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ABSTRACT: Excitation gaps are of considerable significance in electronic structure theory. Two different gaps are of particular
interest. The fundamental gap is defined by charged excitations, as the difference between the first ionization potential and the
first electron affinity. The optical gap is defined by a neutral excitation, as the difference between the energies of the lowest
dipole-allowed excited state and the ground state. Within many-body perturbation theory, the fundamental gap is the difference
between the corresponding lowest quasi-hole and quasi-electron excitation energies, and the optical gap is addressed by including
the interaction between a quasi-electron and a quasi-hole. A long-standing challenge has been the attainment of a similar
description within density functional theory (DFT), with much debate on whether this is an achievable goal even in principle.
Recently, we have constructed and applied a new approach to this problem. Anchored in the rigorous theoretical framework of
the generalized Kohn−Sham equation, our method is based on a range-split hybrid functional that uses exact long-range
exchange. Its main novel feature is that the range-splitting parameter is not a universal constant but rather is determined from
first principles, per system, based on satisfaction of the ionization potential theorem. For finite-sized objects, this DFT approach
mimics successfully, to the best of our knowledge for the first time, the quasi-particle picture of many-body theory. Specifically, it
allows for the extraction of both the fundamental and the optical gap from one underlying functional, based on the HOMO−
LUMO gap of a ground-state DFT calculation and the lowest excitation energy of a linear-response time-dependent DFT
calculation, respectively. In particular, it produces the correct optical gap for the difficult case of charge-transfer and charge-
transfer-like scenarios, where conventional functionals are known to fail. In this perspective, we overview the formal and practical
challenges associated with gap calculations, explain our new approach and how it overcomes previous difficulties, and survey its
application to a variety of systems.

■ INTRODUCTION
Of particular significance in spectroscopy are excitation gaps.
Two different gaps are of both theoretical and practical
importance.1,2 The fundamental gap, Eg, is defined by charged
excitations as the difference between the first ionization
potential, I, and the first electron affinity, A. The optical gap,
Eopt, is defined by a neutral excitation, as the difference between
the energies of the lowest dipole-allowed excited state and the
ground state. Both are accessible experimentally, but in
different ways. The fundamental gap can be determined as
the difference of two observables, I and A, e.g., by using
photoemission and inverse photoemission, respectively, or
tunneling spectroscopy involving electron removal or injection,
respectively. The optical gap can be measured, for example, by
determining the onset of the absorption spectrum.
The relation between the two gaps can be understood

intuitively by considering the concept of a quasi-particle.3 As an
electron is inserted, or ejected (leaving a hole behind), all other
electrons in the system respond to the presence of this extra
electron or hole. The single particle picture can be retained,
however, by thinking of quasi-electrons or quasi-holes,
respectively, i.e., of effective particles that contain (“are dressed
by”) the effects of the relaxation of the other electrons. The
ionization potential and electron affinity are, then, the lowest
quasi-hole and quasi-electron excitation energies, respectively
(Figure 1a).

Creation of an excited state by promoting an electron can then
be considered as the simultaneous creation of a quasi-particle and
a quasi-hole (Figure 1b). If these two quasi-particles are
noninteracting, the minimum energy for such excitation will be
given by the fundamental gap. In practice, however, clearly they do
interact. The optical gap therefore differs from the fundamental
gap by the interaction energy between the quasi-particles. We refer
to this energy as the exciton (i.e., quasi-electron−quasi-hole pair)
binding energy, EB.
Further insight into the difference and relation between the

two gaps is obtained by considering a special limiting case
that of a donor (D)−acceptor (A) complex, where the chemical
interaction between the donor and acceptor molecules can be
neglected. For this limit, Mulliken has determined that the
lowest excitation which transfers charge from donor to
acceptor, hνCT, would be given (in atomic units) by4

