetry used in STVInt
NBasis= 110 RedAO= T EigKep= 6.08D-03 NBF= 22 7 13 13 7 22 13 13
NBsUse= 110 1.00D-06 EigRej= -1.00D+00 NBFU= 22 7 13 13 7 22 13 13
Leave Link 302 at Mon Apr 1 13:05:55 2019, MaxMem= 33554432 cpu: 0.2
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l303.exe)
DipDrv: MaxL=1.
Leave Link 303 at Mon Apr 1 13:05:55 2019, MaxMem= 33554432 cpu: 0.0
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l401.exe)
ExpMin= 2.17D-01 ExpMax= 7.45D+04 ExpMxC= 2.54D+03 IAcc=1 IRadAn= 1 AccDes= 0.00D+00
Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess.
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Harris En= -198.730394690808
JPrj=0 DoOrth=F DoCkMO=F.
Initial guess orbital symmetries:
Occupied (SGU) (SGG) (SGG) (SGU) (SGG) (PIU) (PIU) (PIG)
(PIG)
Virtual (SGU) (SGU) (PIU) (PIU) (SGG) (SGG) (PIG) (PIG)
(SGU) (DLTG) (DLTG) (PIU) (PIU) (DLTU) (DLTU)
(SGG) (SGU) (PIG) (PIG) (PIU) (PIU) (SGG) (PIG)
(PIG) (DLTG) (DLTG) (SGU) (PIU) (PIU) (SGG) (PHIU)
(PHIU) (SGG) (PHIG) (PHIG) (SGU) (DLTU) (DLTU)
(DLTG) (DLTG) (PIG) (PIG) (DLTU) (DLTU) (PIU)
(PIU) (SGU) (PIG) (PIG) (SGG) (SGU) (SGG) (PIU)
(PIU) (DLTG) (DLTG) (PHIU) (PHIU) (?A) (?A) (?B)
(?B) (PHIG) (PHIG) (DLTU) (DLTU) (PIU) (PIU) (PIG)
(PIG) (SGU) (SGG) (PIG) (PIG) (SGU) (DLTG) (DLTG)
(PHIU) (PHIU) (PHIG) (PHIG) (PIU) (PIU) (DLTU)
(DLTU) (SGG) (SGU) (DLTG) (DLTG) (DLTU) (DLTU)
(PIG) (PIG) (PIU) (PIU) (PIG) (PIG) (SGG) (SGU)
(SGG) (SGU)
The electronic state of the initial guess is 1-SGG.
Leave Link 401 at Mon Apr 1 13:05:56 2019, MaxMem= 33554432 cpu: 0.2
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l502.exe)
Restricted open shell SCF:
Using DIIS extrapolation, IDIIS= 1040.
Integral symmetry usage will be decided dynamically.
Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=23285649.
IVT= 79522 IEndB= 79522 NGot= 33554432 MDV= 28725733
LenX= 28725733 LenY= 28705692
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
FoFCou: FMM=F IPFlag= 0 FMFlag= 0 FMFlg1= 0
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
wScrn= 0.000000 ICntrl= 600 IOpCl= 0 I1Cent= 0 NGrid= 0
NMat0= 1 NMatS0= 6105 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Cycle 1 Pass 1 IDiag 1:
E= -198.734405890131
DIIS: error= 1.09D-01 at cycle 1 NSaved= 1.
NSaved= 1 IEnMin= 1 EnMin= -198.734405890131 IErMin= 1 ErrMin= 1.09D-01
ErrMax= 1.09D-01 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.42D-01 BMatP= 2.42D-01
IDIUse=3 WtCom= 0.00D+00 WtEn= 1.00D+00
Coeff-Com: 0.100D+01
Coeff-En: 0.100D+01
Coeff: 0.100D+01
Gap= 0.758 Goal= None Shift= 0.000
GapD= 0.758 DampG=2.000 DampE=0.250 DampFc=0.5000 IDamp=-1.
Damping current iteration by 5.00D-01
RMSDP=8.97D-04 MaxDP=1.91D-02 OVMax= 3.71D-02
Cycle 2 Pass 1 IDiag 1:
E= -198.751978475349 Delta-E= -0.017572585218 Rises=F Damp=T
DIIS: error= 5.58D-02 at cycle 2 NSaved= 2.
NSaved= 2 IEnMin= 2 EnMin= -198.751978475349 IErMin= 2 ErrMin= 5.58D-02
ErrMax= 5.58D-02 0.00D+00 EMaxC= 1.00D-01 BMatC= 6.60D-02 BMatP= 2.42D-01
IDIUse=3 WtCom= 4.42D-01 WtEn= 5.58D-01
Coeff-Com: -0.107D+01 0.207D+01
Coeff-En: 0.000D+00 0.100D+01
Coeff: -0.472D+00 0.147D+01
Gap= 0.762 Goal= None Shift= 0.000
RMSDP=4.83D-04 MaxDP=1.08D-02 DE=-1.76D-02 OVMax= 6.87D-03
Cycle 3 Pass 1 IDiag 1:
E= -198.771034204142 Delta-E= -0.019055728793 Rises=F Damp=F
DIIS: error= 2.26D-03 at cycle 3 NSaved= 3.
NSaved= 3 IEnMin= 3 EnMin= -198.771034204142 IErMin= 3 ErrMin= 2.26D-03
ErrMax= 2.26D-03 0.00D+00 EMaxC= 1.00D-01 BMatC= 1.57D-04 BMatP= 6.60D-02
IDIUse=3 WtCom= 9.77D-01 WtEn= 2.26D-02
Coeff-Com: 0.110D+00-0.250D+00 0.114D+01
Coeff-En: 0.000D+00 0.000D+00 0.100D+01
Coeff: 0.108D+00-0.245D+00 0.114D+01
Gap= 0.767 Goal= None Shift= 0.000
RMSDP=5.91D-05 MaxDP=1.04D-03 DE=-1.91D-02 OVMax= 2.82D-03
Cycle 4 Pass 1 IDiag 1:
E= -198.771137444704 Delta-E= -0.000103240562 Rises=F Damp=F
DIIS: error= 6.08D-04 at cycle 4 NSaved= 4.
NSaved= 4 IEnMin= 4 EnMin= -198.771137444704 IErMin= 4 ErrMin= 6.08D-04
ErrMax= 6.08D-04 0.00D+00 EMaxC= 1.00D-01 BMatC= 4.91D-06 BMatP= 1.57D-04
IDIUse=3 WtCom= 9.94D-01 WtEn= 6.08D-03
Coeff-Com: 0.273D-01-0.532D-01-0.867D-02 0.103D+01
Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.100D+01
Coeff: 0.271D-01-0.529D-01-0.862D-02 0.103D+01
Gap= 0.767 Goal= None Shift= 0.000
RMSDP=9.42D-06 MaxDP=1.61D-04 DE=-1.03D-04 OVMax= 7.58D-04
Cycle 5 Pass 1 IDiag 1:
E= -198.771140622392 Delta-E= -0.000003177688 Rises=F Damp=F
DIIS: error= 8.18D-05 at cycle 5 NSaved= 5.
NSaved= 5 IEnMin= 5 EnMin= -198.771140622392 IErMin= 5 ErrMin= 8.18D-05
ErrMax= 8.18D-05 0.00D+00 EMaxC= 1.00D-01 BMatC= 1.97D-07 BMatP= 4.91D-06
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: -0.284D-02 0.696D-02-0.505D-01 0.130D+00 0.917D+00
Coeff: -0.284D-02 0.696D-02-0.505D-01 0.130D+00 0.917D+00
Gap= 0.767 Goal= None Shift= 0.000
RMSDP=2.07D-06 MaxDP=3.37D-05 DE=-3.18D-06 OVMax= 8.87D-05
Cycle 6 Pass 1 IDiag 1:
E= -198.771140751007 Delta-E= -0.000000128615 Rises=F Damp=F
DIIS: error= 8.97D-06 at cycle 6 NSaved= 6.
NSaved= 6 IEnMin= 6 EnMin= -198.771140751007 IErMin= 6 ErrMin= 8.97D-06
ErrMax= 8.97D-06 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.05D-09 BMatP= 1.97D-07
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: 0.880D-04-0.419D-03 0.932D-02-0.377D-01-0.181D+00 0.121D+01
Coeff: 0.880D-04-0.419D-03 0.932D-02-0.377D-01-0.181D+00 0.121D+01
Gap= 0.767 Goal= None Shift= 0.000
RMSDP=3.74D-07 MaxDP=6.84D-06 DE=-1.29D-07 OVMax= 2.29D-05
Cycle 7 Pass 1 IDiag 1:
E= -198.771140753488 Delta-E= -0.000000002482 Rises=F Damp=F
DIIS: error= 9.52D-07 at cycle 7 NSaved= 7.
NSaved= 7 IEnMin= 7 EnMin= -198.771140753488 IErMin= 7 ErrMin= 9.52D-07
ErrMax= 9.52D-07 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.12D-11 BMatP= 2.05D-09
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: 0.619D-04-0.960D-04-0.909D-03 0.501D-02 0.223D-01-0.221D+00
Coeff-Com: 0.119D+01
Coeff: 0.619D-04-0.960D-04-0.909D-03 0.501D-02 0.223D-01-0.221D+00
Coeff: 0.119D+01
Gap= 0.767 Goal= None Shift= 0.000
RMSDP=3.35D-08 MaxDP=4.88D-07 DE=-2.48D-09 OVMax= 2.12D-06
Cycle 8 Pass 1 IDiag 1:
E= -198.771140753512 Delta-E= -0.000000000024 Rises=F Damp=F
DIIS: error= 7.42D-08 at cycle 8 NSaved= 8.
NSaved= 8 IEnMin= 8 EnMin= -198.771140753512 IErMin= 8 ErrMin= 7.42D-08
ErrMax= 7.42D-08 0.00D+00 EMaxC= 1.00D-01 BMatC= 1.30D-13 BMatP= 2.12D-11
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: -0.302D-05 0.346D-05 0.960D-04-0.518D-03-0.232D-02 0.262D-01
Coeff-Com: -0.187D+00 0.116D+01
Coeff: -0.302D-05 0.346D-05 0.960D-04-0.518D-03-0.232D-02 0.262D-01
Coeff: -0.187D+00 0.116D+01
Gap= 0.767 Goal= None Shift= 0.000
RMSDP=2.22D-09 MaxDP=4.61D-08 DE=-2.37D-11 OVMax= 1.33D-07
SCF Done: E(ROHF) = -198.771140754 A.U. after 8 cycles
NFock= 8 Conv=0.22D-08 -V/T= 2.0007
<Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 0.0000 <S**2>= 0.0000 S= 0.0000
<L.S>= 0.000000000000E+00
KE= 1.986246850745D+02 PE=-5.382712431955D+02 EE= 1.099923728427D+02
Annihilation of the first spin contaminant:
S**2 before annihilation 0.0000, after 0.0000
Leave Link 502 at Mon Apr 1 13:05:59 2019, MaxMem= 33554432 cpu: 3.5
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l801.exe)
Windowed orbitals will be sorted by symmetry type.
GenMOA: NOpAll= 8 NOp2=8 NOpUse= 8 JSym2X=1
FoFJK: IHMeth= 1 ICntrl= 0 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F
IRaf= 0 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 1.
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
wScrn= 0.000000 ICntrl= 0 IOpCl= 1 I1Cent= 0 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
<Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 0.0000 <S**2>= 0.0000 S= 0.0000
ExpMin= 2.17D-01 ExpMax= 7.45D+04 ExpMxC= 2.54D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14
ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
Largest valence mixing into a core orbital is 9.18D-05
Largest core mixing into a valence orbital is 2.20D-05
Largest valence mixing into a core orbital is 9.18D-05
Largest core mixing into a valence orbital is 2.20D-05
Range of M.O.s used for correlation: 3 110
NBasis= 110 NAE= 9 NBE= 9 NFC= 2 NFV= 0
NROrb= 108 NOA= 7 NOB= 7 NVA= 101 NVB= 101
Singles contribution to E2= -0.9290305050D-15
Leave Link 801 at Mon Apr 1 13:06:02 2019, MaxMem= 33554432 cpu: 2.4
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l804.exe)
Open-shell transformation, MDV= 33554432 ITran=4 ISComp=2.
Semi-Direct transformation.
ModeAB= 4 MOrb= 7 LenV= 32993092
LASXX= 530476 LTotXX= 530476 LenRXX= 1080580
LTotAB= 550104 MaxLAS= 4138344 LenRXY= 0
NonZer= 1611056 LenScr= 2949120 LnRSAI= 4138344
LnScr1= 6553600 LExtra= 0 Total= 14721644
MaxDsk= -1 SrtSym= T ITran= 4
DoSDTr: NPSUse= 1
JobTyp=1 Pass 1: I= 1 to 7.
(rs|ai) integrals will be sorted in core.
Complete sort for first half transformation.
First half transformation complete.
Complete sort for second half transformation.
Second half transformation complete.
ModeAB= 4 MOrb= 7 LenV= 32993092
LASXX= 530476 LTotXX= 530476 LenRXX= 1011325
LTotAB= 480849 MaxLAS= 4138344 LenRXY= 0
NonZer= 1541801 LenScr= 2883584 LnRSAI= 4138344
LnScr1= 6553600 LExtra= 0 Total= 14586853
MaxDsk= -1 SrtSym= T ITran= 4
DoSDTr: NPSUse= 1
JobTyp=2 Pass 1: I= 1 to 7.
(rs|ai) integrals will be sorted in core.
Complete sort for first half transformation.
First half transformation complete.
Complete sort for second half transformation.
Second half transformation complete.
Spin components of T(2) and E(2):
alpha-alpha T2 = 0.1348699200D-01 E2= -0.6934588083D-01
alpha-beta T2 = 0.8313627776D-01 E2= -0.4280769599D+00
beta-beta T2 = 0.1348699200D-01 E2= -0.6934588083D-01
ANorm= 0.1053617702D+01
E2 = -0.5667687216D+00 EUMP2 = -0.19933790947510D+03
(S**2,0)= 0.00000D+00 (S**2,1)= 0.00000D+00
E(PUHF)= -0.19877114075D+03 E(PMP2)= -0.19933790948D+03
Leave Link 804 at Mon Apr 1 13:06:14 2019, MaxMem= 33554432 cpu: 11.3
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l913.exe)
CIDS: MDV= 33554432.
Frozen-core window: NFC= 2 NFV= 0.
IFCWin=0 IBDFC=1 NFBD= 0 0 NFCmp= 0 0 NFFFC= 0 0
Using original routines for 1st iteration, S=T.
Using DD4UQ or CC4UQ for 2nd and later iterations.
Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=23167290.
FoFCou: FMM=F IPFlag= 0 FMFlag= 0 FMFlg1= 0
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
wScrn= 0.000000 ICntrl= 600 IOpCl= 0 I1Cent= 0 NGrid= 0
NMat0= 1 NMatS0= 6105 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
CCSD(T)
=======
Iterations= 50 Convergence= 0.100D-06
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 140
NAB= 49 NAA= 21 NBB= 21.
DD1Dir will call FoFMem 1 times, MxPair= 140
NAB= 49 NAA= 21 NBB= 21.
MP4(R+Q)= 0.88910469D-02
Maximum subspace dimension= 5
Norm of the A-vectors is 9.3328176D-02 conv= 1.00D-05.
RLE energy= -0.5545492679
E3= 0.35976617D-02 EROMP3= -0.19933431181D+03
E4(SDQ)= -0.58702616D-02 ROMP4(SDQ)= -0.19934018208D+03
VARIATIONAL ENERGIES WITH THE FIRST-ORDER WAVEFUNCTION:
DE(Corr)= -0.55428001 E(Corr)= -199.32542077
NORM(A)= 0.10498102D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 140
NAB= 49 NAA= 21 NBB= 21.
Norm of the A-vectors is 4.3208022D-01 conv= 1.00D-05.
RLE energy= -0.5533447304
DE(Corr)= -0.55098913 E(CORR)= -199.32212988 Delta= 3.29D-03
NORM(A)= 0.10495975D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 140
NAB= 49 NAA= 21 NBB= 21.
Norm of the A-vectors is 2.9138652D-01 conv= 1.00D-05.
RLE energy= -0.5601136970
DE(Corr)= -0.55603394 E(CORR)= -199.32717469 Delta=-5.04D-03
NORM(A)= 0.10521804D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 140
NAB= 49 NAA= 21 NBB= 21.
Norm of the A-vectors is 2.2498789D-01 conv= 1.00D-05.
RLE energy= -0.5677890194
DE(Corr)= -0.55846852 E(CORR)= -199.32960927 Delta=-2.43D-03
NORM(A)= 0.10587198D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 140
NAB= 49 NAA= 21 NBB= 21.
Norm of the A-vectors is 3.8279236D-02 conv= 1.00D-05.
RLE energy= -0.5669913012
DE(Corr)= -0.56842127 E(CORR)= -199.33956202 Delta=-9.95D-03
NORM(A)= 0.10579199D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 140
NAB= 49 NAA= 21 NBB= 21.
Norm of the A-vectors is 9.1162322D-03 conv= 1.00D-05.
RLE energy= -0.5671699029
DE(Corr)= -0.56684885 E(CORR)= -199.33798961 Delta= 1.57D-03
NORM(A)= 0.10581682D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 140
NAB= 49 NAA= 21 NBB= 21.
Norm of the A-vectors is 1.3836913D-03 conv= 1.00D-05.
RLE energy= -0.5671652131
DE(Corr)= -0.56716695 E(CORR)= -199.33830770 Delta=-3.18D-04
NORM(A)= 0.10581763D+01
Iteration Nr. 8
**********************
DD1Dir will call FoFMem 1 times, MxPair= 140
NAB= 49 NAA= 21 NBB= 21.
Norm of the A-vectors is 7.3374203D-04 conv= 1.00D-05.
RLE energy= -0.5671705729
DE(Corr)= -0.56716993 E(CORR)= -199.33831068 Delta=-2.98D-06
NORM(A)= 0.10581742D+01
Iteration Nr. 9
**********************
DD1Dir will call FoFMem 1 times, MxPair= 140
NAB= 49 NAA= 21 NBB= 21.
Norm of the A-vectors is 2.0420437D-04 conv= 1.00D-05.
RLE energy= -0.5671671259
DE(Corr)= -0.56716570 E(CORR)= -199.33830645 Delta= 4.23D-06
NORM(A)= 0.10581738D+01
Iteration Nr. 10
**********************
DD1Dir will call FoFMem 1 times, MxPair= 140
NAB= 49 NAA= 21 NBB= 21.
Norm of the A-vectors is 7.3458118D-05 conv= 1.00D-05.
RLE energy= -0.5671682107
DE(Corr)= -0.56716708 E(CORR)= -199.33830783 Delta=-1.38D-06
NORM(A)= 0.10581748D+01
Iteration Nr. 11
**********************
DD1Dir will call FoFMem 1 times, MxPair= 140
NAB= 49 NAA= 21 NBB= 21.
Norm of the A-vectors is 2.6999447D-05 conv= 1.00D-05.
RLE energy= -0.5671676302
DE(Corr)= -0.56716744 E(CORR)= -199.33830819 Delta=-3.65D-07
NORM(A)= 0.10581750D+01
Iteration Nr. 12
**********************
DD1Dir will call FoFMem 1 times, MxPair= 140
NAB= 49 NAA= 21 NBB= 21.
Norm of the A-vectors is 4.9403421D-06 conv= 1.00D-05.
RLE energy= -0.5671678404
DE(Corr)= -0.56716782 E(CORR)= -199.33830857 Delta=-3.80D-07
NORM(A)= 0.10581750D+01
Iteration Nr. 13
**********************
DD1Dir will call FoFMem 1 times, MxPair= 140
NAB= 49 NAA= 21 NBB= 21.
Norm of the A-vectors is 2.0745246D-06 conv= 1.00D-05.
RLE energy= -0.5671677655
DE(Corr)= -0.56716775 E(CORR)= -199.33830850 Delta= 7.09D-08
NORM(A)= 0.10581750D+01
CI/CC converged in 13 iterations to DelEn= 7.09D-08 Conv= 1.00D-07 ErrA1= 2.07D-06 Conv= 1.00D-05
Dominant configurations:
***********************
Spin Case I J A B Value
ABAB 7 7 10 10 -0.148059D+00
Largest amplitude= 1.48D-01

