srDFT_Ex/Manuscript/Ex-srDFT.tex
2019-05-25 17:54:35 +02:00

635 lines
26 KiB
TeX

\documentclass[aip,jcp,reprint,noshowkeys]{revtex4-1}
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem,longtable}
\usepackage{natbib}
\bibliographystyle{achemso}
\AtBeginDocument{\nocite{achemso-control}}
\usepackage{mathpazo,libertine}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue,
filecolor=blue,
urlcolor=blue,
citecolor=blue
}
\newcommand{\alert}[1]{\textcolor{red}{#1}}
\definecolor{darkgreen}{HTML}{009900}
\usepackage[normalem]{ulem}
\newcommand{\titou}[1]{\textcolor{black}{#1}}
\newcommand{\jt}[1]{\textcolor{purple}{#1}}
\newcommand{\manu}[1]{\textcolor{darkgreen}{#1}}
\newcommand{\toto}[1]{\textcolor{brown}{#1}}
\newcommand{\trashPFL}[1]{\textcolor{red}{\sout{#1}}}
\newcommand{\trashJT}[1]{\textcolor{purple}{\sout{#1}}}
\newcommand{\trashMG}[1]{\textcolor{darkgreen}{\sout{#1}}}
\newcommand{\trashAS}[1]{\textcolor{brown}{\sout{#1}}}
\newcommand{\MG}[1]{\manu{(\underline{\bf MG}: #1)}}
\newcommand{\JT}[1]{\juju{(\underline{\bf JT}: #1)}}
\newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}}
\newcommand{\AS}[1]{\toto{(\underline{\bf TOTO}: #1)}}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue,
filecolor=blue,
urlcolor=blue,
citecolor=blue
}
\newcommand{\mc}{\multicolumn}
\newcommand{\fnm}{\footnotemark}
\newcommand{\fnt}{\footnotetext}
\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}}
\newcommand{\SI}{\textcolor{blue}{supporting information}}
\newcommand{\QP}{\textsc{quantum package}}
% second quantized operators
\newcommand{\ai}[1]{\hat{a}_{#1}}
\newcommand{\aic}[1]{\hat{a}^{\dagger}_{#1}}
% units
\newcommand{\IneV}[1]{#1 eV}
\newcommand{\InAU}[1]{#1 a.u.}
\newcommand{\InAA}[1]{#1 \AA}
\newcommand{\kcal}{kcal/mol}
% methods
\newcommand{\D}{\text{D}}
\newcommand{\T}{\text{T}}
\newcommand{\Q}{\text{Q}}
\newcommand{\X}{\text{X}}
\newcommand{\UEG}{\text{UEG}}
\newcommand{\HF}{\text{HF}}
\newcommand{\ROHF}{\text{ROHF}}
\newcommand{\LDA}{\text{LDA}}
\newcommand{\PBE}{\text{PBE}}
\newcommand{\FCI}{\text{FCI}}
\newcommand{\CBS}{\text{CBS}}
\newcommand{\exFCI}{\text{exFCI}}
\newcommand{\CCSDT}{\text{CCSD(T)}}
\newcommand{\lr}{\text{lr}}
\newcommand{\sr}{\text{sr}}
\newcommand{\Ne}{N}
\newcommand{\NeUp}{\Ne^{\uparrow}}
\newcommand{\NeDw}{\Ne^{\downarrow}}
\newcommand{\Nb}{N_{\Bas}}
\newcommand{\Ng}{N_\text{grid}}
\newcommand{\nocca}{n_{\text{occ}^{\alpha}}}
\newcommand{\noccb}{n_{\text{occ}^{\beta}}}
\newcommand{\n}[2]{n_{#1}^{#2}}
\newcommand{\Ec}{E_\text{c}}
\newcommand{\E}[2]{E_{#1}^{#2}}
\newcommand{\bE}[2]{\Bar{E}_{#1}^{#2}}
\newcommand{\bEc}[1]{\Bar{E}_\text{c,md}^{#1}}
\newcommand{\e}[2]{\varepsilon_{#1}^{#2}}
\newcommand{\be}[2]{\Bar{\varepsilon}_{#1}^{#2}}
\newcommand{\bec}[1]{\Bar{e}^{#1}}