ν = − −h I A R1/CT D A (1)

where R is the donor−acceptor distance. Here, the difference
ID − AA is the fundamental gap of the entire complex, which is
dictated by the ionization potential of the donor and the
electron affinity of the acceptor. If the intramolecular excitation
energies are such that hνCT is the lowest optical excitation
energy (which is often the case in charge-transfer-excitation
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complexes), then hvCT is the optical gap, and it is smaller
than the fundamental gap precisely by the binding energy 1/R
between the quasi-electron placed on the acceptor and the
quasi-hole left behind on the donor.
Computing the two gaps from first principles, i.e., without

recourse to any empirically derived information, is difficult.
These can obviously be derived from wave-function-based ab
initio methods (see, e.g., refs 5−10) or from quantum Monte
Carlo methods (see, e.g, refs 11−13), but the computational
cost is very high, limiting practical calculations to small systems,
and the intuition afforded by the quasi-particle picture is lost.
The qualitative quasi-particle picture can be translated into

formal language using many-body perturbation theory.14 Quasi-
particle energies and orbitals, leading to the fundamental gap,
can then be determined directly as eigenvalues and
eigenfunctions of the Dyson equation15 (typically solved within
the GW approximation,1,16−18 where G is the Green function
and W is the screened Coulomb potential). Optical excitation
energies, the lowest allowed of which is Eopt, can then be
determined from the Bethe−Salpeter equation (BSE).1,14,19,20

While the GW-BSE approach is well-grounded theoretically and
often highly reliable in practice, the computational cost
associated with it for large systems is still too high for many
important applications (see, e.g., ref 21 and references therein).
A different method based on single-particle energies and

orbitals is density functional theory (DFT),22,23 discussed in

more detail below. In recent years, DFT has become the
method of choice for electronic-structure calculations across an
unusually wide variety of disciplines,24 from organic chemistry25

to condensed matter physics,26 as it allows for fully quantum-
mechanical calculations at a relatively modest computational
cost. Ideally, one would have liked to compute the fundamental
gap from the energy difference between the highest occupied
molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO) energies of a DFT calculation.
However, this is considered to be unjustified theoretically in
principle (an issue we return to in detail below)27,28 and indeed
often yields results in very poor agreement with fundamental
gaps in practice.2 For finite-sized objects, the fundamental gap
can always be computed, at least in principle, from the total
energies of the neutral, cation, and anion. But the eigenvalues
are needed for, e.g., conductance calculations based on DFT
(where reliance on approximate values can lead to gross
errors29−31). Furthermore, one would prefer to retain,
inasmuch as this is possible, an intuitive connection between
single-particle energy levels and particle excitations.
Optical excitations, on the other hand, can be computed from a

time-dependent DFT (TDDFT) calculation.32−34 The approach is
rigorous in principle and often successful in practice. However,
certain types of optical excitations, notably charge-transfer
excitations, a limiting case of which has been discussed above,
typically defy proper description using conventional approxima-
tions employed in TDDFT calculations.35,36

An outstanding question, then, is whether the quasi-particle
picture of the fundamental and optical gap can be restored to
(TD)DFT, at least to a degree of approximation useful for
quantitative comparison with experimental results. In this
article, we show that this is indeed possible, using a new
concept, elaborated below, of the optimally tuned range-
separated hybrid functional. We show that, for a finite system,
this approach resolves the long-standing fundamental gap
question within DFT and allows for quantitative prediction of
the optical gap within TDDFT, even for full or partial charge
transfer or charge-transfer-like scenarios.

■ FUNDAMENTAL GAPS FROM KOHN−SHAM
THEORY?

The central tenet of DFT is the Hohenberg−Kohn theorem,37

which states that the ground-state density, n(r), of a system of
interacting electrons in some external potential, vext(r),
determines this potential uniquely (up to an uninteresting
additive constant). In the Kohn−Sham (KS) approach to
DFT,38 the Hohenberg−Kohn theorem is utilized to show
that the ground state of the physical interacting-electron
system can be mapped into the ground state of an equivalent
system of fictitious noninteracting electrons that are subject
to a common local (i.e., multiplicative) external potential, in
the form

− ∇ + + + φ = ε φ
⎛
⎝⎜

⎞
⎠⎟v r v n r v n r r r

2
( ) ([ ]; ) ([ ]; ) ( ) ( )i i i

2

ext H xc

(2)

where vext(r) is the ion-electron potential, vH([n];r) is the
Hartree potential, which accounts for the classical electron−
electron Coulomb repulsion, vxc([n];r) is the exchange-
correlation (xc) potential, which accounts for all nonclassical
electron interactions, and εi and φi(r) are KS eigenvalues and

Figure 1. (a) Schematic representation of the lowest-energy excitation
of a quasi-hole (left) or a quasi-electron (right), corresponding to the
ionization potential (IP) or the electron affinity (EA), respectively, the
difference of which is the fundamental gap, Eg. (b) Schematic
representation of the lowest-energy excitation of both a quasi-electron
and a quasi-hole, corresponding to the optical gap, Eopt. In the drawing,
Evac is the vacuum level, and Eopt is smaller than Eg by the attraction
energy between the quasi-electron and the quasi-hole.
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orbitals, respectively. The electron density is calculated as a sum
over filled orbitals:

∑= |φ |n r( ) (r)
i

i
,occ

2

(3)

Atomic units are used throughout, and for simplicity only the spin-
unpolarized formalism is given. The KS mapping is exact, in the
sense that the self-consistent electron density determined from eqs
1 and 2 should be equal to that of the physical system. In practice,
however, only approximate forms for vxc([n];r) are available.
Even if the exact vxc([n];r) were known, the physical

interpretation of KS eigenvalues and orbitals as single-particle
quantities is still far from straightforward. Strictly speaking, the KS
system is fictitious, and the KS quantities can be viewed as mere
mathematical devices en route to obtaining the correct ground-state
density. Some approximate relations between KS and quasi-particle
eigen-pairs do exist,39,40 but because here we are interested only in
the fundamental gap, we focus our attention first on the KS HOMO.
Exact physical meaning can be assigned to the KS HOMO

using “the KS analogue of Koopmans’ theorem in Hartree−
Fock theory”,41−44 which states that for the exact theory, the KS
HOMO is equal to and opposite of the ionization potential, i.e.,

ε = −IH (4)

The KS version of Koopmans’ theorem is in fact stronger than the
original, Hartree−Fock-based one.45 In Hartree−Fock theory, a
relation similar to eq 4 is valid only for unrelaxed electron removal
(i.e., neglecting the response of the other electrons in the system).
In KS theory, relaxation effects are included in eq 4, and εHOMO is
rigorously the lowest quasi-hole excitation energy, which is
precisely the kind of intuition we were looking for.
One way to rationalize eq 442,44 is to consider that in the

interacting electron system the electron density decays asymp-
totically as n(r) ≈ e−2(2I)

1/2r. For the KS system, the density is
the same but is expressed as a sum of orbital densities |φi(r)|

2

(eq 3). Each such term decays asymptotically as |φi(r)|
2 ≈

e−2(−2εir)
1/2

, and the asymptotic behavior will ultimately be domi-
nated by the KS HOMO, whose decay is slowest. Comparing
the two decay expressions, the real and KS densities can only be
reconciled if eq 4 is obeyed.
Can one equally well prove a second Koopmans’ theorem,

that would identify the KS LUMO with the lowest quasi-
electron excitation energy, A? Unfortunately, the answer is a
resounding no.27,28 To understand why, we digress briefly to
the generalization of the ground state energy to systems with a
fractional number of electrons, which is needed for the
description of open systems.22,41 The argument proceeds by
considering an ensemble (statistical mixture) of M and M + 1
pure-state electron densities, yielding the desired fractional one.
Minimization of the energy with respect to number-conserving
variations of the ensemble electron density then shows that
the minimum energy is simply a linear combination of the
pure-state energies, based on the relative fraction of their
densities in the ensemble density.41 Therefore, for any
system, the exact total energy versus particle number curve
must be a series of linear segments, as shown in Figure 2 (left).
The slopes of (N − 1, N) and (N, N + 1) segments are, by

definition, −I and −A, respectively; i.e., the derivative of the
total energy with respect to particle number is discontinuous at
the N-electron point. This is physically reasonableit is simply
a reflection of the discontinuity in the chemical potential, i.e.,
the fact that the electron removal energy is not the same as the

electron insertion energy (namely, that the fundamental gap is
nonzero). Now consider what happens in the KS descriptions of
these segments. Because the energy contributions of the external
potential and the Hartree potential are continuous with respect to
the density, such discontinuity can arise, in principle, from either
the kinetic energy of the noninteracting electrons or from the xc
energy. A discontinuity in the latter would correspond to a
(spatially constant46) discontinuity in vxc([n];r) at an integer
particle number, usually known as a derivative discontinuity (DD),
Δxc.