9
G09/F2/F2_vtz.inp Normal file
View File

@ -0,0 +1,9 @@
#p ROCCSD(T) cc-pVTZ pop=full gfprint
G2
0,1
F
F,1,FF
FF=1.38792514

8
G09/F2/F_v5z.inp Normal file
View File

@ -0,0 +1,8 @@
#p ROCCSD(T) cc-pV5Z pop=full gfprint
G2
0,2
F

571
G09/F2/F_v5z.out Normal file
View File

@ -0,0 +1,571 @@
Entering Gaussian System, Link 0=g09
Input=F_v5z.inp
Output=F_v5z.out
Initial command:
/share/apps/gaussian/g09d01/nehalem/g09/l1.exe "/mnt/beegfs/tmpdir/42437/Gau-40884.inp" -scrdir="/mnt/beegfs/tmpdir/42437/"
Entering Link 1 = /share/apps/gaussian/g09d01/nehalem/g09/l1.exe PID= 40885.
Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013,
Gaussian, Inc. All Rights Reserved.
This is part of the Gaussian(R) 09 program. It is based on
the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),
the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
University), and the Gaussian 82(TM) system (copyright 1983,
Carnegie Mellon University). Gaussian is a federally registered
trademark of Gaussian, Inc.
This software contains proprietary and confidential information,
including trade secrets, belonging to Gaussian, Inc.
This software is provided under written license and may be
used, copied, transmitted, or stored only in accord with that
written license.
The following legend is applicable only to US Government
contracts under FAR:
RESTRICTED RIGHTS LEGEND
Use, reproduction and disclosure by the US Government is
subject to restrictions as set forth in subparagraphs (a)
and (c) of the Commercial Computer Software - Restricted
Rights clause in FAR 52.227-19.
Gaussian, Inc.
340 Quinnipiac St., Bldg. 40, Wallingford CT 06492
---------------------------------------------------------------
Warning -- This program may not be used in any manner that
competes with the business of Gaussian, Inc. or will provide
assistance to any competitor of Gaussian, Inc. The licensee
of this program is prohibited from giving any competitor of
Gaussian, Inc. access to this program. By using this program,
the user acknowledges that Gaussian, Inc. is engaged in the
business of creating and licensing software in the field of
computational chemistry and represents and warrants to the
licensee that it is not a competitor of Gaussian, Inc. and that
it will not use this program in any manner prohibited above.
---------------------------------------------------------------
Cite this work as:
Gaussian 09, Revision D.01,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
******************************************
Gaussian 09: ES64L-G09RevD.01 24-Apr-2013
1-Apr-2019
******************************************
-------------------------------------
#p ROCCSD(T) cc-pV5Z pop=full gfprint
-------------------------------------
1/38=1/1;
2/12=2,17=6,18=5,40=1/2;
3/5=16,6=3,11=2,16=1,24=100,25=1,30=1,116=101/1,2,3;
4//1;
5/5=2,38=5/2;
8/5=-1,6=4,9=120000,10=1/1,4;
9/5=7,14=2/13;
6/7=3/1;
99/5=1,9=1/99;
Leave Link 1 at Mon Apr 1 13:19:02 2019, MaxMem= 0 cpu: 0.0
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l101.exe)
--
G2
--
Symbolic Z-matrix:
Charge = 0 Multiplicity = 2
F
NAtoms= 1 NQM= 1 NQMF= 0 NMMI= 0 NMMIF= 0
NMic= 0 NMicF= 0.
Isotopes and Nuclear Properties:
(Nuclear quadrupole moments (NQMom) in fm**2, nuclear magnetic moments (NMagM)
in nuclear magnetons)
Atom 1
IAtWgt= 19
AtmWgt= 18.9984033
NucSpn= 1
AtZEff= 0.0000000
NQMom= 0.0000000
NMagM= 2.6288670
AtZNuc= 9.0000000
Leave Link 101 at Mon Apr 1 13:19:02 2019, MaxMem= 33554432 cpu: 0.1
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l202.exe)
Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 9 0 0.000000 0.000000 0.000000
---------------------------------------------------------------------
Stoichiometry F(2)
Framework group OH[O(F)]
Deg. of freedom 0
Full point group OH NOp 48
Largest Abelian subgroup D2H NOp 8
Largest concise Abelian subgroup C1 NOp 1
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 9 0 0.000000 0.000000 0.000000
---------------------------------------------------------------------
Leave Link 202 at Mon Apr 1 13:19:03 2019, MaxMem= 33554432 cpu: 0.0
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l301.exe)
Standard basis: CC-pV5Z (5D, 7F)
Ernie: Thresh= 0.10000D-02 Tol= 0.10000D-05 Strict=F.
Ernie: 4 primitive shells out of 42 were deleted.
AO basis set (Overlap normalization):
Atom F1 Shell 1 S 9 bf 1 - 1 0.000000000000 0.000000000000 0.000000000000
0.2114000000D+06 0.4605822685D-04
0.3166000000D+05 0.3525048277D-03
0.7202000000D+04 0.1868892251D-02
0.2040000000D+04 0.7803531909D-02
0.6664000000D+03 0.2767040468D-01
0.2420000000D+03 0.8285532884D-01
0.9553000000D+02 0.2054285749D+00
0.4023000000D+02 0.3788492487D+00
0.1772000000D+02 0.4150473070D+00
Atom F1 Shell 2 S 7 bf 2 - 2 0.000000000000 0.000000000000 0.000000000000
0.2040000000D+04 -0.5245735565D-04
0.6664000000D+03 -0.3031187592D-03
0.2420000000D+03 -0.2995108843D-02
0.9553000000D+02 -0.1654697417D-01
0.4023000000D+02 -0.8659899077D-01
0.1772000000D+02 -0.3005950507D+00
0.8005000000D+01 -0.6468624761D+00
Atom F1 Shell 3 S 1 bf 3 - 3 0.000000000000 0.000000000000 0.000000000000
0.3538000000D+01 0.1000000000D+01
Atom F1 Shell 4 S 1 bf 4 - 4 0.000000000000 0.000000000000 0.000000000000
0.1458000000D+01 0.1000000000D+01
Atom F1 Shell 5 S 1 bf 5 - 5 0.000000000000 0.000000000000 0.000000000000
0.5887000000D+00 0.1000000000D+01
Atom F1 Shell 6 S 1 bf 6 - 6 0.000000000000 0.000000000000 0.000000000000
0.2324000000D+00 0.1000000000D+01
Atom F1 Shell 7 P 4 bf 7 - 9 0.000000000000 0.000000000000 0.000000000000
0.2419000000D+03 0.6360842762D-02
0.5717000000D+02 0.5112797166D-01
0.1813000000D+02 0.2415342769D+00
0.6624000000D+01 0.7857672218D+00
Atom F1 Shell 8 P 1 bf 10 - 12 0.000000000000 0.000000000000 0.000000000000
0.2622000000D+01 0.1000000000D+01
Atom F1 Shell 9 P 1 bf 13 - 15 0.000000000000 0.000000000000 0.000000000000
0.1057000000D+01 0.1000000000D+01
Atom F1 Shell 10 P 1 bf 16 - 18 0.000000000000 0.000000000000 0.000000000000
0.4176000000D+00 0.1000000000D+01
Atom F1 Shell 11 P 1 bf 19 - 21 0.000000000000 0.000000000000 0.000000000000
0.1574000000D+00 0.1000000000D+01
Atom F1 Shell 12 D 1 bf 22 - 26 0.000000000000 0.000000000000 0.000000000000
0.7760000000D+01 0.1000000000D+01
Atom F1 Shell 13 D 1 bf 27 - 31 0.000000000000 0.000000000000 0.000000000000
0.3032000000D+01 0.1000000000D+01
Atom F1 Shell 14 D 1 bf 32 - 36 0.000000000000 0.000000000000 0.000000000000
0.1185000000D+01 0.1000000000D+01
Atom F1 Shell 15 D 1 bf 37 - 41 0.000000000000 0.000000000000 0.000000000000
0.4630000000D+00 0.1000000000D+01
Atom F1 Shell 16 F 1 bf 42 - 48 0.000000000000 0.000000000000 0.000000000000
0.5398000000D+01 0.1000000000D+01
Atom F1 Shell 17 F 1 bf 49 - 55 0.000000000000 0.000000000000 0.000000000000
0.2078000000D+01 0.1000000000D+01
Atom F1 Shell 18 F 1 bf 56 - 62 0.000000000000 0.000000000000 0.000000000000
0.8000000000D+00 0.1000000000D+01
Atom F1 Shell 19 G 1 bf 63 - 71 0.000000000000 0.000000000000 0.000000000000
0.4338000000D+01 0.1000000000D+01
Atom F1 Shell 20 G 1 bf 72 - 80 0.000000000000 0.000000000000 0.000000000000
0.1513000000D+01 0.1000000000D+01
Atom F1 Shell 21 H 1 bf 81 - 91 0.000000000000 0.000000000000 0.000000000000
0.2995000000D+01 0.1000000000D+01
There are 30 symmetry adapted cartesian basis functions of AG symmetry.
There are 10 symmetry adapted cartesian basis functions of B1G symmetry.
There are 10 symmetry adapted cartesian basis functions of B2G symmetry.
There are 10 symmetry adapted cartesian basis functions of B3G symmetry.
There are 6 symmetry adapted cartesian basis functions of AU symmetry.
There are 20 symmetry adapted cartesian basis functions of B1U symmetry.
There are 20 symmetry adapted cartesian basis functions of B2U symmetry.
There are 20 symmetry adapted cartesian basis functions of B3U symmetry.
There are 20 symmetry adapted basis functions of AG symmetry.
There are 8 symmetry adapted basis functions of B1G symmetry.
There are 8 symmetry adapted basis functions of B2G symmetry.
There are 8 symmetry adapted basis functions of B3G symmetry.
There are 5 symmetry adapted basis functions of AU symmetry.
There are 14 symmetry adapted basis functions of B1U symmetry.
There are 14 symmetry adapted basis functions of B2U symmetry.
There are 14 symmetry adapted basis functions of B3U symmetry.
91 basis functions, 149 primitive gaussians, 126 cartesian basis functions
5 alpha electrons 4 beta electrons
nuclear repulsion energy 0.0000000000 Hartrees.
IExCor= 0 DFT=F Ex=HF Corr=None ExCW=0 ScaHFX= 1.000000
ScaDFX= 1.000000 1.000000 1.000000 1.000000 ScalE2= 1.000000 1.000000
IRadAn= 0 IRanWt= -1 IRanGd= 0 ICorTp=0 IEmpDi= 4
NAtoms= 1 NActive= 1 NUniq= 1 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
Leave Link 301 at Mon Apr 1 13:19:03 2019, MaxMem= 33554432 cpu: 0.1
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l302.exe)
NPDir=0 NMtPBC= 1 NCelOv= 1 NCel= 1 NClECP= 1 NCelD= 1
NCelK= 1 NCelE2= 1 NClLst= 1 CellRange= 0.0.
One-electron integrals computed using PRISM.
NBasis= 91 RedAO= T EigKep= 2.20D-02 NBF= 20 8 8 8 5 14 14 14
NBsUse= 91 1.00D-06 EigRej= -1.00D+00 NBFU= 20 8 8 8 5 14 14 14
Leave Link 302 at Mon Apr 1 13:19:03 2019, MaxMem= 33554432 cpu: 0.2
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l303.exe)
DipDrv: MaxL=1.
Leave Link 303 at Mon Apr 1 13:19:03 2019, MaxMem= 33554432 cpu: 0.1
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l401.exe)
ExpMin= 1.57D-01 ExpMax= 2.11D+05 ExpMxC= 6.66D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00
Harris functional with IExCor= 205 and IRadAn= 4 diagonalized for initial guess.
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Harris En= -99.2738379037268
JPrj=0 DoOrth=F DoCkMO=F.
Initial guess orbital symmetries:
Occupied (A1G) (A1G) (T1U) (T1U) (T1U)
Virtual (T1U) (T1U) (T1U) (A1G) (T2G) (T2G) (T2G) (EG)
(EG) (T1U) (T1U) (T1U) (?A) (?A) (?A) (?A) (?A)
(A2U) (?A) (A1G) (EG) (EG) (T2G) (T2G) (T2G) (T1U)
(T1U) (T1U) (A1G) (EG) (EG) (T2G) (T2G) (T2G)
(T1G) (T1G) (T1G) (?A) (?A) (?A) (A2U) (?A) (?A)
(?A) (EG) (EG) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U)
(T1U) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (EU)
(EU) (T1U) (T1U) (T1U) (A1G) (EG) (EG) (T2G) (T2G)
(T2G) (T1G) (T1G) (T1G) (?A) (?A) (?A) (?A) (A2U)
(?A) (?A) (EG) (EG) (T2G) (T2G) (T2G) (A1G)
Leave Link 401 at Mon Apr 1 13:19:04 2019, MaxMem= 33554432 cpu: 0.5
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l502.exe)
Restricted open shell SCF:
Using DIIS extrapolation, IDIIS= 1040.
Integral symmetry usage will be decided dynamically.
Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=25331683.
IVT= 68819 IEndB= 68819 NGot= 33554432 MDV= 31245575
LenX= 31245575 LenY= 31229258
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
FoFCou: FMM=F IPFlag= 0 FMFlag= 0 FMFlg1= 0
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
wScrn= 0.000000 ICntrl= 600 IOpCl= 0 I1Cent= 0 NGrid= 0
NMat0= 1 NMatS0= 4186 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Cycle 1 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-04
Density has only Abelian symmetry.
E= -99.3950924308603
DIIS: error= 8.72D-02 at cycle 1 NSaved= 1.
NSaved= 1 IEnMin= 1 EnMin= -99.3950924308603 IErMin= 1 ErrMin= 8.72D-02
ErrMax= 8.72D-02 0.00D+00 EMaxC= 1.00D-01 BMatC= 1.26D-01 BMatP= 1.26D-01