\newcommand{\wf}[2]{\Psi_{#1}^{#2}}
\newcommand{\W}[2]{W_{#1}^{#2}}
\newcommand{\w}[2]{w_{#1}^{#2}}
\newcommand{\hn}[2]{\Hat{n}_{#1}^{#2}}
\newcommand{\rsmu}[2]{\mu_{#1}^{#2}}
\newcommand{\V}[2]{V_{#1}^{#2}}
\newcommand{\SO}[2]{\phi_{#1}(\br{#2})}
\newcommand{\modY}{Y}
\newcommand{\modZ}{Z}
% basis sets
\newcommand{\Bas}{\mathcal{B}}
\newcommand{\BasFC}{\mathcal{A}}
\newcommand{\FC}{\text{FC}}
\newcommand{\occ}{\text{occ}}
\newcommand{\virt}{\text{virt}}
\newcommand{\val}{\text{val}}
\newcommand{\Cor}{\mathcal{C}}
% operators
\newcommand{\hT}{\Hat{T}}
\newcommand{\hWee}[1]{\Hat{W}_\text{ee}^{#1}}
\newcommand{\updw}{\uparrow\downarrow}
\newcommand{\f}[2]{f_{#1}^{#2}}
\newcommand{\Gam}[2]{\Gamma_{#1}^{#2}}
% coordinates
\newcommand{\br}[1]{\mathbf{r}_{#1}}
\newcommand{\dbr}[1]{d\br{#1}}
\newcommand{\ra}{\rightarrow}
% frozen core
\newcommand{\WFC}[2]{\widetilde{W}_{#1}^{#2}}
\newcommand{\fFC}[2]{\widetilde{f}_{#1}^{#2}}
\newcommand{\rsmuFC}[2]{\widetilde{\mu}_{#1}^{#2}}
\newcommand{\nFC}[2]{\widetilde{n}_{#1}^{#2}}
% energies
\newcommand{\EHF}{E_\text{HF}}
\newcommand{\EPT}{E_\text{PT2}}
\newcommand{\EFCI}{E_\text{FCI}}
\newcommand{\EsCI}{E_\text{sCI}}
\newcommand{\EDMC}{E_\text{DMC}}
\newcommand{\EexFCI}{E_\text{exFCI}}
\newcommand{\EexDMC}{E_\text{exDMC}}
\newcommand{\Ead}{\Delta E_\text{ad}}
\newcommand{\Eabs}{\Delta E_\text{abs}}
\newcommand{\ex}[4]{$^{#1}#2_{#3}^{#4}$}
\newcommand{\pis}{\pi^\star}
\newcommand{\si}{\sigma}
\newcommand{\sis}{\sigma^\star}
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
\newcommand{\LCT}{Laboratoire de Chimie Th\'eorique, Universit\'e Pierre et Marie Curie, Sorbonne Universit\'e, CNRS, Paris, France}
\begin{document}
\title{Excitation Energies Near The Complete Basis Set Limit}
\author{Emmanuel Giner}
\affiliation{\LCT}
\author{Anthony Scemama}
\affiliation{\LCPQ}
\author{Julien Toulouse}
\affiliation{\LCT}
\author{Pierre-Fran\c{c}ois Loos}
\email[Corresponding author: ]{loos@irsamc.ups-tlse.fr}
\affiliation{\LCPQ}
\begin{abstract}
By combining extrapolated selected configuration interaction (sCI) calculations performed with the CIPSI algorithm with the recently proposed short-range density-functional functional correction for basis set incompleteness [\href{https://doi.org/10.1063/1.5052714}{Giner et al., \textit{J.~Chem.~Phys.}~\textbf{149}, 194301 (2018)}], we show that one can obtain vertical and adiabatic excitation energies with chemical accuracy with a small basis set.
\end{abstract}
\maketitle
%%%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction}
\label{sec:intro}
%%%%%%%%%%%%%%%%%%%%%%%%
One of the most fundamental problem of conventional electronic structure methods is their slow energy convergence with respect to the size of the one-electron basis set.
