theory OK
This commit is contained in:
parent
7eb33ab90d
commit
11579a0d3b
@ -266,7 +266,7 @@ Because Eq.~\eqref{eq:int_eq_wee} can be rewritten as
|
|||||||
\end{equation}
|
\end{equation}
|
||||||
it intuitively motivates $\W{\Bas}{}(\br{1},\br{2})$ as a potential candidate for an effective interaction.
|
it intuitively motivates $\W{\Bas}{}(\br{1},\br{2})$ as a potential candidate for an effective interaction.
|
||||||
Note that the divergence condition of $\W{\Bas}{}(\br{1},\br{2})$ in Eq.~\eqref{eq:def_weebasis} ensures that one-electron systems are free of correction as the present approach must only correct the basis set incompleteness error originates from the e-e cusp.
|
Note that the divergence condition of $\W{\Bas}{}(\br{1},\br{2})$ in Eq.~\eqref{eq:def_weebasis} ensures that one-electron systems are free of correction as the present approach must only correct the basis set incompleteness error originates from the e-e cusp.
|
||||||
A one-electron correction is currently under active development.
|
A similar correction for the electron-nucleus cusp is currently under active development.
|
||||||
|
|
||||||
As already discussed in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, $\W{\Bas}{}(\br{1},\br{2})$ is symmetric, \textit{a priori} non translational, nor rotational invariant if $\Bas$ does not have such symmetries.
|
As already discussed in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, $\W{\Bas}{}(\br{1},\br{2})$ is symmetric, \textit{a priori} non translational, nor rotational invariant if $\Bas$ does not have such symmetries.
|
||||||
A key quantity is the value of the effective interaction at coalescence of opposite-spin electrons
|
A key quantity is the value of the effective interaction at coalescence of opposite-spin electrons
|
||||||
@ -281,7 +281,7 @@ Thanks to its definition one can show that (see Appendix B of Ref.~\onlinecite{G
|
|||||||
\label{eq:lim_W}
|
\label{eq:lim_W}
|
||||||
\lim_{\Bas \to \infty}\W{\Bas}{}(\br{1},\br{2}) = r_{12}^{-1}\
|
\lim_{\Bas \to \infty}\W{\Bas}{}(\br{1},\br{2}) = r_{12}^{-1}\
|
||||||
\end{equation}
|
\end{equation}
|
||||||
for any $(\br{1},\br{2})$ such that $\n{2}{}(\br{1},\br{2}) \ne 0$ and for any $\wf{}{\Bas}$.%, which guarantees a physically satisfying limit.
|
for any $(\br{1},\br{2})$ such that $\n{2}{}(\br{1},\br{2}) \ne 0$.% and for any $\wf{}{\Bas}$, which guarantees a physically satisfying limit.
|
||||||
%An important point here is that, with the present definition of $\W{\Bas}{}(\br{1},\br{2})$, one can quantify the effect of the incompleteness of $\Bas$ on the Coulomb operator itself as a removal of the divergence of the two-electron interaction near the electron coalescence.
|
%An important point here is that, with the present definition of $\W{\Bas}{}(\br{1},\br{2})$, one can quantify the effect of the incompleteness of $\Bas$ on the Coulomb operator itself as a removal of the divergence of the two-electron interaction near the electron coalescence.
|
||||||
%As shown in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, choosing a HF wave function as $\wf{}{\Bas}$ to define the effective interaction $\W{\Bas}{}(\br{1},\br{2})$ already provides a quantitative representation of the incompleteness of $\Bas$ for weakly correlated systems.
|
%As shown in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, choosing a HF wave function as $\wf{}{\Bas}$ to define the effective interaction $\W{\Bas}{}(\br{1},\br{2})$ already provides a quantitative representation of the incompleteness of $\Bas$ for weakly correlated systems.
|
||||||
|
|
||||||
@ -354,7 +354,7 @@ The choice of ECMD in the present scheme is motivated by the analogy between the
|
|||||||
Indeed, provided that $\w{}{\lr,\rsmu{\Bas}{}}(\br{1},\br{2}) = \W{\Bas}{}(\br{1},\br{2})$, then $\wf{}{\rsmu{\Bas}{}}$ and $\wf{}{\Bas}$ coincide.
|
Indeed, provided that $\w{}{\lr,\rsmu{\Bas}{}}(\br{1},\br{2}) = \W{\Bas}{}(\br{1},\br{2})$, then $\wf{}{\rsmu{\Bas}{}}$ and $\wf{}{\Bas}$ coincide.
|
||||||
%The ECMD functionals differ from the standard RS-DFT correlation functional by the fact that the reference is not the KS Slater determinant but a multi-determinantal wave function.
|
%The ECMD functionals differ from the standard RS-DFT correlation functional by the fact that the reference is not the KS Slater determinant but a multi-determinantal wave function.
|
||||||
%This makes them particularly well adapted to the present context where one aims at correcting a general WFT method.
|
%This makes them particularly well adapted to the present context where one aims at correcting a general WFT method.
|
||||||
Therefore, we approximate $\bE{}{\Bas}[\n{}{}]$ by the ECMD functionals evaluated with the range separation function $\rsmu{\Bas}{}(\br{})$.
|
Therefore, we approximate $\bE{}{\Bas}[\n{}{}]$ by the ECMD functionals evaluated with the range-separation function $\rsmu{\Bas}{}(\br{})$.