IDIUse=3 WtCom= 1.28D-01 WtEn= 8.72D-01
Coeff-Com: 0.100D+01
Coeff-En: 0.100D+01
Coeff: 0.100D+01
Gap= 0.691 Goal= None Shift= 0.000
GapD= 0.691 DampG=2.000 DampE=0.500 DampFc=1.0000 IDamp=-1.
RMSDP=1.01D-03 MaxDP=3.64D-02 OVMax= 8.64D-02
Cycle 2 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
E= -99.4096707209622 Delta-E= -0.014578290102 Rises=F Damp=F
DIIS: error= 1.31D-02 at cycle 2 NSaved= 2.
NSaved= 2 IEnMin= 2 EnMin= -99.4096707209622 IErMin= 2 ErrMin= 1.31D-02
ErrMax= 1.31D-02 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.98D-03 BMatP= 1.26D-01
IDIUse=3 WtCom= 8.69D-01 WtEn= 1.31D-01
Coeff-Com: 0.194D-03 0.100D+01
Coeff-En: 0.000D+00 0.100D+01
Coeff: 0.169D-03 0.100D+01
Gap= 0.641 Goal= None Shift= 0.000
RMSDP=4.67D-04 MaxDP=2.20D-02 DE=-1.46D-02 OVMax= 4.16D-02
Cycle 3 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
E= -99.4106621445726 Delta-E= -0.000991423610 Rises=F Damp=F
DIIS: error= 8.87D-03 at cycle 3 NSaved= 3.
NSaved= 3 IEnMin= 3 EnMin= -99.4106621445726 IErMin= 3 ErrMin= 8.87D-03
ErrMax= 8.87D-03 0.00D+00 EMaxC= 1.00D-01 BMatC= 9.37D-04 BMatP= 2.98D-03
IDIUse=3 WtCom= 9.11D-01 WtEn= 8.87D-02
Coeff-Com: -0.215D-01 0.361D+00 0.661D+00
Coeff-En: 0.000D+00 0.252D+00 0.748D+00
Coeff: -0.196D-01 0.351D+00 0.669D+00
Gap= 0.659 Goal= None Shift= 0.000
RMSDP=1.73D-04 MaxDP=8.21D-03 DE=-9.91D-04 OVMax= 1.60D-02
Cycle 4 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
E= -99.4111696762539 Delta-E= -0.000507531681 Rises=F Damp=F
DIIS: error= 3.22D-04 at cycle 4 NSaved= 4.
NSaved= 4 IEnMin= 4 EnMin= -99.4111696762539 IErMin= 4 ErrMin= 3.22D-04
ErrMax= 3.22D-04 0.00D+00 EMaxC= 1.00D-01 BMatC= 1.33D-06 BMatP= 9.37D-04
IDIUse=3 WtCom= 9.97D-01 WtEn= 3.22D-03
Coeff-Com: 0.263D-02-0.570D-01-0.722D-01 0.113D+01
Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.100D+01
Coeff: 0.262D-02-0.568D-01-0.720D-01 0.113D+01
Gap= 0.658 Goal= None Shift= 0.000
RMSDP=7.78D-06 MaxDP=2.70D-04 DE=-5.08D-04 OVMax= 2.41D-04
Cycle 5 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
E= -99.4111704609090 Delta-E= -0.000000784655 Rises=F Damp=F
DIIS: error= 5.65D-05 at cycle 5 NSaved= 5.
NSaved= 5 IEnMin= 5 EnMin= -99.4111704609090 IErMin= 5 ErrMin= 5.65D-05
ErrMax= 5.65D-05 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.89D-08 BMatP= 1.33D-06
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: 0.687D-03-0.133D-01-0.187D-01 0.157D+00 0.875D+00
Coeff: 0.687D-03-0.133D-01-0.187D-01 0.157D+00 0.875D+00
Gap= 0.658 Goal= None Shift= 0.000
RMSDP=2.02D-06 MaxDP=1.26D-04 DE=-7.85D-07 OVMax= 1.28D-04
Cycle 6 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
E= -99.4111704808967 Delta-E= -0.000000019988 Rises=F Damp=F
DIIS: error= 9.04D-06 at cycle 6 NSaved= 6.
NSaved= 6 IEnMin= 6 EnMin= -99.4111704808967 IErMin= 6 ErrMin= 9.04D-06
ErrMax= 9.04D-06 0.00D+00 EMaxC= 1.00D-01 BMatC= 6.17D-10 BMatP= 2.89D-08
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: -0.468D-04 0.117D-02 0.728D-03-0.280D-01-0.313D-01 0.106D+01
Coeff: -0.468D-04 0.117D-02 0.728D-03-0.280D-01-0.313D-01 0.106D+01
Gap= 0.658 Goal= None Shift= 0.000
RMSDP=2.02D-07 MaxDP=8.78D-06 DE=-2.00D-08 OVMax= 1.76D-05
Cycle 7 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
E= -99.4111704814085 Delta-E= -0.000000000512 Rises=F Damp=F
DIIS: error= 1.16D-06 at cycle 7 NSaved= 7.
NSaved= 7 IEnMin= 7 EnMin= -99.4111704814085 IErMin= 7 ErrMin= 1.16D-06
ErrMax= 1.16D-06 0.00D+00 EMaxC= 1.00D-01 BMatC= 1.34D-11 BMatP= 6.17D-10
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: 0.245D-05-0.839D-04-0.559D-04 0.384D-02-0.102D-01-0.178D+00
Coeff-Com: 0.118D+01
Coeff: 0.245D-05-0.839D-04-0.559D-04 0.384D-02-0.102D-01-0.178D+00
Coeff: 0.118D+01
Gap= 0.658 Goal= None Shift= 0.000
RMSDP=3.40D-08 MaxDP=8.81D-07 DE=-5.12D-10 OVMax= 1.57D-06
Cycle 8 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
E= -99.4111704814187 Delta-E= -0.000000000010 Rises=F Damp=F
DIIS: error= 3.93D-08 at cycle 8 NSaved= 8.
NSaved= 8 IEnMin= 8 EnMin= -99.4111704814187 IErMin= 8 ErrMin= 3.93D-08
ErrMax= 3.93D-08 0.00D+00 EMaxC= 1.00D-01 BMatC= 3.45D-14 BMatP= 1.34D-11
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: 0.267D-06-0.513D-05-0.541D-05 0.389D-04 0.136D-03 0.242D-02
Coeff-Com: -0.755D-01 0.107D+01
Coeff: 0.267D-06-0.513D-05-0.541D-05 0.389D-04 0.136D-03 0.242D-02
Coeff: -0.755D-01 0.107D+01
Gap= 0.658 Goal= None Shift= 0.000
RMSDP=2.47D-09 MaxDP=7.35D-08 DE=-1.02D-11 OVMax= 7.72D-08
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
SCF Done: E(ROHF) = -99.4111704814 A.U. after 8 cycles
NFock= 8 Conv=0.25D-08 -V/T= 2.0000
<Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 0.5000 <S**2>= 0.7500 S= 0.5000
<L.S>= 0.000000000000E+00
KE= 9.941129368962D+01 PE=-2.386655127517D+02 EE= 3.984304858071D+01
Annihilation of the first spin contaminant:
S**2 before annihilation 0.7500, after 0.7500
Leave Link 502 at Mon Apr 1 13:19:11 2019, MaxMem= 33554432 cpu: 6.6
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l801.exe)
Windowed orbitals will be sorted by symmetry type.
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
GenMOA: NOpAll= 48 NOp2=8 NOpUse= 8 JSym2X=1
FoFJK: IHMeth= 1 ICntrl= 0 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F
IRaf= 0 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 1.
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
wScrn= 0.000000 ICntrl= 0 IOpCl= 1 I1Cent= 0 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
<Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 0.5000 <S**2>= 0.7500 S= 0.5000
ExpMin= 1.57D-01 ExpMax= 2.11D+05 ExpMxC= 6.66D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14
ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
Largest valence mixing into a core orbital is 9.57D-05
Largest core mixing into a valence orbital is 1.41D-05
Largest valence mixing into a core orbital is 1.12D-04
Largest core mixing into a valence orbital is 3.07D-05
Range of M.O.s used for correlation: 2 91
NBasis= 91 NAE= 5 NBE= 4 NFC= 1 NFV= 0
NROrb= 90 NOA= 4 NOB= 3 NVA= 86 NVB= 87
Singles contribution to E2= -0.3548864933D-02
Leave Link 801 at Mon Apr 1 13:19:15 2019, MaxMem= 33554432 cpu: 4.2
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l804.exe)
Open-shell transformation, MDV= 33554432 ITran=4 ISComp=2.
Semi-Direct transformation.
ModeAB= 2 MOrb= 4 LenV= 33025568
LASXX= 177067 LTotXX= 177067 LenRXX= 177067
LTotAB= 184967 MaxLAS= 2880360 LenRXY= 2880360
NonZer= 3107160 LenScr= 5242880 LnRSAI= 0
LnScr1= 0 LExtra= 0 Total= 8300307
MaxDsk= -1 SrtSym= F ITran= 4
DoSDTr: NPSUse= 1
JobTyp=1 Pass 1: I= 1 to 4.
(rs|ai) integrals will be sorted in core.
Complete sort for first half transformation.
First half transformation complete.
Complete sort for second half transformation.
Second half transformation complete.
ModeAB= 2 MOrb= 3 LenV= 33025568
LASXX= 133809 LTotXX= 133809 LenRXX= 2160270
LTotAB= 127449 MaxLAS= 2160270 LenRXY= 127449
NonZer= 2330370 LenScr= 3932160 LnRSAI= 0
LnScr1= 0 LExtra= 0 Total= 6219879
MaxDsk= -1 SrtSym= F ITran= 4
DoSDTr: NPSUse= 1
JobTyp=2 Pass 1: I= 1 to 3.
(rs|ai) integrals will be sorted in core.
Complete sort for first half transformation.
First half transformation complete.
Complete sort for second half transformation.
Second half transformation complete.
Spin components of T(2) and E(2):
alpha-alpha T2 = 0.5568938582D-02 E2= -0.3598445155D-01
alpha-beta T2 = 0.2571914827D-01 E2= -0.1793322220D+00
beta-beta T2 = 0.2789380218D-02 E2= -0.1713499289D-01
ANorm= 0.1017354576D+01
E2 = -0.2360005314D+00 EUMP2 = -0.99647171012783D+02
(S**2,0)= 0.75000D+00 (S**2,1)= 0.75000D+00
E(PUHF)= -0.99411170481D+02 E(PMP2)= -0.99647171013D+02
Leave Link 804 at Mon Apr 1 13:19:35 2019, MaxMem= 33554432 cpu: 17.9
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l913.exe)
CIDS: MDV= 33554432.
Frozen-core window: NFC= 1 NFV= 0.
IFCWin=0 IBDFC=1 NFBD= 0 0 NFCmp= 0 0 NFFFC= 0 0
Using original routines for 1st iteration, S=T.
Using DD4UQ or CC4UQ for 2nd and later iterations.
Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=25232586.
FoFCou: FMM=F IPFlag= 0 FMFlag= 0 FMFlg1= 0
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
wScrn= 0.000000 ICntrl= 600 IOpCl= 0 I1Cent= 0 NGrid= 0
NMat0= 1 NMatS0= 4186 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
CCSD(T)
=======
Iterations= 50 Convergence= 0.100D-06
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 34
NAB= 12 NAA= 6 NBB= 3.
DD1Dir will call FoFMem 1 times, MxPair= 34
NAB= 12 NAA= 6 NBB= 3.
MP4(R+Q)= 0.10826338D-01
Maximum subspace dimension= 5
Norm of the A-vectors is 1.5029007D-02 conv= 1.00D-05.
RLE energy= -0.2331929537
E3= -0.79957937D-02 EROMP3= -0.99655166806D+02
E4(SDQ)= -0.15976853D-03 ROMP4(SDQ)= -0.99655326575D+02
VARIATIONAL ENERGIES WITH THE FIRST-ORDER WAVEFUNCTION:
DE(Corr)= -0.23315813 E(Corr)= -99.644328611
NORM(A)= 0.10167836D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 34
NAB= 12 NAA= 6 NBB= 3.
Norm of the A-vectors is 8.3940501D-02 conv= 1.00D-05.
RLE energy= -0.2347323283
DE(Corr)= -0.24102027 E(CORR)= -99.652190755 Delta=-7.86D-03
NORM(A)= 0.10170630D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 34
NAB= 12 NAA= 6 NBB= 3.
Norm of the A-vectors is 7.1209564D-02 conv= 1.00D-05.
RLE energy= -0.2379164735
DE(Corr)= -0.24151903 E(CORR)= -99.652689512 Delta=-4.99D-04
NORM(A)= 0.10178143D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 34
NAB= 12 NAA= 6 NBB= 3.
Norm of the A-vectors is 5.0113162D-02 conv= 1.00D-05.
RLE energy= -0.2486549990
DE(Corr)= -0.24234595 E(CORR)= -99.653516433 Delta=-8.27D-04
NORM(A)= 0.10212837D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 34
NAB= 12 NAA= 6 NBB= 3.
Norm of the A-vectors is 3.3391310D-02 conv= 1.00D-05.
RLE energy= -0.2433017416
DE(Corr)= -0.24555473 E(CORR)= -99.656725214 Delta=-3.21D-03
NORM(A)= 0.10194518D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 34
NAB= 12 NAA= 6 NBB= 3.
Norm of the A-vectors is 7.8360051D-03 conv= 1.00D-05.
RLE energy= -0.2442815360
DE(Corr)= -0.24398526 E(CORR)= -99.655155738 Delta= 1.57D-03
NORM(A)= 0.10197838D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 34
NAB= 12 NAA= 6 NBB= 3.
Norm of the A-vectors is 2.6928044D-04 conv= 1.00D-05.
RLE energy= -0.2442790466
DE(Corr)= -0.24428027 E(CORR)= -99.655450747 Delta=-2.95D-04
NORM(A)= 0.10197826D+01
Iteration Nr. 8
**********************
DD1Dir will call FoFMem 1 times, MxPair= 34
NAB= 12 NAA= 6 NBB= 3.
Norm of the A-vectors is 7.0724208D-05 conv= 1.00D-05.
RLE energy= -0.2442797945
DE(Corr)= -0.24428010 E(CORR)= -99.655450585 Delta= 1.63D-07
NORM(A)= 0.10197815D+01
Iteration Nr. 9
**********************
DD1Dir will call FoFMem 1 times, MxPair= 34
NAB= 12 NAA= 6 NBB= 3.
Norm of the A-vectors is 2.2912464D-05 conv= 1.00D-05.
RLE energy= -0.2442797017
DE(Corr)= -0.24427960 E(CORR)= -99.655450083 Delta= 5.01D-07
NORM(A)= 0.10197815D+01
Iteration Nr. 10
**********************
DD1Dir will call FoFMem 1 times, MxPair= 34
NAB= 12 NAA= 6 NBB= 3.
Norm of the A-vectors is 7.1410827D-06 conv= 1.00D-05.
RLE energy= -0.2442797407
DE(Corr)= -0.24427967 E(CORR)= -99.655450152 Delta=-6.94D-08
NORM(A)= 0.10197816D+01
CI/CC converged in 10 iterations to DelEn=-6.94D-08 Conv= 1.00D-07 ErrA1= 7.14D-06 Conv= 1.00D-05
Largest amplitude= 2.41D-02