Explicitly-correlated F12 methods \cite{Kut-TCA-85, Kut-TCA-85, KutKlo-JCP-91, NogKut-JCP-94} have been specifically designed to cure this problem. \cite{Ten-TCA-12, TenNog-WIREs-12, HatKloKohTew-CR-12, KonBisVal-CR-12, GruHirOhnTen-JCP-17, MaWer-WIREs-18}
Although they have extremely successful to speed up convergence of the ground state properties such as correlation and atomization energies (for example), \cite{TewKloNeiHat-PCCP-07} their performances for excited states \cite{ShiWer-JCP-10, ShiKniWer-JCP-11, ShiWer-JCP-11, ShiWer-MP-13} have been much more conflicting. \cite{FliHatKlo-JCP-06, NeiHatKlo-JCP-06, HanKoh-JCP-09, Koh-JCP-09}
There are two types of basis set completeness: angular and radial completeness.
F12 is good at doing angular basis set correction.
However, radial correction are much harder to design and it is a real test for the present approach.
Instead of F12 methods, here we propose to follow a different philosophy and rely on the recently proposed short-range density-functional functional correction to reduce the basis set incompleteness error. \cite{GinPraFerAssSavTou-JCP-18}
This choice is motivated by the much faster convergence of these methods with respect to the size of the basis set. \cite{FraMusLupTou-JCP-15}
The present method is illustrated on several molecules and singly- and doubly-excited states with diffuse basis sets.
%Contemporary quantum chemistry has developed in two directions --- wave function theory (WFT) \cite{Pop-RMP-99} and density-functional theory (DFT). \cite{Koh-RMP-99}
%Although both spring from the same Schr\"odinger equation, each of these philosophies has its own \textit{pros} and \textit{cons}.
%
%WFT is attractive as it exists a well-defined path for systematic improvement as well as powerful tools, such as perturbation theory, to guide the development of new WFT \textit{ans\"atze}.
%The coupled cluster (CC) family of methods is a typical example of the WFT philosophy and is well regarded as the gold standard of quantum chemistry for weakly correlated systems.
%By increasing the excitation degree of the CC expansion, one can systematically converge, for a given basis set, to the exact, full configuration interaction (FCI) limit, although the computational cost associated with such improvement is usually high.
%One of the most fundamental drawbacks of conventional WFT methods is the slow convergence of energies and properties with respect to the size of the one-electron basis set.
%This undesirable feature was put into light by Kutzelnigg more than thirty years ago. \cite{Kut-TCA-85}
%To palliate this, following Hylleraas' footsteps, \cite{Hyl-ZP-29} Kutzelnigg proposed to introduce explicitly the interelectronic distance $r_{12} = \abs{\br{1} - \br{2}}$ to properly describe the electronic wave function around the coalescence of two electrons. \cite{Kut-TCA-85, KutKlo-JCP-91, NogKut-JCP-94}
%The resulting F12 methods yield a prominent improvement of the energy convergence, and achieve chemical accuracy for small organic molecules with relatively small Gaussian basis sets. \cite{Ten-TCA-12, TenNog-WIREs-12, HatKloKohTew-CR-12, KonBisVal-CR-12, GruHirOhnTen-JCP-17, MaWer-WIREs-18}
%For example, at the CCSD(T) level, one can obtain quintuple-$\zeta$ quality correlation energies with a triple-$\zeta$ basis, \cite{TewKloNeiHat-PCCP-07} although computational overheads are introduced by the large auxiliary basis used to resolve three- and four-electron integrals. \cite{BarLoo-JCP-17}
%To reduce further the computational cost and/or ease the transferability of the F12 correction, approximated and/or universal schemes have recently emerged. \cite{TorVal-JCP-09, KonVal-JCP-10, KonVal-JCP-11, BooCleAlaTew-JCP-2012, IrmHumGru-arXiv-2019, IrmGru-arXiv-2019}
%
%Present-day DFT calculations are almost exclusively done within the so-called Kohn-Sham (KS) formalism, which corresponds to an exact dressed one-electron theory. \cite{KohSha-PR-65}
%The attractiveness of DFT originates from its very favorable accuracy/cost ratio as it often provides reasonably accurate energies and properties at a relatively low computational cost.
%Thanks to this, KS-DFT \cite{HohKoh-PR-64, KohSha-PR-65} has become the workhorse of electronic structure calculations for atoms, molecules and solids. \cite{ParYan-BOOK-89}
%Although there is no clear way on how to systematically improve density-functional approximations, \cite{Bec-JCP-14} climbing Perdew's ladder of DFT is potentially the most satisfactory way forward. \cite{PerSch-AIPCP-01, PerRuzTaoStaScuCso-JCP-05}
%In the context of the present work, one of the interesting feature of density-based methods is their much faster convergence with respect to the size of the basis set. \cite{FraMusLupTou-JCP-15}
%
%Progress toward unifying WFT and DFT are on-going.
