diff --git a/Manuscript/G2-srDFT.tex b/Manuscript/G2-srDFT.tex index b7e378d..5fbb346 100644 --- a/Manuscript/G2-srDFT.tex +++ b/Manuscript/G2-srDFT.tex @@ -172,6 +172,10 @@ \newcommand{\n}[2]{n_{#1}^{#2}} \newcommand{\E}[2]{E_{#1}^{#2}} \newcommand{\bE}[2]{\Bar{E}_{#1}^{#2}} +\newcommand{\bEc}[1]{\Bar{E}_\text{c}^{#1}} +\newcommand{\e}[2]{\varepsilon_{#1}^{#2}} +\newcommand{\be}[2]{\Bar{\varepsilon}_{#1}^{#2}} +\newcommand{\bec}[1]{\Bar{e}^{#1}} \newcommand{\wf}[2]{\Psi_{#1}^{#2}} \newcommand{\W}[2]{W_{#1}^{#2}} \newcommand{\w}[2]{w_{#1}^{#2}} @@ -504,10 +508,10 @@ and therefore %================================================================= \label{sec:ecmd} -In Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18} the authors proposed to approximate the complementary functional $\bE{}{\Bas}[\n{}{}]$ using a specific class of SR-DFT energy functionals, namely the ECMD whose general definition is \cite{TouGorSav-TCA-05} +Following Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, we propose here to approximate $\bE{}{\Bas}[\n{}{}]$ using a specific class of SR-DFT energy functionals known as ECMD whose general definition reads \cite{TouGorSav-TCA-05} \begin{multline} \label{eq:ec_md_mu} - \ecmubis = \min_{\wf{}{} \to \n{}{}(\br{})} \mel*{\Psi}{\hT + \hWee{}}{\wf{}{}} + \bE{}{\sr}[\n{}{}(\br{}),\rsmu{}{}] = \min_{\wf{}{} \to \n{}{}(\br{})} \mel*{\Psi}{\hT + \hWee{}}{\wf{}{}} \\ - \mel*{\wf{}{\rsmu{}{}}[\n{}{}(\br{})]}{\hT + \hWee{}}{\wf{}{\rsmu{}{}}[\n{}{}(\br{})]}, \end{multline} @@ -516,25 +520,25 @@ where $\wf{}{\rsmu{}{}}[\n{}{}(\br{})]$ is defined by the constrained minimizati \label{eq:argmin} \wf{}{\rsmu{}{}}[\n{}{}(\br{})] = \arg \min_{\wf{}{} \to \n{}{}(\br{})} \mel*{\wf{}{}}{\hT + \hWee{\lr,\rsmu{}{}}}{\wf{}{}}, \end{equation} -and +with \begin{equation} \label{eq:weemu} - \hWee{\lr,\rsmu{}{}} = \frac{1}{2} \iint \w{}{\lr,\rsmu{}{}}(r_{12}) \hn{}{(2)}(\br{1},\br{2}) \dbr{1} \dbr{2}, + \hWee{\lr,\rsmu{}{}} = \sum_{i