8
G09/F2/F_vdz.inp Normal file
View File

@ -0,0 +1,8 @@
#p ROCCSD(T) cc-pVDZ pop=full gfprint
G2
0,2
F

8
G09/F2/F_vqz.inp Normal file
View File

@ -0,0 +1,8 @@
#p ROCCSD(T) cc-pVQZ pop=full gfprint
G2
0,2
F

8
G09/F2/F_vtz.inp Normal file
View File

@ -0,0 +1,8 @@
#p ROCCSD(T) cc-pVTZ pop=full gfprint
G2
0,2
F

10
G09/F2/run_at.sh Executable file
View File

@ -0,0 +1,10 @@
#! /bin/bash
#SBATCH -p xeonv1_mono -c 1 -n 1 -N 1
module load g09/d01
for INP in $( ls F_v*.inp ); do
MOL=${INP%.*}
g09 ${MOL}.inp ${MOL}.out
done

10
G09/F2/run_g09.sh Executable file
View File

@ -0,0 +1,10 @@
#! /bin/bash
#SBATCH -p xeonv1_mono -c 1 -n 1 -N 1
module load g09/d01
for INP in $( ls *.inp ); do
MOL=${INP%.*}
g09 ${MOL}.inp ${MOL}.out
done

0
G09/F2/slurm-42318.out Normal file
View File

0
G09/F2/slurm-42437.out Normal file
View File

8
G09/N2/N_v5z.inp Normal file
View File

@ -0,0 +1,8 @@
#p ROCCSD(T) cc-pV5Z pop=full gfprint
G2
0,4
N

5342
G09/N2/N_v5z.out Normal file

File diff suppressed because it is too large Load Diff

8
G09/N2/N_vdz.inp Normal file
View File

@ -0,0 +1,8 @@
#p ROCCSD(T) cc-pVDZ pop=full gfprint
G2
0,4
N

781
G09/N2/N_vdz.out Normal file
View File

@ -0,0 +1,781 @@
Entering Gaussian System, Link 0=g09
Input=N_vdz.inp
Output=N_vdz.out
Initial command:
/share/apps/gaussian/g09d01/nehalem/g09/l1.exe "/mnt/beegfs/tmpdir/42438/Gau-25296.inp" -scrdir="/mnt/beegfs/tmpdir/42438/"
Entering Link 1 = /share/apps/gaussian/g09d01/nehalem/g09/l1.exe PID= 25297.
Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013,
Gaussian, Inc. All Rights Reserved.
This is part of the Gaussian(R) 09 program. It is based on
the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),
the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
University), and the Gaussian 82(TM) system (copyright 1983,
Carnegie Mellon University). Gaussian is a federally registered
trademark of Gaussian, Inc.
This software contains proprietary and confidential information,
including trade secrets, belonging to Gaussian, Inc.
This software is provided under written license and may be
used, copied, transmitted, or stored only in accord with that
written license.
The following legend is applicable only to US Government
contracts under FAR:
RESTRICTED RIGHTS LEGEND
Use, reproduction and disclosure by the US Government is
subject to restrictions as set forth in subparagraphs (a)
and (c) of the Commercial Computer Software - Restricted
Rights clause in FAR 52.227-19.
Gaussian, Inc.
340 Quinnipiac St., Bldg. 40, Wallingford CT 06492
---------------------------------------------------------------
Warning -- This program may not be used in any manner that
competes with the business of Gaussian, Inc. or will provide
assistance to any competitor of Gaussian, Inc. The licensee
of this program is prohibited from giving any competitor of
Gaussian, Inc. access to this program. By using this program,
the user acknowledges that Gaussian, Inc. is engaged in the
business of creating and licensing software in the field of
computational chemistry and represents and warrants to the
licensee that it is not a competitor of Gaussian, Inc. and that
it will not use this program in any manner prohibited above.
---------------------------------------------------------------
Cite this work as:
Gaussian 09, Revision D.01,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
******************************************
Gaussian 09: ES64L-G09RevD.01 24-Apr-2013
1-Apr-2019
******************************************
-------------------------------------
#p ROCCSD(T) cc-pVDZ pop=full gfprint
-------------------------------------
1/38=1/1;
2/12=2,17=6,18=5,40=1/2;
3/5=16,11=2,16=1,24=100,25=1,30=1,116=101/1,2,3;
4//1;
5/5=2,38=5/2;
8/5=-1,6=4,9=120000,10=1/1,4;
9/5=7,14=2/13;
6/7=3/1;
99/5=1,9=1/99;
Leave Link 1 at Mon Apr 1 13:25:34 2019, MaxMem= 0 cpu: 0.0
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l101.exe)
--
G2
--
Symbolic Z-matrix:
Charge = 0 Multiplicity = 4
N
NAtoms= 1 NQM= 1 NQMF= 0 NMMI= 0 NMMIF= 0
NMic= 0 NMicF= 0.
Isotopes and Nuclear Properties:
(Nuclear quadrupole moments (NQMom) in fm**2, nuclear magnetic moments (NMagM)
in nuclear magnetons)
Atom 1
IAtWgt= 14
AtmWgt= 14.0030740
NucSpn= 2
AtZEff= 0.0000000
NQMom= 2.0440000
NMagM= 0.4037610
AtZNuc= 7.0000000
Leave Link 101 at Mon Apr 1 13:25:35 2019, MaxMem= 33554432 cpu: 0.0
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l202.exe)
Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 7 0 0.000000 0.000000 0.000000
---------------------------------------------------------------------
Stoichiometry N(4)
Framework group OH[O(N)]
Deg. of freedom 0
Full point group OH NOp 48
Largest Abelian subgroup D2H NOp 8
Largest concise Abelian subgroup C1 NOp 1
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 7 0 0.000000 0.000000 0.000000
---------------------------------------------------------------------
Leave Link 202 at Mon Apr 1 13:25:35 2019, MaxMem= 33554432 cpu: 0.0
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l301.exe)
Standard basis: CC-pVDZ (5D, 7F)
Ernie: Thresh= 0.10000D-02 Tol= 0.10000D-05 Strict=F.
Ernie: 2 primitive shells out of 22 were deleted.
AO basis set (Overlap normalization):
Atom N1 Shell 1 S 7 bf 1 - 1 0.000000000000 0.000000000000 0.000000000000
0.9046000000D+04 0.7017087426D-03
0.1357000000D+04 0.5402998803D-02
0.3093000000D+03 0.2747295103D-01
0.8773000000D+02 0.1035145797D+00
0.2856000000D+02 0.2795865786D+00
0.1021000000D+02 0.4513172405D+00
0.3838000000D+01 0.2806268749D+00
Atom N1 Shell 2 S 7 bf 2 - 2 0.000000000000 0.000000000000 0.000000000000
0.9046000000D+04 0.7774467966D-05
0.3093000000D+03 0.3007420716D-03
0.8773000000D+02 -0.2800165487D-02
0.2856000000D+02 -0.9897085049D-02
0.1021000000D+02 -0.1143311135D+00
0.3838000000D+01 -0.1181623826D+00
0.7466000000D+00 0.1097868854D+01
Atom N1 Shell 3 S 1 bf 3 - 3 0.000000000000 0.000000000000 0.000000000000
0.2248000000D+00 0.1000000000D+01
Atom N1 Shell 4 P 3 bf 4 - 6 0.000000000000 0.000000000000 0.000000000000
0.1355000000D+02 0.5890567677D-01
0.2917000000D+01 0.3204611067D+00
0.7973000000D+00 0.7530420618D+00
Atom N1 Shell 5 P 1 bf 7 - 9 0.000000000000 0.000000000000 0.000000000000
0.2185000000D+00 0.1000000000D+01
Atom N1 Shell 6 D 1 bf 10 - 14 0.000000000000 0.000000000000 0.000000000000
0.8170000000D+00 0.1000000000D+01
There are 6 symmetry adapted cartesian basis functions of AG symmetry.
There are 1 symmetry adapted cartesian basis functions of B1G symmetry.
There are 1 symmetry adapted cartesian basis functions of B2G symmetry.
There are 1 symmetry adapted cartesian basis functions of B3G symmetry.
There are 0 symmetry adapted cartesian basis functions of AU symmetry.
There are 2 symmetry adapted cartesian basis functions of B1U symmetry.
There are 2 symmetry adapted cartesian basis functions of B2U symmetry.
There are 2 symmetry adapted cartesian basis functions of B3U symmetry.
There are 5 symmetry adapted basis functions of AG symmetry.
There are 1 symmetry adapted basis functions of B1G symmetry.
There are 1 symmetry adapted basis functions of B2G symmetry.
There are 1 symmetry adapted basis functions of B3G symmetry.
There are 0 symmetry adapted basis functions of AU symmetry.
There are 2 symmetry adapted basis functions of B1U symmetry.
There are 2 symmetry adapted basis functions of B2U symmetry.
There are 2 symmetry adapted basis functions of B3U symmetry.
14 basis functions, 33 primitive gaussians, 15 cartesian basis functions
5 alpha electrons 2 beta electrons
nuclear repulsion energy 0.0000000000 Hartrees.
IExCor= 0 DFT=F Ex=HF Corr=None ExCW=0 ScaHFX= 1.000000
ScaDFX= 1.000000 1.000000 1.000000 1.000000 ScalE2= 1.000000 1.000000
IRadAn= 0 IRanWt= -1 IRanGd= 0 ICorTp=0 IEmpDi= 4
NAtoms= 1 NActive= 1 NUniq= 1 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
Leave Link 301 at Mon Apr 1 13:25:35 2019, MaxMem= 33554432 cpu: 0.1
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l302.exe)
NPDir=0 NMtPBC= 1 NCelOv= 1 NCel= 1 NClECP= 1 NCelD= 1
NCelK= 1 NCelE2= 1 NClLst= 1 CellRange= 0.0.
One-electron integrals computed using PRISM.
NBasis= 14 RedAO= T EigKep= 5.77D-01 NBF= 5 1 1 1 0 2 2 2
NBsUse= 14 1.00D-06 EigRej= -1.00D+00 NBFU= 5 1 1 1 0 2 2 2
Leave Link 302 at Mon Apr 1 13:25:35 2019, MaxMem= 33554432 cpu: 0.1
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l303.exe)
DipDrv: MaxL=1.
Leave Link 303 at Mon Apr 1 13:25:35 2019, MaxMem= 33554432 cpu: 0.0
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l401.exe)
ExpMin= 2.19D-01 ExpMax= 9.05D+03 ExpMxC= 3.09D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00
Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess.
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Harris En= -54.1284620221583
JPrj=0 DoOrth=F DoCkMO=F.
Initial guess orbital symmetries:
Occupied (A1G) (A1G) (T1U) (T1U) (T1U)
Virtual (T1U) (T1U) (T1U) (A1G) (EG) (EG) (T2G) (T2G)
(T2G)
The electronic state of the initial guess is 4-A1G.
Leave Link 401 at Mon Apr 1 13:25:35 2019, MaxMem= 33554432 cpu: 0.1
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l502.exe)
Restricted open shell SCF:
Using DIIS extrapolation, IDIIS= 1040.
Integral symmetry usage will be decided dynamically.
Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=855092.
IVT= 20457 IEndB= 20457 NGot= 33554432 MDV= 33530566
LenX= 33530566 LenY= 33529684
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
FoFCou: FMM=F IPFlag= 0 FMFlag= 0 FMFlg1= 0
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
wScrn= 0.000000 ICntrl= 600 IOpCl= 0 I1Cent= 0 NGrid= 0
NMat0= 1 NMatS0= 105 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Cycle 1 Pass 1 IDiag 1:
E= -54.3795573333220
DIIS: error= 6.10D-02 at cycle 1 NSaved= 1.
NSaved= 1 IEnMin= 1 EnMin= -54.3795573333220 IErMin= 1 ErrMin= 6.10D-02
ErrMax= 6.10D-02 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.41D-02 BMatP= 2.41D-02
IDIUse=3 WtCom= 3.90D-01 WtEn= 6.10D-01
Coeff-Com: 0.100D+01
Coeff-En: 0.100D+01
Coeff: 0.100D+01
Gap= 1.054 Goal= None Shift= 0.000
GapD= 1.054 DampG=2.000 DampE=0.500 DampFc=1.0000 IDamp=-1.
RMSDP=8.78D-03 MaxDP=6.65D-02 OVMax= 2.08D-02
Cycle 2 Pass 1 IDiag 1:
E= -54.3872860692760 Delta-E= -0.007728735954 Rises=F Damp=F
DIIS: error= 1.05D-02 at cycle 2 NSaved= 2.