|
||||||
The LDA version of the ECMD complementary functional is defined as
|
The LDA version of the ECMD complementary functional is defined as
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:def_lda_tot}
|
\label{eq:def_lda_tot}
|
||||||
@ -363,7 +363,12 @@ The LDA version of the ECMD complementary functional is defined as
|
|||||||
where $\be{\LDA}{\sr}(\n{}{},\rsmu{}{})$ is the short-range reduced (i.e.~per electron) correlation energy of the uniform electron gas (UEG) \cite{LooGil-WIRES-16} parametrized in Ref.~\onlinecite{PazMorGorBac-PRB-06}.
|
where $\be{\LDA}{\sr}(\n{}{},\rsmu{}{})$ is the short-range reduced (i.e.~per electron) correlation energy of the uniform electron gas (UEG) \cite{LooGil-WIRES-16} parametrized in Ref.~\onlinecite{PazMorGorBac-PRB-06}.
|
||||||
|
|
||||||
The short-range LDA correlation functional relies on the transferability of the physics of the UEG which is certainly valid for large $\mu$ but is known to over correlate for small $\mu$.
|
The short-range LDA correlation functional relies on the transferability of the physics of the UEG which is certainly valid for large $\mu$ but is known to over correlate for small $\mu$.
|
||||||
In order to correct such a defect, we propose here a new ECMD functional inspired by the recent functional proposed by some of the authors \cite{FerGinTou-JCP-18} which interpolates between the usual PBE correlation functional $\e{\PBE}{}(\n{}{},\nabla \n{}{})$ for $\rsmu{}{}=0$ and the exact large-$\rsmu{}{}$ behavior, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGorBac-PRB-06} yielding
|
In order to correct such a defect, we propose here a new PBE ECMD functional
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:def_pbe_tot}
|
||||||
|
\bE{\PBE}{\sr}[\n{}{}(\br{}),\rsmu{}{}(\br{})] = \int \be{\PBE}{\sr}\big(\n{}{}(\br{}),\nabla \n{}{}(\br{}),\rsmu{}{}(\br{})\big) \n{}{}(\br{}) \dbr{}
|
||||||
|
\end{equation}
|
||||||
|
inspired by the recent functional proposed by some of the authors \cite{FerGinTou-JCP-18} which interpolates between the usual PBE correlation functional $\e{\PBE}{}(\n{}{},\nabla \n{}{})$ for $\rsmu{}{}=0$ and the exact large-$\rsmu{}{}$ behavior, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGorBac-PRB-06} yielding
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
\begin{gather}
|
\begin{gather}
|
||||||
\label{eq:epsilon_cmdpbe}
|
\label{eq:epsilon_cmdpbe}
|
||||||
@ -375,11 +380,7 @@ In order to correct such a defect, we propose here a new ECMD functional inspire
|
|||||||
\end{subequations}
|
\end{subequations}
|
||||||
The difference between the ECMD PBE functional defined in Ref.~\onlinecite{FerGinTou-JCP-18} and the present expression \eqref{eq:epsilon_cmdpbe} is that we approximate here the \textit{exact} ground-state on-top pair density by its UEG version, i.e.~$\n{2}{}(\br{}) \approx \n{2}{\UEG}(\n{}{}(\br{})) = \n{}{}(\br{})^2 g_0(\n{}{}(\br{}))$, where $g_0(\n{}{})$ is the UEG correlation factor whose parametrization can be found in Eq.~(46) of Ref.~\onlinecite{GorSav-PRA-06}.
|
The difference between the ECMD PBE functional defined in Ref.~\onlinecite{FerGinTou-JCP-18} and the present expression \eqref{eq:epsilon_cmdpbe} is that we approximate here the \textit{exact} ground-state on-top pair density by its UEG version, i.e.~$\n{2}{}(\br{}) \approx \n{2}{\UEG}(\n{}{}(\br{})) = \n{}{}(\br{})^2 g_0(\n{}{}(\br{}))$, where $g_0(\n{}{})$ is the UEG correlation factor whose parametrization can be found in Eq.~(46) of Ref.~\onlinecite{GorSav-PRA-06}.
|
||||||
This represents a major computational saving without loss of performance as we eschew the computation of $\n{2}{}(\br{})$.
|
This represents a major computational saving without loss of performance as we eschew the computation of $\n{2}{}(\br{})$.
|
||||||
Therefore, the ECMD PBE complementary functional reads
|
|
||||||
\begin{equation}
|
|
||||||
\label{eq:def_pbe_tot}
|
|
||||||
\bE{\PBE}{\sr}[\n{}{}(\br{}),\rsmu{}{}(\br{})] = \int \be{\PBE}{\sr}\big(\n{}{}(\br{}),\nabla \n{}{}(\br{}),\rsmu{}{}(\br{})\big) \n{}{}(\br{}) \dbr{}.
|
|
||||||
\end{equation}
|
|
||||||
Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\modZ}{}]$ is then equal to $\bE{\LDA}{\sr}[\n{\modZ}{}(\br{}),\rsmu{\Bas}{}(\br{})]$ or $\bE{\PBE}{\sr}[\n{\modZ}{}(\br{}),\rsmu{\Bas}{}(\br{})]$ where $\rsmu{\Bas}{}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}.
|
Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\modZ}{}]$ is then equal to $\bE{\LDA}{\sr}[\n{\modZ}{}(\br{}),\rsmu{\Bas}{}(\br{})]$ or $\bE{\PBE}{\sr}[\n{\modZ}{}(\br{}),\rsmu{\Bas}{}(\br{})]$ where $\rsmu{\Bas}{}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}.
|
||||||
|
|
||||||
%=================================================================
|
%=================================================================
|
||||||
|
Loading…
Reference in New Issue
Block a user