%In particular, range-separated DFT (RS-DFT) (see Ref.~\citenum{TouColSav-PRA-04} and references therein) rigorously combines these two approaches via a decomposition of the electron-electron (e-e) interaction into a non-divergent long-range part and a (complementary) short-range part treated with WFT and DFT, respectively.
%As the WFT method is relieved from describing the short-range part of the correlation hole around the e-e coalescence points, the convergence with respect to the one-electron basis set is greatly improved. \cite{FraMusLupTou-JCP-15}
%Therefore, a number of approximate RS-DFT schemes have been developed within single-reference \cite{AngGerSavTou-PRA-05, GolWerSto-PCCP-05, TouGerJanSavAng-PRL-09,JanHenScu-JCP-09, TouZhuSavJanAng-JCP-11, MusReiAngTou-JCP-15} or multi-reference \cite{LeiStoWerSav-CPL-97, FroTouJen-JCP-07, FroCimJen-PRA-10, HedKneKieJenRei-JCP-15, HedTouJen-JCP-18, FerGinTou-JCP-18} WFT approaches.
%Very recently, a major step forward has been taken by some of the present authors thanks to the development of a density-based basis-set correction for WFT methods. \cite{GinPraFerAssSavTou-JCP-18}
%The present work proposes an extension of this new methodological development alongside the first numerical tests on molecular systems.
%%%%%%%%%%%%%%%%%%%%%%%%
\section{Computational details}
\label{sec:compdetails}
%%%%%%%%%%%%%%%%%%%%%%%%
The present basis-set correction relies on the RS-DFT formalism to capture the missing part of the short-range correlation effects, a consequence of the incompleteness of the one-electron basis set.
The present methodology is identical to the one described in Ref.~\onlinecite{LooPraSceTouGin-JPCL-19} where the main working equation are reported and discussed.
We refer the interested reader to Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18} for a more formal derivation.
exFCI stands for extrapolated FCI energies computed with the CIPSI algorithm. \cite{HurMalRan-JCP-73, GinSceCaf-CJC-13, GinSceCaf-JCP-15}
We refer the interested reader to Refs.~\citenum{HolUmrSha-JCP-17, SceGarCafLoo-JCTC-18, LooSceBloGarCafJac-JCTC-18, SceBenJacCafLoo-JCP-18, LooBogSceCafJAc-JCTC-19} for more details.
The one-electron density and on-top density is computed from a very large CIPSI expansion containing several million determinants.
All the RS-DFT and exFCI calculations have been performed with {\QP}. \cite{QP2}
For the numerical quadratures, we employ the SG-2 grid. \cite{DasHer-JCC-17}
The geometries have been extracted from Refs.~\citenum{LooSceBloGarCafJac-JCTC-18, LooBogSceCafJAc-JCTC-19} and have been obtained at the CC3/aug-cc-pVTZ level of theory.
They are also reported in the {\SI}.
Frozen-core calculations are systematically performed and defined as such: a \ce{He} core is frozen from \ce{Li} to \ce{Ne}, while a \ce{Ne} core is frozen from \ce{Na} to \ce{Ar}.
The FC density-based correction is used consistently with the FC approximation in WFT methods.