NSaved= 2 IEnMin= 2 EnMin= -54.3872860692760 IErMin= 2 ErrMin= 1.05D-02
ErrMax= 1.05D-02 0.00D+00 EMaxC= 1.00D-01 BMatC= 1.61D-03 BMatP= 2.41D-02
IDIUse=3 WtCom= 8.95D-01 WtEn= 1.05D-01
Coeff-Com: 0.174D+00 0.826D+00
Coeff-En: 0.000D+00 0.100D+01
Coeff: 0.156D+00 0.844D+00
Gap= 1.048 Goal= None Shift= 0.000
RMSDP=2.83D-03 MaxDP=2.19D-02 DE=-7.73D-03 OVMax= 7.58D-03
Cycle 3 Pass 1 IDiag 1:
E= -54.3883821690246 Delta-E= -0.001096099749 Rises=F Damp=F
DIIS: error= 1.79D-03 at cycle 3 NSaved= 3.
NSaved= 3 IEnMin= 3 EnMin= -54.3883821690246 IErMin= 3 ErrMin= 1.79D-03
ErrMax= 1.79D-03 0.00D+00 EMaxC= 1.00D-01 BMatC= 4.85D-05 BMatP= 1.61D-03
IDIUse=3 WtCom= 9.82D-01 WtEn= 1.79D-02
Coeff-Com: -0.105D-01 0.123D+00 0.888D+00
Coeff-En: 0.000D+00 0.000D+00 0.100D+01
Coeff: -0.104D-01 0.120D+00 0.890D+00
Gap= 1.050 Goal= None Shift= 0.000
RMSDP=4.09D-04 MaxDP=3.21D-03 DE=-1.10D-03 OVMax= 9.99D-04
Cycle 4 Pass 1 IDiag 1:
E= -54.3884142341993 Delta-E= -0.000032065175 Rises=F Damp=F
DIIS: error= 1.96D-05 at cycle 4 NSaved= 4.
NSaved= 4 IEnMin= 4 EnMin= -54.3884142341993 IErMin= 4 ErrMin= 1.96D-05
ErrMax= 1.96D-05 0.00D+00 EMaxC= 1.00D-01 BMatC= 3.03D-09 BMatP= 4.85D-05
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: 0.289D-02-0.339D-01-0.237D+00 0.127D+01
Coeff: 0.289D-02-0.339D-01-0.237D+00 0.127D+01
Gap= 1.050 Goal= None Shift= 0.000
RMSDP=4.88D-06 MaxDP=4.80D-05 DE=-3.21D-05 OVMax= 2.69D-05
Cycle 5 Pass 1 IDiag 1:
E= -54.3884142370218 Delta-E= -0.000000002822 Rises=F Damp=F
DIIS: error= 1.19D-07 at cycle 5 NSaved= 5.
NSaved= 5 IEnMin= 5 EnMin= -54.3884142370218 IErMin= 5 ErrMin= 1.19D-07
ErrMax= 1.19D-07 0.00D+00 EMaxC= 1.00D-01 BMatC= 1.63D-13 BMatP= 3.03D-09
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: -0.433D-06 0.209D-04 0.181D-03-0.164D-03 0.100D+01
Coeff: -0.433D-06 0.209D-04 0.181D-03-0.164D-03 0.100D+01
Gap= 1.050 Goal= None Shift= 0.000
RMSDP=2.10D-08 MaxDP=1.72D-07 DE=-2.82D-09 OVMax= 3.62D-08
Cycle 6 Pass 1 IDiag 1:
E= -54.3884142370219 Delta-E= 0.000000000000 Rises=F Damp=F
DIIS: error= 8.85D-11 at cycle 6 NSaved= 6.
NSaved= 6 IEnMin= 6 EnMin= -54.3884142370219 IErMin= 6 ErrMin= 8.85D-11
ErrMax= 8.85D-11 0.00D+00 EMaxC= 1.00D-01 BMatC= 1.35D-19 BMatP= 1.63D-13
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Large coefficients: NSaved= 6 BigCof= 0.00 CofMax= 10.00 Det=-2.66D-28
Inversion failed. Reducing to 5 matrices.
Coeff-Com: 0.971D-09-0.785D-08-0.496D-05 0.106D-02 0.999D+00
Coeff: 0.971D-09-0.785D-08-0.496D-05 0.106D-02 0.999D+00
Gap= 1.050 Goal= None Shift= 0.000
RMSDP=2.59D-11 MaxDP=1.92D-10 DE=-8.53D-14 OVMax= 8.11D-11
SCF Done: E(ROHF) = -54.3884142370 A.U. after 6 cycles
NFock= 6 Conv=0.26D-10 -V/T= 2.0000
<Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 1.5000 <S**2>= 3.7500 S= 1.5000
<L.S>= 0.000000000000E+00
KE= 5.438818335516D+01 PE=-1.283379681126D+02 EE= 1.956137052044D+01
Annihilation of the first spin contaminant:
S**2 before annihilation 3.7500, after 3.7500
Leave Link 502 at Mon Apr 1 13:25:35 2019, MaxMem= 33554432 cpu: 0.1
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l801.exe)
Windowed orbitals will be sorted by symmetry type.
GenMOA: NOpAll= 48 NOp2=8 NOpUse= 48 JSym2X=1
FoFJK: IHMeth= 1 ICntrl= 0 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F
IRaf= 0 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 1.
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
wScrn= 0.000000 ICntrl= 0 IOpCl= 1 I1Cent= 0 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
<Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 1.5000 <S**2>= 3.7500 S= 1.5000
ExpMin= 2.19D-01 ExpMax= 9.05D+03 ExpMxC= 3.09D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14
ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
Largest valence mixing into a core orbital is 7.54D-05
Largest core mixing into a valence orbital is 2.02D-05
Largest valence mixing into a core orbital is 1.72D-04
Largest core mixing into a valence orbital is 1.17D-04
Range of M.O.s used for correlation: 2 14
NBasis= 14 NAE= 5 NBE= 2 NFC= 1 NFV= 0
NROrb= 13 NOA= 4 NOB= 1 NVA= 9 NVB= 12
Singles contribution to E2= -0.1724185031D-02
Leave Link 801 at Mon Apr 1 13:25:36 2019, MaxMem= 33554432 cpu: 0.2
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l804.exe)
Open-shell transformation, MDV= 33554432 ITran=4 ISComp=2.
Semi-Direct transformation.
ModeAB= 2 MOrb= 4 LenV= 33387602
LASXX= 405 LTotXX= 405 LenRXX= 405
LTotAB= 598 MaxLAS= 6240 LenRXY= 6240
NonZer= 7332 LenScr= 720896 LnRSAI= 0
LnScr1= 0 LExtra= 0 Total= 727541
MaxDsk= -1 SrtSym= F ITran= 4
DoSDTr: NPSUse= 1
JobTyp=1 Pass 1: I= 1 to 4.
(rs|ai) integrals will be sorted in core.
Complete sort for first half transformation.
First half transformation complete.
Complete sort for second half transformation.
Second half transformation complete.
ModeAB= 2 MOrb= 1 LenV= 33387602
LASXX= 126 LTotXX= 126 LenRXX= 1560
LTotAB= 93 MaxLAS= 1560 LenRXY= 93
NonZer= 1833 LenScr= 720896 LnRSAI= 0
LnScr1= 0 LExtra= 0 Total= 722549
MaxDsk= -1 SrtSym= F ITran= 4
DoSDTr: NPSUse= 1
JobTyp=2 Pass 1: I= 1 to 1.
(rs|ai) integrals will be sorted in core.
Complete sort for first half transformation.
First half transformation complete.
Complete sort for second half transformation.
Second half transformation complete.
Spin components of T(2) and E(2):
alpha-alpha T2 = 0.5767911165D-02 E2= -0.2149795047D-01
alpha-beta T2 = 0.1390207399D-01 E2= -0.4983215356D-01
beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00
ANorm= 0.1010220879D+01
E2 = -0.7305428906D-01 EUMP2 = -0.54461468526085D+02
(S**2,0)= 0.37500D+01 (S**2,1)= 0.37500D+01
E(PUHF)= -0.54388414237D+02 E(PMP2)= -0.54461468526D+02
Leave Link 804 at Mon Apr 1 13:25:36 2019, MaxMem= 33554432 cpu: 0.2
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l913.exe)
CIDS: MDV= 33554432.
Frozen-core window: NFC= 1 NFV= 0.
IFCWin=0 IBDFC=1 NFBD= 0 0 NFCmp= 0 0 NFFFC= 0 0
Using original routines for 1st iteration, S=T.
Using DD4UQ or CC4UQ for 2nd and later iterations.
Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=828711.
FoFCou: FMM=F IPFlag= 0 FMFlag= 0 FMFlg1= 0
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
wScrn= 0.000000 ICntrl= 600 IOpCl= 0 I1Cent= 0 NGrid= 0
NMat0= 1 NMatS0= 105 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
CCSD(T)
=======
Iterations= 50 Convergence= 0.100D-06
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 14
NAB= 4 NAA= 6 NBB= 0.
DD1Dir will call FoFMem 1 times, MxPair= 14
NAB= 4 NAA= 6 NBB= 0.
MP4(R+Q)= 0.15259515D-01
Maximum subspace dimension= 5
Norm of the A-vectors is 5.9487988D-03 conv= 1.00D-05.
RLE energy= -0.0720256648
E3= -0.14206278D-01 EROMP3= -0.54475674804D+02
E4(SDQ)= -0.20633624D-02 ROMP4(SDQ)= -0.54477738166D+02
VARIATIONAL ENERGIES WITH THE FIRST-ORDER WAVEFUNCTION:
DE(Corr)= -0.72009826E-01 E(Corr)= -54.460424063
NORM(A)= 0.10099150D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 14
NAB= 4 NAA= 6 NBB= 0.
Norm of the A-vectors is 8.1074335D-02 conv= 1.00D-05.
RLE energy= -0.0734765597
DE(Corr)= -0.86010600E-01 E(CORR)= -54.474424837 Delta=-1.40D-02
NORM(A)= 0.10103254D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 14
NAB= 4 NAA= 6 NBB= 0.
Norm of the A-vectors is 7.4400726D-02 conv= 1.00D-05.
RLE energy= 0.0400342716
DE(Corr)= -0.86285568E-01 E(CORR)= -54.474699805 Delta=-2.75D-04
NORM(A)= 0.10092941D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 14
NAB= 4 NAA= 6 NBB= 0.
Norm of the A-vectors is 5.8392449D-01 conv= 1.00D-05.
RLE energy= -0.0826959822
DE(Corr)= -0.60744566E-01 E(CORR)= -54.449158803 Delta= 2.55D-02
NORM(A)= 0.10131918D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 14
NAB= 4 NAA= 6 NBB= 0.
Norm of the A-vectors is 3.1396479D-02 conv= 1.00D-05.
RLE energy= -0.0985064582
DE(Corr)= -0.88112081E-01 E(CORR)= -54.476526318 Delta=-2.74D-02
NORM(A)= 0.10190402D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 14
NAB= 4 NAA= 6 NBB= 0.
Norm of the A-vectors is 4.2851531D-02 conv= 1.00D-05.
RLE energy= -0.0892516227
DE(Corr)= -0.91108991E-01 E(CORR)= -54.479523228 Delta=-3.00D-03
NORM(A)= 0.10154618D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 14
NAB= 4 NAA= 6 NBB= 0.
Norm of the A-vectors is 6.5378077D-04 conv= 1.00D-05.
RLE energy= -0.0893753035
DE(Corr)= -0.89359727E-01 E(CORR)= -54.477773964 Delta= 1.75D-03
NORM(A)= 0.10155089D+01
Iteration Nr. 8
**********************
DD1Dir will call FoFMem 1 times, MxPair= 14
NAB= 4 NAA= 6 NBB= 0.
Norm of the A-vectors is 6.1486308D-05 conv= 1.00D-05.
RLE energy= -0.0893960722
DE(Corr)= -0.89385372E-01 E(CORR)= -54.477799609 Delta=-2.56D-05
NORM(A)= 0.10155168D+01
Iteration Nr. 9
**********************
DD1Dir will call FoFMem 1 times, MxPair= 14
NAB= 4 NAA= 6 NBB= 0.
Norm of the A-vectors is 3.8870653D-05 conv= 1.00D-05.
RLE energy= -0.0893880713
DE(Corr)= -0.89389641E-01 E(CORR)= -54.477803878 Delta=-4.27D-06
NORM(A)= 0.10155138D+01
Iteration Nr. 10
**********************
DD1Dir will call FoFMem 1 times, MxPair= 14
NAB= 4 NAA= 6 NBB= 0.
Norm of the A-vectors is 6.4201782D-07 conv= 1.00D-05.
RLE energy= -0.0893879692
DE(Corr)= -0.89387989E-01 E(CORR)= -54.477802226 Delta= 1.65D-06
NORM(A)= 0.10155138D+01
Iteration Nr. 11
**********************
DD1Dir will call FoFMem 1 times, MxPair= 14
NAB= 4 NAA= 6 NBB= 0.
Norm of the A-vectors is 6.9301403D-08 conv= 1.00D-05.
RLE energy= -0.0893879678
DE(Corr)= -0.89387968E-01 E(CORR)= -54.477802205 Delta= 2.06D-08
NORM(A)= 0.10155138D+01
CI/CC converged in 11 iterations to DelEn= 2.06D-08 Conv= 1.00D-07 ErrA1= 6.93D-08 Conv= 1.00D-05
Largest amplitude= 3.96D-02
Time for triples= 0.44 seconds.
T4(CCSD)= -0.63249250D-03
T5(CCSD)= 0.17618923D-05
CCSD(T)= -0.54478432936D+02
Discarding MO integrals.
Leave Link 913 at Mon Apr 1 13:25:43 2019, MaxMem= 33554432 cpu: 2.7
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l601.exe)
Copying SCF densities to generalized density rwf, IOpCl= 0 IROHF=1.
**********************************************************************
Population analysis using the SCF density.
**********************************************************************
Orbital symmetries:
Occupied (A1G) (A1G) (T1U) (T1U) (T1U)
Virtual (T1U) (T1U) (T1U) (A1G) (EG) (T2G) (T2G) (T2G)
(EG)
The electronic state is 4-A1G.
Alpha occ. eigenvalues -- -15.67055 -1.14872 -0.56237 -0.56237 -0.56237
Alpha virt. eigenvalues -- 0.88043 0.88043 0.88043 0.98757 1.94668
