theory OK

This commit is contained in:
Pierre-Francois Loos 2019-04-14 16:02:30 +02:00
parent 7eb33ab90d
commit 11579a0d3b

View File

@ -266,7 +266,7 @@ Because Eq.~\eqref{eq:int_eq_wee} can be rewritten as
\end{equation}
it intuitively motivates $\W{\Bas}{}(\br{1},\br{2})$ as a potential candidate for an effective interaction.
Note that the divergence condition of $\W{\Bas}{}(\br{1},\br{2})$ in Eq.~\eqref{eq:def_weebasis} ensures that one-electron systems are free of correction as the present approach must only correct the basis set incompleteness error originates from the e-e cusp.
A one-electron correction is currently under active development.
A similar correction for the electron-nucleus cusp is currently under active development.
As already discussed in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, $\W{\Bas}{}(\br{1},\br{2})$ is symmetric, \textit{a priori} non translational, nor rotational invariant if $\Bas$ does not have such symmetries.
A key quantity is the value of the effective interaction at coalescence of opposite-spin electrons
@ -281,7 +281,7 @@ Thanks to its definition one can show that (see Appendix B of Ref.~\onlinecite{G
\label{eq:lim_W}
\lim_{\Bas \to \infty}\W{\Bas}{}(\br{1},\br{2}) = r_{12}^{-1}\
\end{equation}
for any $(\br{1},\br{2})$ such that $\n{2}{}(\br{1},\br{2}) \ne 0$ and for any $\wf{}{\Bas}$.%, which guarantees a physically satisfying limit.
for any $(\br{1},\br{2})$ such that $\n{2}{}(\br{1},\br{2}) \ne 0$.% and for any $\wf{}{\Bas}$, which guarantees a physically satisfying limit.
%An important point here is that, with the present definition of $\W{\Bas}{}(\br{1},\br{2})$, one can quantify the effect of the incompleteness of $\Bas$ on the Coulomb operator itself as a removal of the divergence of the two-electron interaction near the electron coalescence.
%As shown in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, choosing a HF wave function as $\wf{}{\Bas}$ to define the effective interaction $\W{\Bas}{}(\br{1},\br{2})$ already provides a quantitative representation of the incompleteness of $\Bas$ for weakly correlated systems.
@ -354,7 +354,7 @@ The choice of ECMD in the present scheme is motivated by the analogy between the
Indeed, provided that $\w{}{\lr,\rsmu{\Bas}{}}(\br{1},\br{2}) = \W{\Bas}{}(\br{1},\br{2})$, then $\wf{}{\rsmu{\Bas}{}}$ and $\wf{}{\Bas}$ coincide.
%The ECMD functionals differ from the standard RS-DFT correlation functional by the fact that the reference is not the KS Slater determinant but a multi-determinantal wave function.
%This makes them particularly well adapted to the present context where one aims at correcting a general WFT method.
Therefore, we approximate $\bE{}{\Bas}[\n{}{}]$ by the ECMD functionals evaluated with the range separation function $\rsmu{\Bas}{}(\br{})$.
Therefore, we approximate $\bE{}{\Bas}[\n{}{}]$ by the ECMD functionals evaluated with the range-separation function $\rsmu{\Bas}{}(\br{})$.
The LDA version of the ECMD complementary functional is defined as
\begin{equation}
\label{eq:def_lda_tot}
@ -363,7 +363,12 @@ The LDA version of the ECMD complementary functional is defined as
where $\be{\LDA}{\sr}(\n{}{},\rsmu{}{})$ is the short-range reduced (i.e.~per electron) correlation energy of the uniform electron gas (UEG) \cite{LooGil-WIRES-16} parametrized in Ref.~\onlinecite{PazMorGorBac-PRB-06}.
The short-range LDA correlation functional relies on the transferability of the physics of the UEG which is certainly valid for large $\mu$ but is known to over correlate for small $\mu$.
In order to correct such a defect, we propose here a new ECMD functional inspired by the recent functional proposed by some of the authors \cite{FerGinTou-JCP-18} which interpolates between the usual PBE correlation functional $\e{\PBE}{}(\n{}{},\nabla \n{}{})$ for $\rsmu{}{}=0$ and the exact large-$\rsmu{}{}$ behavior, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGorBac-PRB-06} yielding
In order to correct such a defect, we propose here a new PBE ECMD functional
\begin{equation}
\label{eq:def_pbe_tot}
\bE{\PBE}{\sr}[\n{}{}(\br{}),\rsmu{}{}(\br{})] = \int \be{\PBE}{\sr}\big(\n{}{}(\br{}),\nabla \n{}{}(\br{}),\rsmu{}{}(\br{})\big) \n{}{}(\br{}) \dbr{}
\end{equation}
inspired by the recent functional proposed by some of the authors \cite{FerGinTou-JCP-18} which interpolates between the usual PBE correlation functional $\e{\PBE}{}(\n{}{},\nabla \n{}{})$ for $\rsmu{}{}=0$ and the exact large-$\rsmu{}{}$ behavior, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGorBac-PRB-06} yielding
\begin{subequations}
\begin{gather}
\label{eq:epsilon_cmdpbe}
@ -375,11 +380,7 @@ In order to correct such a defect, we propose here a new ECMD functional inspire
\end{subequations}
The difference between the ECMD PBE functional defined in Ref.~\onlinecite{FerGinTou-JCP-18} and the present expression \eqref{eq:epsilon_cmdpbe} is that we approximate here the \textit{exact} ground-state on-top pair density by its UEG version, i.e.~$\n{2}{}(\br{}) \approx \n{2}{\UEG}(\n{}{}(\br{})) = \n{}{}(\br{})^2 g_0(\n{}{}(\br{}))$, where $g_0(\n{}{})$ is the UEG correlation factor whose parametrization can be found in Eq.~(46) of Ref.~\onlinecite{GorSav-PRA-06}.
This represents a major computational saving without loss of performance as we eschew the computation of $\n{2}{}(\br{})$.
Therefore, the ECMD PBE complementary functional reads
\begin{equation}
\label{eq:def_pbe_tot}
\bE{\PBE}{\sr}[\n{}{}(\br{}),\rsmu{}{}(\br{})] = \int \be{\PBE}{\sr}\big(\n{}{}(\br{}),\nabla \n{}{}(\br{}),\rsmu{}{}(\br{})\big) \n{}{}(\br{}) \dbr{}.
\end{equation}
Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\modZ}{}]$ is then equal to $\bE{\LDA}{\sr}[\n{\modZ}{}(\br{}),\rsmu{\Bas}{}(\br{})]$ or $\bE{\PBE}{\sr}[\n{\modZ}{}(\br{}),\rsmu{\Bas}{}(\br{})]$ where $\rsmu{\Bas}{}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}.
%=================================================================