%%%%%%%%%%%%%%%%%%%%%%%%
\section{Results}
\label{sec:res}
%%%%%%%%%%%%%%%%%%%%%%%%
%=======================
\subsection{Water}
\label{sec:H2O}
%=======================
%=======================
\subsection{Formaldehyde}
\label{sec:CH2O}
%=======================
%=======================
\subsection{Methylene}
\label{sec:CH2}
%=======================
%%% TABLE 1 %%%
\begin{squeezetable}
\begin{table*}
\caption{
Total energies $E$ (in hartree) and adiabatic transition energies $\Ead$ (in eV) of excited states of methylene for various methods and basis sets.}
\begin{ruledtabular}{}
\begin{tabular}{llddddddd}
& & \mc{1}{c}{$1\,^{3}B_1$}
& \mc{2}{c}{$1\,^{3}B_1 \ra 1\,^{1}A_1$}
& \mc{2}{c}{$1\,^{3}B_1 \ra 1\,^{1}B_1$}
& \mc{2}{c}{$1\,^{3}B_1 \ra 2\,^{1}A_1$} \\
\cline{3-3} \cline{4-5}
\cline{6-7} \cline{8-9}
Method & Basis set & \tabc{$E$ (a.u.)}
& \tabc{$E$ (a.u.)} & \tabc{$\Ead$ (eV)}
& \tabc{$E$ (a.u.)} & \tabc{$\Ead$ (eV)}
& \tabc{$E$ (a.u.)} & \tabc{$\Ead$ (eV)} \\
\hline
exFCI & AVDZ & -39.04846(1)
& -39.03225(1) & 0.441
& -38.99203(1) & 1.536
& -38.95076(1) & 2.659 \\
& AVTZ & -39.08064(3)
& -39.06565(2) & 0.408
& -39.02833(1) & 1.423
& -38.98709(1) & 2.546 \\
& AVQZ & -39.08854(1)
& -39.07402(2) & 0.395
& -39.03711(1) & 1.399
& -38.99607(1) & 2.516 \\
& AV5Z & -39.09079(1)
& -39.07647(1) & 0.390
& -39.03964(3) & 1.392
& -38.99867(1) & 2.507 \\
& CBS & -39.09111
& -39.07682 & 0.389
& -39.04000 & 1.391
& -38.99904 & 2.505 \\
\\
exFCI+LDA & AVDZ & -39.07450(1)
& -39.06213(1) & 0.337
& -39.02233(1) & 1.420
& -38.97946(1) & 2.586 \\
& AVTZ & -39.09099(3)
& -39.07779(2) & 0.359
& -39.04051(1) & 1.374
& -38.99859(1) & 2.514 \\
& AVQZ & -39.09319(1)
& -39.07959(2) & 0.370
& -39.04267(1) & 1.375
& -39.00135(1) & 2.499 \\
\\
exFCI+PBE & AVDZ & -39.07282(1)
& -39.06150(1) & 0.308
& -39.02181(1) & 1.388
& -38.97873(1) & 2.560 \\
& AVTZ & -39.08948(3)
& -39.07639(2) & 0.356
& -39.03911(1) & 1.371
& -38.99724(1) & 2.510 \\
& AVQZ & -39.09247(1)
& -39.07885(2) & 0.371
& -39.04193(1) & 1.375
& -39.00066(1) & 2.498 \\
\\
exFCI+PBEot & AVDZ & -39.06924(1)
& -39.05651(1) & 0.347
& -39.01777(1) & 1.401
& -38.97698(1) & 2.511 \\
& AVTZ & -39.08805(3)
& -39.07430(2) & 0.374
& -39.03742(1) & 1.378
& -38.99652(1) & 2.491 \\
& AVQZ & -39.09189(1)
& -39.07795(2) & 0.379
& -39.04124(1) & 1.378
& -39.00044(1) & 2.489 \\
\\
SHCI & AVQZ & -39.08849(1)
& -39.07404(1) & 0.393
& -39.03711(1) & 1.398
& -38.99603(1) & 2.516 \\
CR-EOMCC (2,3)D& AVQZ & -39.08817