Alpha virt. eigenvalues -- 1.94668 1.94668 1.94668 1.94668
Molecular Orbital Coefficients:
1 2 3 4 5
(A1G)--O (A1G)--O (T1U)--O (T1U)--O (T1U)--O
Eigenvalues -- -15.67055 -1.14872 -0.56237 -0.56237 -0.56237
1 1 N 1S 0.99764 -0.22253 0.00000 0.00000 0.00000
2 2S 0.01354 0.50008 0.00000 0.00000 0.00000
3 3S -0.00347 0.57881 0.00000 0.00000 0.00000
4 4PX 0.00000 0.00000 0.00000 0.67768 0.00000
5 4PY 0.00000 0.00000 0.00000 0.00000 0.67768
6 4PZ 0.00000 0.00000 0.67768 0.00000 0.00000
7 5PX 0.00000 0.00000 0.00000 0.46221 0.00000
8 5PY 0.00000 0.00000 0.00000 0.00000 0.46221
9 5PZ 0.00000 0.00000 0.46221 0.00000 0.00000
10 6D 0 0.00000 0.00000 0.00000 0.00000 0.00000
11 6D+1 0.00000 0.00000 0.00000 0.00000 0.00000
12 6D-1 0.00000 0.00000 0.00000 0.00000 0.00000
13 6D+2 0.00000 0.00000 0.00000 0.00000 0.00000
14 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
6 7 8 9 10
(T1U)--V (T1U)--V (T1U)--V (A1G)--V (EG)--V
Eigenvalues -- 0.88043 0.88043 0.88043 0.98757 1.94668
1 1 N 1S 0.00000 0.00000 0.00000 -0.06783 0.00000
2 2S 0.00000 0.00000 0.00000 1.58436 0.00000
3 3S 0.00000 0.00000 0.00000 -1.54467 0.00000
4 4PX 0.00000 0.00000 -0.95687 0.00000 0.00000
5 4PY 0.00000 -0.95687 0.00000 0.00000 0.00000
6 4PZ -0.95687 0.00000 0.00000 0.00000 0.00000
7 5PX 0.00000 0.00000 1.07759 0.00000 0.00000
8 5PY 0.00000 1.07759 0.00000 0.00000 0.00000
9 5PZ 1.07759 0.00000 0.00000 0.00000 0.00000
10 6D 0 0.00000 0.00000 0.00000 0.00000 0.99798
11 6D+1 0.00000 0.00000 0.00000 0.00000 0.00000
12 6D-1 0.00000 0.00000 0.00000 0.00000 0.00000
13 6D+2 0.00000 0.00000 0.00000 0.00000 0.06348
14 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
11 12 13 14
(T2G)--V (T2G)--V (T2G)--V (EG)--V
Eigenvalues -- 1.94668 1.94668 1.94668 1.94668
1 1 N 1S 0.00000 0.00000 0.00000 0.00000
2 2S 0.00000 0.00000 0.00000 0.00000
3 3S 0.00000 0.00000 0.00000 0.00000
4 4PX 0.00000 0.00000 0.00000 0.00000
5 4PY 0.00000 0.00000 0.00000 0.00000
6 4PZ 0.00000 0.00000 0.00000 0.00000
7 5PX 0.00000 0.00000 0.00000 0.00000
8 5PY 0.00000 0.00000 0.00000 0.00000
9 5PZ 0.00000 0.00000 0.00000 0.00000
10 6D 0 0.00000 0.00000 0.00000 -0.06348
11 6D+1 0.00000 1.00000 0.00000 0.00000
12 6D-1 0.00000 0.00000 1.00000 0.00000
13 6D+2 0.00000 0.00000 0.00000 0.99798
14 6D-2 1.00000 0.00000 0.00000 0.00000
Alpha Density Matrix:
1 2 3 4 5
1 1 N 1S 1.04481
2 2S -0.09778 0.25026
3 3S -0.13227 0.28940 0.33504
4 4PX 0.00000 0.00000 0.00000 0.45925
5 4PY 0.00000 0.00000 0.00000 0.00000 0.45925
6 4PZ 0.00000 0.00000 0.00000 0.00000 0.00000
7 5PX 0.00000 0.00000 0.00000 0.31323 0.00000
8 5PY 0.00000 0.00000 0.00000 0.00000 0.31323
9 5PZ 0.00000 0.00000 0.00000 0.00000 0.00000
10 6D 0 0.00000 0.00000 0.00000 0.00000 0.00000
11 6D+1 0.00000 0.00000 0.00000 0.00000 0.00000
12 6D-1 0.00000 0.00000 0.00000 0.00000 0.00000
13 6D+2 0.00000 0.00000 0.00000 0.00000 0.00000
14 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
6 7 8 9 10
6 4PZ 0.45925
7 5PX 0.00000 0.21364
8 5PY 0.00000 0.00000 0.21364
9 5PZ 0.31323 0.00000 0.00000 0.21364
10 6D 0 0.00000 0.00000 0.00000 0.00000 0.00000
11 6D+1 0.00000 0.00000 0.00000 0.00000 0.00000
12 6D-1 0.00000 0.00000 0.00000 0.00000 0.00000
13 6D+2 0.00000 0.00000 0.00000 0.00000 0.00000
14 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
11 12 13 14
11 6D+1 0.00000
12 6D-1 0.00000 0.00000
13 6D+2 0.00000 0.00000 0.00000
14 6D-2 0.00000 0.00000 0.00000 0.00000
Beta Density Matrix:
1 2 3 4 5
1 1 N 1S 1.04481
2 2S -0.09778 0.25026
3 3S -0.13227 0.28940 0.33504
4 4PX 0.00000 0.00000 0.00000 0.00000
5 4PY 0.00000 0.00000 0.00000 0.00000 0.00000
6 4PZ 0.00000 0.00000 0.00000 0.00000 0.00000
7 5PX 0.00000 0.00000 0.00000 0.00000 0.00000
8 5PY 0.00000 0.00000 0.00000 0.00000 0.00000
9 5PZ 0.00000 0.00000 0.00000 0.00000 0.00000
10 6D 0 0.00000 0.00000 0.00000 0.00000 0.00000
11 6D+1 0.00000 0.00000 0.00000 0.00000 0.00000
12 6D-1 0.00000 0.00000 0.00000 0.00000 0.00000
13 6D+2 0.00000 0.00000 0.00000 0.00000 0.00000
14 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
6 7 8 9 10
6 4PZ 0.00000
7 5PX 0.00000 0.00000
8 5PY 0.00000 0.00000 0.00000
9 5PZ 0.00000 0.00000 0.00000 0.00000
10 6D 0 0.00000 0.00000 0.00000 0.00000 0.00000
11 6D+1 0.00000 0.00000 0.00000 0.00000 0.00000
12 6D-1 0.00000 0.00000 0.00000 0.00000 0.00000
13 6D+2 0.00000 0.00000 0.00000 0.00000 0.00000
14 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
11 12 13 14
11 6D+1 0.00000
12 6D-1 0.00000 0.00000
13 6D+2 0.00000 0.00000 0.00000
14 6D-2 0.00000 0.00000 0.00000 0.00000
Full Mulliken population analysis:
1 2 3 4 5
1 1 N 1S 2.08963
2 2S -0.04232 0.50052
3 3S -0.04807 0.46029 0.67007
4 4PX 0.00000 0.00000 0.00000 0.45925
5 4PY 0.00000 0.00000 0.00000 0.00000 0.45925
6 4PZ 0.00000 0.00000 0.00000 0.00000 0.00000
7 5PX 0.00000 0.00000 0.00000 0.16356 0.00000
8 5PY 0.00000 0.00000 0.00000 0.00000 0.16356
9 5PZ 0.00000 0.00000 0.00000 0.00000 0.00000
10 6D 0 0.00000 0.00000 0.00000 0.00000 0.00000
11 6D+1 0.00000 0.00000 0.00000 0.00000 0.00000
12 6D-1 0.00000 0.00000 0.00000 0.00000 0.00000
13 6D+2 0.00000 0.00000 0.00000 0.00000 0.00000
14 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
6 7 8 9 10
6 4PZ 0.45925
7 5PX 0.00000 0.21364
8 5PY 0.00000 0.00000 0.21364
9 5PZ 0.16356 0.00000 0.00000 0.21364
10 6D 0 0.00000 0.00000 0.00000 0.00000 0.00000
11 6D+1 0.00000 0.00000 0.00000 0.00000 0.00000
12 6D-1 0.00000 0.00000 0.00000 0.00000 0.00000
13 6D+2 0.00000 0.00000 0.00000 0.00000 0.00000
14 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
11 12 13 14
11 6D+1 0.00000
12 6D-1 0.00000 0.00000
13 6D+2 0.00000 0.00000 0.00000
14 6D-2 0.00000 0.00000 0.00000 0.00000
Gross orbital populations:
Total Alpha Beta Spin
1 1 N 1S 1.99923 0.99962 0.99962 0.00000
2 2S 0.91848 0.45924 0.45924 0.00000
3 3S 1.08228 0.54114 0.54114 0.00000
4 4PX 0.62280 0.62280 0.00000 0.62280
5 4PY 0.62280 0.62280 0.00000 0.62280
6 4PZ 0.62280 0.62280 0.00000 0.62280
7 5PX 0.37720 0.37720 0.00000 0.37720
8 5PY 0.37720 0.37720 0.00000 0.37720
9 5PZ 0.37720 0.37720 0.00000 0.37720
10 6D 0 0.00000 0.00000 0.00000 0.00000
11 6D+1 0.00000 0.00000 0.00000 0.00000
12 6D-1 0.00000 0.00000 0.00000 0.00000
13 6D+2 0.00000 0.00000 0.00000 0.00000
14 6D-2 0.00000 0.00000 0.00000 0.00000
Condensed to atoms (all electrons):
1
1 N 7.000000
Atomic-Atomic Spin Densities.
1
1 N 3.000000
Mulliken charges and spin densities:
1 2
1 N 0.000000 3.000000
Sum of Mulliken charges = 0.00000 3.00000
Mulliken charges and spin densities with hydrogens summed into heavy atoms:
1 2
1 N 0.000000 3.000000
Electronic spatial extent (au): <R**2>= 11.8610
Charge= 0.0000 electrons
Dipole moment (field-independent basis, Debye):
X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000
Quadrupole moment (field-independent basis, Debye-Ang):
XX= -5.3178 YY= -5.3178 ZZ= -5.3178
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Traceless Quadrupole moment (field-independent basis, Debye-Ang):
XX= 0.0000 YY= 0.0000 ZZ= 0.0000
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Octapole moment (field-independent basis, Debye-Ang**2):
XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000
XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000
YYZ= 0.0000 XYZ= 0.0000
Hexadecapole moment (field-independent basis, Debye-Ang**3):
XXXX= -4.3034 YYYY= -4.3034 ZZZZ= -4.3034 XXXY= 0.0000
XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000
ZZZY= 0.0000 XXYY= -1.4345 XXZZ= -1.4345 YYZZ= -1.4345
XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000
N-N= 0.000000000000D+00 E-N=-1.283379681135D+02 KE= 5.438818335516D+01
Symmetry AG KE= 4.877155162659D+01
Symmetry B1G KE= 4.656406044131D-61
Symmetry B2G KE= 4.300068352712D-61
Symmetry B3G KE= 4.018371778675D-61
Symmetry AU KE= 0.000000000000D+00
Symmetry B1U KE= 1.872210576190D+00
Symmetry B2U KE= 1.872210576190D+00
Symmetry B3U KE= 1.872210576190D+00
Orbital energies and kinetic energies (alpha):
1 2
1 (A1G)--O -15.670548 22.156698
2 (A1G)--O -1.148719 2.229078
3 (T1U)--O -0.562370 1.872211
4 (T1U)--O -0.562370 1.872211
5 (T1U)--O -0.562370 1.872211
6 (T1U)--V 0.880431 2.619158
7 (T1U)--V 0.880431 2.619158
8 (T1U)--V 0.880431 2.619158
9 (A1G)--V 0.987567 2.874541
10 (EG)--V 1.946683 2.859500
11 (T2G)--V 1.946683 2.859500
12 (T2G)--V 1.946683 2.859500
13 (T2G)--V 1.946683 2.859500
14 (EG)--V 1.946683 2.859500
Total kinetic energy from orbitals= 6.000481508373D+01
Isotropic Fermi Contact Couplings
Atom a.u. MegaHertz Gauss 10(-4) cm-1
1 N(14) 0.00000 0.00000 0.00000 0.00000
--------------------------------------------------------
Center ---- Spin Dipole Couplings ----
3XX-RR 3YY-RR 3ZZ-RR
--------------------------------------------------------
1 Atom 0.000000 0.000000 0.000000
--------------------------------------------------------
XY XZ YZ
--------------------------------------------------------
1 Atom 0.000000 0.000000 0.000000
--------------------------------------------------------
---------------------------------------------------------------------------------
Anisotropic Spin Dipole Couplings in Principal Axis System
---------------------------------------------------------------------------------
Atom a.u. MegaHertz Gauss 10(-4) cm-1 Axes
Baa 0.0000 0.000 0.000 0.000 0.0000 1.0000 0.0000
1 N(14) Bbb 0.0000 0.000 0.000 0.000 0.0000 0.0000 1.0000
Bcc 0.0000 0.000 0.000 0.000 1.0000 0.0000 0.0000
---------------------------------------------------------------------------------
No NMR shielding tensors so no spin-rotation constants.
Leave Link 601 at Mon Apr 1 13:25:44 2019, MaxMem= 33554432 cpu: 0.2
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l9999.exe)
1\1\GINC-COMPUTE-40-2\SP\ROCCSD(T)-FC\CC-pVDZ\N1(4)\LOOS\01-Apr-2019\0
\\#p ROCCSD(T) cc-pVDZ pop=full gfprint\\G2\\0,4\N\\Version=ES64L-G09R
evD.01\State=4-A1G\HF=-54.3884142\MP2=-54.4614685\MP3=-54.4756748\PUHF
=-54.3884142\PMP2-0=-54.4614685\MP4SDQ=-54.4777382\CCSD=-54.4778022\CC
SD(T)=-54.4784329\RMSD=2.593e-11\PG=OH [O(N1)]\\@
WHAT THE SLIME CONTAINS, THE GLOWING REVEALS
BY THE FLAME'S BRIGHT HUE WHEN YOU IGNITE IT.
-- LEONARD THURNEYSSER, 1531-1596
DESCRIBING HIS FLAME PHOTOLYSIS ANALYTIC METHOD
Job cpu time: 0 days 0 hours 0 minutes 4.1 seconds.
File lengths (MBytes): RWF= 48 Int= 0 D2E= 0 Chk= 1 Scr= 1
Normal termination of Gaussian 09 at Mon Apr 1 13:25:44 2019.