41 While in some cases Δxc can be small (i.e., the discontinuity
in the chemical potential is mostly described by the kinetic energy
term),47 both formal considerations27,28 and numerical inves-
tigation48 show that it is usually sizable. For example, reconstruction
of the exact exchange-correlation potential from the charge density
obtained from wave-function-based quantum chemistry calculations
yields derivative discontinuities that are easily several eV.49,50

Now, a different condition which must be obeyed in KS
theory is Janak’s theorem, which asserts that each occupied
eigenvalue is given by the derivative of the energy with respect
to the occupation of this orbital.51 Applying this rule to the KS
HOMO, the derivative is by construction the above-mentioned
slope of the piecewise-linear curve of Figure 2 (left). But this
slope can be either −I or −A at the integer particle number!
Therefore, eq 4 is obeyed only if the integer particle number is
approached from below. Fortunately, this “direction of
approach to the integer point” is the one obtained automatically
by assuming the KS potential (= sum of all potentials in eq 2)
to be zero at infinity,44 which is usually the default choice.
The above arguments regarding the asymptotic decay of the

density are inapplicable to the KS LUMO because it is
unoccupied. However, ignoring nuclear relaxation effects, the
electron affinity of the N electron system is equal to the
ionization potential of the N + 1 electron one, so that by
application of eq 4 to the N + 1 electron system we obtain
εH(N + 1 − δ) = −A, where δ is a positive infinitesimal that
guarantees that we approach the integer point from below. But
because of the straight-line dependence, the slope just to the
left of the N + 1 electron point is the same as the slope just to
the right of the N electron point, and therefore εH(N + 1 − δ) =
εH(N + δ). In addition, εH(N + δ) = εL(N − δ) + Δxc because the

Figure 2. Left: The “linear segment” behavior of the exact density
functional (the numerical values are the experimental ones for the F
atom, as an example) − the total energy (with respect to that of the N
electron neutral species), ΔE, is a series of linear segments. The slopes
of the [N − 1, N] and the [N, N + 1] segments correspond to the
ionization potential, I, and electron affinity, A, respectively. Right:
DFT total energy difference with respect to the neutral, N = 10
electron system, ΔE, as a function of the particle number N for the
H2O molecule, calculated with the Baer−Neuhauser (BN) functional
with γ → 0, γ →∞, and the optimally tuned γ* = 0.87. The average
curvature, C = d2E/dN2, is indicated for each functional. Figure
adapted from Stein et al.175
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xc potential “jumps” by Δxc as we cross the integer point (note
that the HOMO for N + δ electrons is the LUMO for N − δ
electrons). This immediately leads to a regrettable result:52

ε = − − ΔAL xc (5)

where we have suppressed the infinitesimal δ to emphasize that eq
5 is what we expect to obtain when eq 4 is obeyed. In other words,
even in exact KS theory, if the asymptotic potential is chosen such
that KS HOMO reflects the lowest quasi-hole excitation energy,
the KS LUMO will not reflect the lowest quasi-electron excitation
energy! Furthermore, by combining eqs 4 and 5 we obtain:28

≡ − = ε − ε + ΔE I Ag L H xc (6)

We find, therefore, that the KS framework is inherently incom-
patible with a simultaneous interpretation of εHOMO and εLUMO as
quasi-particle levels, and comparison of KS gaps to fundamental
ones is inherently a comparison of apples and oranges.2

So far, we only discussed properties of the exact, but unknown,
KS mapping. The two most common practical approximate
mappings are the local density approximation (LDA) and the
generalized gradient approximation (GGA).22,23 In LDA, we
assume that the xc energy per particle at each point in space is
given by its value for the uniform electron gas. This makes
vxc([n];r) a simple function (rather than a functional) of n(r). In
GGA, some account of nonuniformity is achieved by considering
vxc([n];r) as a function of the electron density as well as its
gradient. Given the explicit density dependence, neither LDA nor
GGA can exhibit any DD. Instead, they approximately average
over the DD.28,53 Therefore, even when LDA or GGA act as good
approximations for ground state properties, they underestimate I
and overestimate A by ∼Δxc/2,

54 such that neither is exact.
We emphasize that because the KS framework is exact, one can

still extract fundamental gaps from other considerations. For
example, for finite systems, one can always compute the funda-
mental gap from differences of ground state energies (for the
anion, cation, and neutral),23 with a generalization to the solid
state recently suggested.55 Other recent ideas include a scissors-like
operator based on the difference between the N + 1 and N-particle
Hamiltonians30,56 or the assessment of the derivative discontinuity
from a correction scheme that is based on fixing the asymptotic
behavior of an approximate exchange-correlation potential.57

However, these approaches do not allow for the identification of
the lowest quasi-particle excitation energies with εHOMO and εLUMO
that arise simultaneously from one self-consistent single-particle
Hamiltonian corresponding to N electrons. Therefore, we must
seek further answers outside the KS framework.