& -39.07303 & 0.412
& -39.03450 & 1.460
& -38.99457 & 2.547 \\
FCI & TZ2P & -39.066738
& -39.048984 & 0.483
& -39.010059 & 1.542
& -38.968471 & 2.674 \\
DMC & &
& & 0.406
& & 1.416
& & 2.524 \\
Exp. & &
& & 0.400
& & 1.411
\end{tabular}
\end{ruledtabular}
\end{table*}
\end{squeezetable}
%%% %%% %%%
%%% TABLE 2 %%%
\begin{squeezetable}
\begin{table*}
\caption{
Vertical absorption energies $\Eabs$ (in eV) of excited states of water, carbon dimer and ammonia for various methods and basis sets.}
\begin{ruledtabular}{}
\begin{tabular}{lllddddddddddddd}
& & & & \mc{12}{c}{Deviation with respect to TBE}
\\
\cline{5-16}
& & & & \mc{3}{c}{exFCI}
& \mc{3}{c}{exFCI+PBEot}
& \mc{3}{c}{exFCI+PBE}
& \mc{3}{c}{exFCI+LDA}
\\
\cline{5-7} \cline{8-10} \cline{11-13} \cline{14-16}
Molecule & Transition & Nature & \tabc{TBE} & \tabc{AVDZ} & \tabc{AVTZ} & \tabc{AVQZ}
& \tabc{AVDZ} & \tabc{AVTZ} & \tabc{AVQZ}
& \tabc{AVDZ} & \tabc{AVTZ} & \tabc{AVQZ}
& \tabc{AVDZ} & \tabc{AVTZ} & \tabc{AVQZ}
\\
\hline
Ammonia & $1\,^{1}A_{1} \ra 1\,^{1}A_{2}$ & Ryd. & 6.66 & -0.18 & -0.07 & -0.04
& -0.04 & -0.02 & -0.01
& -0.07 & -0.03 & -0.02
& -0.07 & -0.03 & -0.02
\\
& $1\,^{1}A_{1} \ra 1\,^{1}E$ & Ryd. & 8.21 & -0.13 & -0.05 & -0.02
& 0.01 & 0.00 & -0.03
& -0.03 & -0.01 & 0.00
& -0.03 & 0.00 & -0.01
\\
& $1\,^{1}A_{1} \ra 2\,^{1}A_{1}$ & Ryd. & 8.65 & 1.03 & 0.68 & 0.47
& 1.17 & 0.73 & 0.46
& 1.12 & 0.72 & 0.48
& 1.11 & 0.71 & 0.48
\\
& $1\,^{1}A_{1} \ra 2\,^{1}A_{2}$ & Ryd. & 8.65 & 1.22 & 0.77 & 0.59
& 1.36 & 0.83 & 0.58
& 1.33 & 0.81 & 0.60
& 1.32 & 0.81 & 0.59
\\
& $1\,^{1}A_{1} \ra 1\,^{3}A_{2}$ & Ryd. & 9.19 & -0.18 & -0.06 & -0.03
& -0.03 & 0.00 & -0.02
& -0.07 & -0.02 & -0.03
& -0.07 & -0.01 & -0.03
\\
\\
Carbon dimer\fnm[1] & $1\,^{1}\Sigma_g^+ \ra 1\,^{1}\Delta_g$ & Val. & 2.06 & 0.15 & 0.03 & 0.00
& 0.02 & -0.02 & -0.02
& 0.13 & 0.02 & 0.00
& 0.15 & 0.03 & 0.00
\\
& $1\,^{1}\Sigma_g^+ \ra 2\,^{1}\Sigma_g^+$ & Val. & 2.40 & 0.10 & 0.02 & 0.00
& 0.02 & -0.03 & -0.02
& 0.09 & 0.01 & 0.00
& 0.11 & 0.02 & 0.00
\\
\\
Hydrogen chloride& ${}^1\Sigma \ra {}^1\Pi$ & CT\fnm[2] & 7.86 & -0.04 & -0.02 & 0.02
& 0.13 & 0.06 & 0.06
& 0.11 & 0.04 & 0.05
& 0.10 & 0.05 & 0.06
\\
\\
Hydrogen sulfide & $1\,^{1}A_1 \ra 1\,^{1}A_2$ & Ryd. & 6.10 & 0.00 & 0.08 & 0.05
& 0.15 & 0.12 & 0.07
& 0.14 & 0.11 & 0.07
& 0.14 & 0.11 & 0.07
\\
& $1\,^{1}A_1 \ra 1\,^{1}B_1$ & Ryd. & 6.29 & 0.00 & -0.05 & 0.00
& -0.12 & 0.01 & 0.03
& -0.14 & 0.00 & 0.03
& -0.14 & 0.01 & 0.03
\\