8
G09/N2/N_vqz.inp Normal file
View File

@ -0,0 +1,8 @@
#p ROCCSD(T) cc-pVQZ pop=full gfprint
G2
0,4
N

2421
G09/N2/N_vqz.out Normal file

File diff suppressed because it is too large Load Diff

8
G09/N2/N_vtz.inp Normal file
View File

@ -0,0 +1,8 @@
#p ROCCSD(T) cc-pVTZ pop=full gfprint
G2
0,4
N

1217
G09/N2/N_vtz.out Normal file

File diff suppressed because it is too large Load Diff

10
G09/N2/run_at.sh Executable file
View File

@ -0,0 +1,10 @@
#! /bin/bash
#SBATCH -p xeonv1_mono -c 1 -n 1 -N 1
module load g09/d01
for INP in $( ls N_v*.inp ); do
MOL=${INP%.*}
g09 ${MOL}.inp ${MOL}.out
done

0
G09/N2/slurm-42438.out Normal file
View File

8
G09/O2/O.inp Normal file
View File

@ -0,0 +1,8 @@
#p ROCCSD(T) cc-pVDZ pop=full gfprint
G2
0,3
O

8
G09/O2/O_v5z.inp Normal file
View File

@ -0,0 +1,8 @@
#p ROCCSD(T) cc-pV5Z pop=full gfprint
G2
0,3
O

468
G09/O2/O_v5z.out Normal file
View File

@ -0,0 +1,468 @@
Entering Gaussian System, Link 0=g09
Input=O_v5z.inp
Output=O_v5z.out
Initial command:
/share/apps/gaussian/g09d01/nehalem/g09/l1.exe "/mnt/beegfs/tmpdir/42439/Gau-25340.inp" -scrdir="/mnt/beegfs/tmpdir/42439/"
Entering Link 1 = /share/apps/gaussian/g09d01/nehalem/g09/l1.exe PID= 25341.
Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013,
Gaussian, Inc. All Rights Reserved.
This is part of the Gaussian(R) 09 program. It is based on
the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),
the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
University), and the Gaussian 82(TM) system (copyright 1983,
Carnegie Mellon University). Gaussian is a federally registered
trademark of Gaussian, Inc.
This software contains proprietary and confidential information,
including trade secrets, belonging to Gaussian, Inc.
This software is provided under written license and may be
used, copied, transmitted, or stored only in accord with that
written license.
The following legend is applicable only to US Government
contracts under FAR:
RESTRICTED RIGHTS LEGEND
Use, reproduction and disclosure by the US Government is
subject to restrictions as set forth in subparagraphs (a)
and (c) of the Commercial Computer Software - Restricted
Rights clause in FAR 52.227-19.
Gaussian, Inc.
340 Quinnipiac St., Bldg. 40, Wallingford CT 06492
---------------------------------------------------------------
Warning -- This program may not be used in any manner that
competes with the business of Gaussian, Inc. or will provide
assistance to any competitor of Gaussian, Inc. The licensee
of this program is prohibited from giving any competitor of
Gaussian, Inc. access to this program. By using this program,
the user acknowledges that Gaussian, Inc. is engaged in the
business of creating and licensing software in the field of
computational chemistry and represents and warrants to the
licensee that it is not a competitor of Gaussian, Inc. and that
it will not use this program in any manner prohibited above.
---------------------------------------------------------------
Cite this work as:
Gaussian 09, Revision D.01,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
******************************************
Gaussian 09: ES64L-G09RevD.01 24-Apr-2013
1-Apr-2019
******************************************
-------------------------------------
#p ROCCSD(T) cc-pV5Z pop=full gfprint
-------------------------------------
1/38=1/1;
2/12=2,17=6,18=5,40=1/2;
3/5=16,6=3,11=2,16=1,24=100,25=1,30=1,116=101/1,2,3;
4//1;
5/5=2,38=5/2;
8/5=-1,6=4,9=120000,10=1/1,4;
9/5=7,14=2/13;
6/7=3/1;
99/5=1,9=1/99;
Leave Link 1 at Mon Apr 1 13:29:23 2019, MaxMem= 0 cpu: 0.0
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l101.exe)
--
G2
--
Symbolic Z-matrix:
Charge = 0 Multiplicity = 3
O
NAtoms= 1 NQM= 1 NQMF= 0 NMMI= 0 NMMIF= 0
NMic= 0 NMicF= 0.
Isotopes and Nuclear Properties:
(Nuclear quadrupole moments (NQMom) in fm**2, nuclear magnetic moments (NMagM)
in nuclear magnetons)
Atom 1
IAtWgt= 16
AtmWgt= 15.9949146
NucSpn= 0
AtZEff= 0.0000000
NQMom= 0.0000000
NMagM= 0.0000000
AtZNuc= 8.0000000
Leave Link 101 at Mon Apr 1 13:29:23 2019, MaxMem= 33554432 cpu: 0.0
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l202.exe)
Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 8 0 0.000000 0.000000 0.000000
---------------------------------------------------------------------
Stoichiometry O(3)
Framework group OH[O(O)]
Deg. of freedom 0
Full point group OH NOp 48
Largest Abelian subgroup D2H NOp 8
Largest concise Abelian subgroup C1 NOp 1
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 8 0 0.000000 0.000000 0.000000
---------------------------------------------------------------------
Leave Link 202 at Mon Apr 1 13:29:23 2019, MaxMem= 33554432 cpu: 0.0
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l301.exe)
Standard basis: CC-pV5Z (5D, 7F)
Ernie: Thresh= 0.10000D-02 Tol= 0.10000D-05 Strict=F.
Ernie: 4 primitive shells out of 42 were deleted.
AO basis set (Overlap normalization):
Atom O1 Shell 1 S 9 bf 1 - 1 0.000000000000 0.000000000000 0.000000000000
0.1642000000D+06 0.4491125664D-04
0.2459000000D+05 0.3616241695D-03
0.5592000000D+04 0.1883394278D-02
0.1582000000D+04 0.7883170888D-02
0.5161000000D+03 0.2799225967D-01
0.1872000000D+03 0.8371422459D-01
0.7393000000D+02 0.2063506539D+00
0.3122000000D+02 0.3768974880D+00
0.1381000000D+02 0.4149014015D+00
Atom O1 Shell 2 S 7 bf 2 - 2 0.000000000000 0.000000000000 0.000000000000
0.1582000000D+04 -0.4284533954D-04
0.5161000000D+03 -0.2714396795D-03
0.1872000000D+03 -0.2950260819D-02
0.7393000000D+02 -0.1633497889D-01
0.3122000000D+02 -0.8525269497D-01
0.1381000000D+02 -0.2939748971D+00
0.6256000000D+01 -0.6542666235D+00
Atom O1 Shell 3 S 1 bf 3 - 3 0.000000000000 0.000000000000 0.000000000000
0.2776000000D+01 0.1000000000D+01
Atom O1 Shell 4 S 1 bf 4 - 4 0.000000000000 0.000000000000 0.000000000000
0.1138000000D+01 0.1000000000D+01
Atom O1 Shell 5 S 1 bf 5 - 5 0.000000000000 0.000000000000 0.000000000000
0.4600000000D+00 0.1000000000D+01
Atom O1 Shell 6 S 1 bf 6 - 6 0.000000000000 0.000000000000 0.000000000000
0.1829000000D+00 0.1000000000D+01
Atom O1 Shell 7 P 4 bf 7 - 9 0.000000000000 0.000000000000 0.000000000000
0.1955000000D+03 0.6274451512D-02
0.4616000000D+02 0.5049634833D-01
0.1458000000D+02 0.2389349411D+00
0.5296000000D+01 0.7889610158D+00
Atom O1 Shell 8 P 1 bf 10 - 12 0.000000000000 0.000000000000 0.000000000000
0.2094000000D+01 0.1000000000D+01
Atom O1 Shell 9 P 1 bf 13 - 15 0.000000000000 0.000000000000 0.000000000000
0.8471000000D+00 0.1000000000D+01
Atom O1 Shell 10 P 1 bf 16 - 18 0.000000000000 0.000000000000 0.000000000000
0.3368000000D+00 0.1000000000D+01
Atom O1 Shell 11 P 1 bf 19 - 21 0.000000000000 0.000000000000 0.000000000000
0.1285000000D+00 0.1000000000D+01
Atom O1 Shell 12 D 1 bf 22 - 26 0.000000000000 0.000000000000 0.000000000000
0.5879000000D+01 0.1000000000D+01
Atom O1 Shell 13 D 1 bf 27 - 31 0.000000000000 0.000000000000 0.000000000000
0.2307000000D+01 0.1000000000D+01
Atom O1 Shell 14 D 1 bf 32 - 36 0.000000000000 0.000000000000 0.000000000000
0.9050000000D+00 0.1000000000D+01
Atom O1 Shell 15 D 1 bf 37 - 41 0.000000000000 0.000000000000 0.000000000000
0.3550000000D+00 0.1000000000D+01
Atom O1 Shell 16 F 1 bf 42 - 48 0.000000000000 0.000000000000 0.000000000000
0.4016000000D+01 0.1000000000D+01
Atom O1 Shell 17 F 1 bf 49 - 55 0.000000000000 0.000000000000 0.000000000000
0.1554000000D+01 0.1000000000D+01
Atom O1 Shell 18 F 1 bf 56 - 62 0.000000000000 0.000000000000 0.000000000000
0.6010000000D+00 0.1000000000D+01
Atom O1 Shell 19 G 1 bf 63 - 71 0.000000000000 0.000000000000 0.000000000000
0.3350000000D+01 0.1000000000D+01
Atom O1 Shell 20 G 1 bf 72 - 80 0.000000000000 0.000000000000 0.000000000000
0.1189000000D+01 0.1000000000D+01
Atom O1 Shell 21 H 1 bf 81 - 91 0.000000000000 0.000000000000 0.000000000000
0.2319000000D+01 0.1000000000D+01
There are 30 symmetry adapted cartesian basis functions of AG symmetry.
There are 10 symmetry adapted cartesian basis functions of B1G symmetry.
There are 10 symmetry adapted cartesian basis functions of B2G symmetry.
There are 10 symmetry adapted cartesian basis functions of B3G symmetry.
There are 6 symmetry adapted cartesian basis functions of AU symmetry.
There are 20 symmetry adapted cartesian basis functions of B1U symmetry.
There are 20 symmetry adapted cartesian basis functions of B2U symmetry.
There are 20 symmetry adapted cartesian basis functions of B3U symmetry.
There are 20 symmetry adapted basis functions of AG symmetry.
There are 8 symmetry adapted basis functions of B1G symmetry.
There are 8 symmetry adapted basis functions of B2G symmetry.
There are 8 symmetry adapted basis functions of B3G symmetry.
There are 5 symmetry adapted basis functions of AU symmetry.
There are 14 symmetry adapted basis functions of B1U symmetry.
There are 14 symmetry adapted basis functions of B2U symmetry.
There are 14 symmetry adapted basis functions of B3U symmetry.
91 basis functions, 149 primitive gaussians, 126 cartesian basis functions
5 alpha electrons 3 beta electrons
nuclear repulsion energy 0.0000000000 Hartrees.
IExCor= 0 DFT=F Ex=HF Corr=None ExCW=0 ScaHFX= 1.000000
ScaDFX= 1.000000 1.000000 1.000000 1.000000 ScalE2= 1.000000 1.000000
IRadAn= 0 IRanWt= -1 IRanGd= 0 ICorTp=0 IEmpDi= 4
NAtoms= 1 NActive= 1 NUniq= 1 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
Leave Link 301 at Mon Apr 1 13:29:23 2019, MaxMem= 33554432 cpu: 0.1
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l302.exe)
NPDir=0 NMtPBC= 1 NCelOv= 1 NCel= 1 NClECP= 1 NCelD= 1
NCelK= 1 NCelE2= 1 NClLst= 1 CellRange= 0.0.
One-electron integrals computed using PRISM.
NBasis= 91 RedAO= T EigKep= 2.19D-02 NBF= 20 8 8 8 5 14 14 14
NBsUse= 91 1.00D-06 EigRej= -1.00D+00 NBFU= 20 8 8 8 5 14 14 14
Leave Link 302 at Mon Apr 1 13:29:23 2019, MaxMem= 33554432 cpu: 0.2
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l303.exe)
DipDrv: MaxL=1.
Leave Link 303 at Mon Apr 1 13:29:24 2019, MaxMem= 33554432 cpu: 0.1
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l401.exe)
ExpMin= 1.29D-01 ExpMax= 1.64D+05 ExpMxC= 5.16D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00