& $1\,^{1}A_1 \ra 1\,^{3}A_2$ & Ryd. & 5.74 & 0.01 & 0.07 & 0.05
& 0.18 & 0.12 & 0.08
& 0.20 & 0.13 & 0.08
& 0.19 & 0.13 & 0.08
\\
& $1\,^{1}A_1 \ra 1\,^{3}B_1$ & Ryd. & 5.94 & -0.04 & -0.05 & -0.01
& 0.07 & 0.02 & 0.03
& 0.09 & 0.03 & 0.03
& 0.07 & 0.04 & 0.04
\\
\\
Water & $1\,^{1}A_1 \ra 1\,^{1}B_1$ & Ryd. & 7.70 & -0.17 & -0.07 & -0.02
& 0.01 & 0.00 & 0.02
& -0.02 & -0.01 & 0.00
& -0.04 & -0.01 & 0.01
\\
& $1\,^{1}A_1 \ra 1\,^{1}A_2$ & Ryd. & 9.47 & -0.15 & -0.06 & -0.01
& 0.03 & 0.01 & 0.03
& 0.00 & 0.00 & 0.02
& -0.03 & 0.00 & 0.00
\\
& $1\,^{1}A_1 \ra 2\,^{1}A_1$ & Ryd. & 9.97 & -0.03 & 0.02 & 0.06
& 0.13 & 0.08 & 0.09
& 0.10 & 0.07 & 0.08
& 0.09 & 0.07 & 0.03
\\
& $1\,^{1}A_1 \ra 1\,^{3}B_1$ & Ryd. & 7.33 & -0.19 & -0.08 & -0.03
& 0.02 & 0.00 & 0.02
& 0.05 & 0.01 & 0.02
& 0.00 & 0.00 & 0.04
\\
& $1\,^{1}A_1 \ra 1\,^{3}A_2$ & Ryd. & 9.30 & -0.16 & -0.06 & -0.01
& 0.04 & 0.02 & 0.04
& 0.07 & 0.03 & 0.04
& 0.03 & 0.03 & 0.04
\\
& $1\,^{1}A_1 \ra 1\,^{3}A_1$ & Ryd. & 9.59 & -0.11 & -0.05 & -0.01
& 0.07 & 0.02 & 0.03
& 0.09 & 0.03 & 0.03
& 0.06 & 0.03 & 0.04
\end{tabular}
\end{ruledtabular}
\fnt[1]{Doubly-excited states of $(\pi,\pi) \ra (\si,\si)$ character.}
\fnt[2]{CT stands for charge transfer.}
\end{table*}
\end{squeezetable}
%%% %%% %%%
%%% TABLE 3 %%%
\begin{squeezetable}
\begin{table*}
\caption{
Vertical absorption energies $\Eabs$ (in eV) of excited states of acetylene, ethylene and formaldehyde for various methods and basis sets.}
\begin{ruledtabular}{}
\begin{tabular}{lllddddddddd}
& & & & \mc{8}{c}{Deviation with respect to TBE}
\\
\cline{5-12}
& & & & \mc{2}{c}{exFCI}
& \mc{2}{c}{exFCI+PBEot}
& \mc{2}{c}{exFCI+PBE}
& \mc{2}{c}{exFCI+LDA}
\\
\cline{5-6} \cline{7-8} \cline{9-10} \cline{11-12}
Molecule & Transition & Nature & \tabc{TBE} & \tabc{AVDZ} & \tabc{AVTZ}
& \tabc{AVDZ} & \tabc{AVTZ}
& \tabc{AVDZ} & \tabc{AVTZ}
& \tabc{AVDZ} & \tabc{AVTZ}
\\
\hline
Acetylene & $1\,^{1}\Sigma_{g}^{+} \ra 1\,^{1}\Sigma_{u}^{-}$ & Val. & 7.10 & 0.10 & 0.00
& 0.07 & 0.00
& 0.11 & 0.00
& 0.11 & 0.00
\\
& $1\,^{1}\Sigma_{g}^{+} \ra 1\,^{1}\Delta_{u}$ & Val. & 7.44 & 0.07 & 0.00
& 0.04 & -0.01
& 0.12 & 0.02
& 0.11 & 0.02
\\
& $1\,^{1}\Sigma_{g}^{+} \ra 1\,^{3}\Sigma_{u}^{+}$ & Val. & 5.56 & -0.06 & -0.03
& 0.07 & 0.02
& 0.04 & 0.00
& 0.02 & 0.00
\\
& $1\,^{1}\Sigma_{g}^{+} \ra 1\,^{3}\Delta_{u}$ & Val. & 6.40 & 0.06 & 0.00
& 0.10 & 0.02
& 0.14 & 0.03
& 0.12 & 0.03
\\
& $1\,^{1}\Sigma_{g}^{+} \ra 1\,^{3}\Sigma_{u}^{-}$ & Val. & 7.09 & 0.05 & -0.01