Harris functional with IExCor= 205 and IRadAn= 4 diagonalized for initial guess.
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Harris En= -74.6274439972077
JPrj=0 DoOrth=F DoCkMO=F.
Initial guess orbital symmetries:
Occupied (A1G) (A1G) (T1U) (T1U) (T1U)
Virtual (T1U) (T1U) (T1U) (A1G) (EG) (T2G) (T2G) (T2G)
(EG) (T1U) (T1U) (T1U) (?A) (?A) (A2U) (?A) (?A)
(?A) (?A) (A1G) (T2G) (EG) (T2G) (T2G) (EG) (T1U)
(T1U) (T1U) (A1G) (EG) (EG) (T2G) (T2G) (T2G)
(T1G) (T1G) (T1G) (?A) (?A) (?A) (A2U) (?A) (?A)
(?A) (T2G) (T2G) (T2G) (EG) (EG) (A1G) (T1U) (T1U)
(T1U) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (EU)
(EU) (T1U) (T1U) (T1U) (A1G) (EG) (EG) (T2G) (T2G)
(T2G) (T1G) (T1G) (T1G) (A2U) (?A) (?A) (?A) (?A)
(?A) (?A) (EG) (EG) (T2G) (T2G) (T2G) (A1G)
Leave Link 401 at Mon Apr 1 13:29:24 2019, MaxMem= 33554432 cpu: 0.5
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l502.exe)
Restricted open shell SCF:
Using DIIS extrapolation, IDIIS= 1040.
Integral symmetry usage will be decided dynamically.
Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=25331683.
IVT= 68819 IEndB= 68819 NGot= 33554432 MDV= 31245575
LenX= 31245575 LenY= 31229258
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
FoFCou: FMM=F IPFlag= 0 FMFlag= 0 FMFlg1= 0
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
wScrn= 0.000000 ICntrl= 600 IOpCl= 0 I1Cent= 0 NGrid= 0
NMat0= 1 NMatS0= 4186 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Cycle 1 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-04
Density has only Abelian symmetry.
E= -74.7932268642570
DIIS: error= 8.21D-02 at cycle 1 NSaved= 1.
NSaved= 1 IEnMin= 1 EnMin= -74.7932268642570 IErMin= 1 ErrMin= 8.21D-02
ErrMax= 8.21D-02 0.00D+00 EMaxC= 1.00D-01 BMatC= 1.17D-01 BMatP= 1.17D-01
IDIUse=3 WtCom= 1.79D-01 WtEn= 8.21D-01
Coeff-Com: 0.100D+01
Coeff-En: 0.100D+01
Coeff: 0.100D+01
Gap= 0.563 Goal= None Shift= 0.000
GapD= 0.563 DampG=2.000 DampE=0.500 DampFc=1.0000 IDamp=-1.
RMSDP=1.34D-03 MaxDP=4.02D-02 OVMax= 9.93D-02
Cycle 2 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
E= -74.8092728322061 Delta-E= -0.016045967949 Rises=F Damp=F
DIIS: error= 1.75D-02 at cycle 2 NSaved= 2.
NSaved= 2 IEnMin= 2 EnMin= -74.8092728322061 IErMin= 2 ErrMin= 1.75D-02
ErrMax= 1.75D-02 0.00D+00 EMaxC= 1.00D-01 BMatC= 4.37D-03 BMatP= 1.17D-01
IDIUse=3 WtCom= 8.25D-01 WtEn= 1.75D-01
Coeff-Com: 0.317D-01 0.968D+00
Coeff-En: 0.000D+00 0.100D+01
Coeff: 0.261D-01 0.974D+00
Gap= 0.508 Goal= None Shift= 0.000
RMSDP=8.12D-04 MaxDP=2.81D-02 DE=-1.60D-02 OVMax= 5.37D-02
Cycle 3 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
E= -74.8110916159133 Delta-E= -0.001818783707 Rises=F Damp=F
DIIS: error= 1.07D-02 at cycle 3 NSaved= 3.
NSaved= 3 IEnMin= 3 EnMin= -74.8110916159133 IErMin= 3 ErrMin= 1.07D-02
ErrMax= 1.07D-02 0.00D+00 EMaxC= 1.00D-01 BMatC= 1.60D-03 BMatP= 4.37D-03
IDIUse=3 WtCom= 8.93D-01 WtEn= 1.07D-01
Coeff-Com: -0.233D-01 0.374D+00 0.649D+00
Coeff-En: 0.000D+00 0.323D+00 0.677D+00
Coeff: -0.208D-01 0.369D+00 0.652D+00
Gap= 0.528 Goal= None Shift= 0.000
RMSDP=3.19D-04 MaxDP=1.12D-02 DE=-1.82D-03 OVMax= 2.19D-02
Cycle 4 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
E= -74.8122278009437 Delta-E= -0.001136185030 Rises=F Damp=F
DIIS: error= 6.22D-04 at cycle 4 NSaved= 4.
NSaved= 4 IEnMin= 4 EnMin= -74.8122278009437 IErMin= 4 ErrMin= 6.22D-04
ErrMax= 6.22D-04 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.15D-06 BMatP= 1.60D-03
IDIUse=3 WtCom= 9.94D-01 WtEn= 6.22D-03
Coeff-Com: 0.540D-02-0.971D-01-0.154D+00 0.125D+01
Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.100D+01
Coeff: 0.537D-02-0.965D-01-0.153D+00 0.124D+01
Gap= 0.528 Goal= None Shift= 0.000
RMSDP=1.01D-05 MaxDP=3.39D-04 DE=-1.14D-03 OVMax= 8.61D-04
Cycle 5 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
E= -74.8122303248030 Delta-E= -0.000002523859 Rises=F Damp=F
DIIS: error= 6.87D-05 at cycle 5 NSaved= 5.
NSaved= 5 IEnMin= 5 EnMin= -74.8122303248030 IErMin= 5 ErrMin= 6.87D-05
ErrMax= 6.87D-05 0.00D+00 EMaxC= 1.00D-01 BMatC= 7.13D-08 BMatP= 2.15D-06
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: -0.510D-03 0.118D-01 0.135D-01-0.274D+00 0.125D+01
Coeff: -0.510D-03 0.118D-01 0.135D-01-0.274D+00 0.125D+01
Gap= 0.528 Goal= None Shift= 0.000
RMSDP=2.31D-06 MaxDP=6.72D-05 DE=-2.52D-06 OVMax= 1.71D-04
Cycle 6 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
E= -74.8122304055085 Delta-E= -0.000000080705 Rises=F Damp=F
DIIS: error= 6.44D-06 at cycle 6 NSaved= 6.
NSaved= 6 IEnMin= 6 EnMin= -74.8122304055085 IErMin= 6 ErrMin= 6.44D-06
ErrMax= 6.44D-06 0.00D+00 EMaxC= 1.00D-01 BMatC= 1.04D-09 BMatP= 7.13D-08
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: -0.195D-04 0.424D-03-0.426D-05-0.773D-02 0.277D-01 0.980D+00
Coeff: -0.195D-04 0.424D-03-0.426D-05-0.773D-02 0.277D-01 0.980D+00
Gap= 0.528 Goal= None Shift= 0.000
RMSDP=5.56D-07 MaxDP=1.93D-05 DE=-8.07D-08 OVMax= 2.81D-05
Cycle 7 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
E= -74.8122304069605 Delta-E= -0.000000001452 Rises=F Damp=F
DIIS: error= 1.39D-06 at cycle 7 NSaved= 7.
NSaved= 7 IEnMin= 7 EnMin= -74.8122304069605 IErMin= 7 ErrMin= 1.39D-06
ErrMax= 1.39D-06 0.00D+00 EMaxC= 1.00D-01 BMatC= 5.76D-11 BMatP= 1.04D-09
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: -0.617D-06-0.826D-04 0.462D-04 0.559D-02-0.547D-01 0.698D-01
Coeff-Com: 0.979D+00
Coeff: -0.617D-06-0.826D-04 0.462D-04 0.559D-02-0.547D-01 0.698D-01
Coeff: 0.979D+00
Gap= 0.528 Goal= None Shift= 0.000
RMSDP=1.21D-07 MaxDP=4.33D-06 DE=-1.45D-09 OVMax= 6.28D-06
Cycle 8 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
E= -74.8122304070450 Delta-E= -0.000000000084 Rises=F Damp=F
DIIS: error= 1.07D-07 at cycle 8 NSaved= 8.
NSaved= 8 IEnMin= 8 EnMin= -74.8122304070450 IErMin= 8 ErrMin= 1.07D-07
ErrMax= 1.07D-07 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.23D-13 BMatP= 5.76D-11
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: 0.618D-06-0.878D-05-0.209D-04 0.231D-04 0.128D-02-0.108D-01
Coeff-Com: -0.699D-01 0.108D+01
Coeff: 0.618D-06-0.878D-05-0.209D-04 0.231D-04 0.128D-02-0.108D-01
Coeff: -0.699D-01 0.108D+01
Gap= 0.528 Goal= None Shift= 0.000
RMSDP=8.36D-09 MaxDP=3.38D-07 DE=-8.45D-11 OVMax= 4.37D-07
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
SCF Done: E(ROHF) = -74.8122304070 A.U. after 8 cycles
NFock= 8 Conv=0.84D-08 -V/T= 2.0000
<Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 1.0000 <S**2>= 2.0000 S= 1.0000
<L.S>= 0.000000000000E+00
KE= 7.481253978049D+01 PE=-1.780706318499D+02 EE= 2.844586166236D+01
Annihilation of the first spin contaminant:
S**2 before annihilation 2.0000, after 2.0000
Leave Link 502 at Mon Apr 1 13:29:31 2019, MaxMem= 33554432 cpu: 6.4
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l801.exe)
Windowed orbitals will be sorted by symmetry type.
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
GenMOA: NOpAll= 48 NOp2=8 NOpUse= 8 JSym2X=1
FoFJK: IHMeth= 1 ICntrl= 0 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F
IRaf= 0 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 1.
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
wScrn= 0.000000 ICntrl= 0 IOpCl= 1 I1Cent= 0 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
<Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 1.0000 <S**2>= 2.0000 S= 1.0000
ExpMin= 1.29D-01 ExpMax= 1.64D+05 ExpMxC= 5.16D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14
ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
DSYEVD-2 returned Info= 4323 IAlg= 4 N= 91 NDim= 91 NE2= 367947 trying DSYEV.
Largest valence mixing into a core orbital is 1.04D-04
Largest core mixing into a valence orbital is 1.25D-05
Largest valence mixing into a core orbital is 1.47D-04
Largest core mixing into a valence orbital is 5.50D-05
Range of M.O.s used for correlation: 2 91
NBasis= 91 NAE= 5 NBE= 3 NFC= 1 NFV= 0
NROrb= 90 NOA= 4 NOB= 2 NVA= 86 NVB= 88
Singles contribution to E2= -0.4410541637D-02
Leave Link 801 at Mon Apr 1 13:29:35 2019, MaxMem= 33554432 cpu: 4.1
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l804.exe)
Open-shell transformation, MDV= 33554432 ITran=4 ISComp=2.
Semi-Direct transformation.
ModeAB= 2 MOrb= 4 LenV= 33024702
LASXX= 177067 LTotXX= 177067 LenRXX= 177067
LTotAB= 184967 MaxLAS= 2880360 LenRXY= 2880360
NonZer= 3107160 LenScr= 5242880 LnRSAI= 0
LnScr1= 0 LExtra= 0 Total= 8300307
MaxDsk= -1 SrtSym= F ITran= 4
DoSDTr: NPSUse= 1
JobTyp=1 Pass 1: I= 1 to 4.
(rs|ai) integrals will be sorted in core.
Complete sort for first half transformation.
First half transformation complete.
Complete sort for second half transformation.
Second half transformation complete.
ModeAB= 2 MOrb= 2 LenV= 33024702
LASXX= 90004 LTotXX= 90004 LenRXX= 1440180
LTotAB= 85763 MaxLAS= 1440180 LenRXY= 85763
NonZer= 1553580 LenScr= 2883584 LnRSAI= 0
LnScr1= 0 LExtra= 0 Total= 4409527
MaxDsk= -1 SrtSym= F ITran= 4
DoSDTr: NPSUse= 1
JobTyp=2 Pass 1: I= 1 to 2.
(rs|ai) integrals will be sorted in core.
Complete sort for first half transformation.
First half transformation complete.
Complete sort for second half transformation.
Second half transformation complete.
Spin components of T(2) and E(2):
alpha-alpha T2 = 0.6357685583D-02 E2= -0.3407079830D-01
alpha-beta T2 = 0.2328053074D-01 E2= -0.1272749250D+00
beta-beta T2 = 0.1016146745D-02 E2= -0.4807849648D-02
ANorm= 0.1016057088D+01
E2 = -0.1705641145D+00 EUMP2 = -0.74982794521585D+02
(S**2,0)= 0.20000D+01 (S**2,1)= 0.20000D+01
E(PUHF)= -0.74812230407D+02 E(PMP2)= -0.74982794522D+02
Leave Link 804 at Mon Apr 1 13:29:52 2019, MaxMem= 33554432 cpu: 17.0

8
G09/O2/O_vdz.inp Normal file
View File

@ -0,0 +1,8 @@
#p ROCCSD(T) cc-pVDZ pop=full gfprint
G2
0,3
O

8
G09/O2/O_vqz.inp Normal file
View File

@ -0,0 +1,8 @@
#p ROCCSD(T) cc-pVQZ pop=full gfprint
G2
0,3
O

8
G09/O2/O_vtz.inp Normal file
View File

@ -0,0 +1,8 @@
#p ROCCSD(T) cc-pVTZ pop=full gfprint
G2
0,3
O

10
G09/O2/run_at.sh Executable file
View File

@ -0,0 +1,10 @@
#! /bin/bash
#SBATCH -p xeonv1_mono -c 1 -n 1 -N 1
module load g09/d01
for INP in $( ls O_v*.inp ); do
MOL=${INP%.*}
g09 ${MOL}.inp ${MOL}.out
done

0
G09/O2/slurm-42439.out Normal file
View File