& 0.08 & 0.00
& 0.16 & 0.04
& 0.14 & 0.04
\\
\\
Ethylene & $1\,^{1}A_{1g} \ra 1\,^{1}B_{3u}$ & Ryd. & 7.43 & -0.12 & -0.04
& -0.05 & -0.01
& -0.04 & -0.01
& -0.02 & 0.00
\\
& $1\,^{1}A_{1g} \ra 1\,^{1}B_{1u}$ & Val. & 7.92 & 0.01 & 0.01
& 0.00 & 0.00
& 0.06 & 0.03
& 0.06 & 0.03
\\
& $1\,^{1}A_{1g} \ra 1\,^{1}B_{1g}$ & Ryd. & 8.10 & -0.1 & -0.02
& -0.03 & 0.00
& -0.02 & 0.00
& 0.00 & 0.01
\\
& $1\,^{1}A_{1g} \ra 1\,^{3}B_{1u}$ & Val. & 4.54 & 0.01 & 0.00
& 0.07 & 0.03
& 0.10 & 0.04
& 0.08 & 0.04
\\
& $1\,^{1}A_{1g} \ra 1\,^{3}B_{3u}$ & Val. & 7.28 & -0.12 & -0.04
& -0.03 & 0.00
& 0.00 & 0.00
& 0.00 & 0.02
\\
& $1\,^{1}A_{1g} \ra 1\,^{3}B_{1g}$ & Val. & 8.00 & -0.07 & -0.01
& 0.01 & 0.03
& 0.04 & 0.03
& 0.05 & 0.04
\\
\\
Formaldehyde& $1\,^{1}A_{1} \ra 1\,^{1}A_{2}$ & Val. & 3.97 & 0.02 & 0.01
& 0.05 & 0.02
& 0.03 & 0.02
& 0.02 & 0.01
\\
& $1\,^{1}A_{1} \ra 1\,^{1}B_{2}$ & Ryd. & 7.30 & -0.19 & -0.07
& 0.00 & 0.00
& -0.02 & 0.00
& -0.04 & 0.00
\\
& $1\,^{1}A_{1} \ra 2\,^{1}B_{2}$ & Ryd. & 8.14 & -0.10 & -0.01
& 0.09 & 0.07
& 0.08 & 0.06
& 0.05 & 0.06
\\
& $1\,^{1}A_{1} \ra 2\,^{1}A_{1}$ & Ryd. & 8.27 & -0.15 & -0.04
& 0.03 & 0.04
& 0.02 & 0.03
& 0.00 & 0.03
\\
& $1\,^{1}A_{1} \ra 1\,^{3}A_{2}$ & Val. & 3.58 & 0.00 & 0.00
& 0.09 & 0.05
& 0.11 & 0.06
& 0.07 & 0.04
\\
& $1\,^{1}A_{1} \ra 1\,^{3}A_{1}$ & Val. & 6.07 & 0.03 & 0.01
& 0.13 & 0.04
& 0.15 & 0.05
& 0.11 & 0.04
\\
& $1\,^{1}A_{1} \ra 1\,^{3}B_{2}$ & Ryd. & 7.14 & -0.19 & -0.08
& 0.01 & 0.01
& 0.02 & 0.01
& -0.01 & 0.00
\\
& $1\,^{1}A_{1} \ra 2\,^{3}B_{2}$ & Ryd. & 7.96 & -0.09 & -0.02
& 0.13 & 0.08
& 0.14 & 0.08
& 0.10 & 0.07
\\
& $1\,^{1}A_{1} \ra 1\,^{3}A_{1}$ & Ryd. & 8.15 & -0.14 & -0.05
& 0.07 & 0.05
& 0.07 & 0.04
& 0.04 & 0.04
\\
\end{tabular}
\end{ruledtabular}
\end{table*}
\end{squeezetable}
%%% %%% %%%
%%%%%%%%%%%%%%%%%%%%%%%%
\section{Conclusion}
\label{sec:ccl}
%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Supporting Information Available}
%%%%%%%%%%%%%%%%%%%%%%%%
See {\SI} for geometries and additional information (including total energies).
%%%%%%%%%%%%%%%%%%%%%%%%
\begin{acknowledgements}
The authors would like to thank the \textit{Centre National de la Recherche Scientifique} (CNRS) for funding.
This work was performed using HPC resources from GENCI-TGCC (Grant No.~2018-A0040801738) and CALMIP (Toulouse) under allocation 2019-18005.
\end{acknowledgements}
%%%%%%%%%%%%%%%%%%%%%%%%
\bibliography{Ex-srDFT,Ex-srDFT-control}
\end{document}