■ FUNDAMENTAL GAPS FROM GENERALIZED
KOHN−SHAM THEORY

In their pioneering 1965 article,38 Kohn and Sham also briefly
discussed the possibility of a scheme that would map the
original system into a Hartree−Fock system having the same
density, which is obviously subject to a nonlocal (i.e.,
nonmultiplicative) exchange potential. Nevertheless, a rigorous
basis for such a mapping did not emerge until more than
30 years later. In their seminal 1996 article,58 Seidl et al.
pointed out that the original KS scheme involved mapping into
a system that, by virtue of its noninteracting-particle nature,
could be described by a single Slater determinant. However,
one could equally well attempt to rely on the Hohenberg−
Kohn theorem to map the real system into any interacting
model system that can still be represented by a single Slater

determinant but will no longer necessarily be described by a
strictly local potential. They proved that such an alternate mapping
can be achieved in practice by defining an energy functional,
S[{φi}], of the orbitals {φi} comprising the Slater determinant of
the model system and expressing the total energy as a sum of
S[{φi}], the ion-electron attraction, and a “remainder” term. One
next seeks the Slater determinant that minimizes this form of the
energy functional while yielding the density of the original system
via eq 3. The minimizing orbitals then play a role analogous to that
of the KS orbitals. This procedure leads to a generalized Kohn−
Sham (GKS) equation, in the form

̂ φ + + φ = ε φO v r v n r r r( [{ }] ( ) ([ ]; )) ( ) ( )i j j js ext R (7)

where Ôs[{φi}] is a generally nonlocal, orbital-specific operator,
and vR([n];r) is a “remainder” local potential, which is a functional
of the density, and which is determined from a functional
derivative of the “remainder” energy term.
Formally, both the KS and the GKS maps are exact.58 But

whereas there is only one KS map, there exist a multitude of
GKS maps, depending on the choice of S[{φi}]. Two special
GKS maps help in clarifying the physical similarities and
differences between the KS and GKS maps.58 If one chooses
S[{φi}] to be the kinetic energy of the fictitious system, then
Ôs[{φi}] is simply the usual single-particle kinetic energy
operator, i.e., the first term in the KS equation. The
“remainder” potential vR([n];r) is then simply the sum of the
Hartree and exchange-correlation terms of the KS equation,
and the KS and GKS equations are one and the same. However,
if one chooses S[{φi}] to be the Slater-determinant expectation
value of the sum of the kinetic energy and electron-repulsion
energy operators, then Ôs[{φi}] is the sum of the single-particle
kinetic energy operator and the Hartree−Fock operator, and
the “remainder” potential vR([n];r) is then a correlation
potential. This “Hartree−Fock−Kohn−Sham” equation is
then also a special case of a GKS map. Unlike the original
Hartree−Fock equation, the “Hartree−Fock−Kohn−Sham”
equation is in principle exact. In practice, of course, little is
known about the exact vR([n];r). But we do know that it is
different from the KS correlation potential, because the local
exact exchange potential in the KS scheme is different from the
nonlocal exact (Fock) operator in the GKS scheme.2

Other choices for GKS maps, which allow for practical
approximations, are considered below. But first, let us discuss
what one can and cannot expect from exact GKS calculations.
Naively, one would think that because GKS electrons are
partially interacting, interpretation of charged excitations in
terms of single-electron energy levels would, if anything,
become more difficult. Indeed, little is known about general
properties of the GKS equation for a completely arbitrary
S[{φi}] (and ensuing Ôs[{φi}]).
Fortunately, for the specific yet important case of a Fock (exact-

exchange) nonlocal operator, it is still possible to identify the GKS
HOMO energy with −I.59 One way to rationalize this is that with
Hartree−Fock−Kohn−Sham electrons, unlike with KS electrons,
the asymptotic decay of all orbitals is (generally) dictated by
the highest occupied eigenvalue, as |φi(r)|

2 ≈ e−2(−2εHr)
1/2

.60 But
because the Hartree−Fock density is still given by eq 3, and
because the original density still decays asymptotically as n(r) ≈
e−2(2I)

1/2r, it follows that the real and Hartree−Fock densities can
only be reconciled if eq 4 is still obeyed. In this sense, then, the
exact Fock-based GKS mapping is equivalent to the KS one.61
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What about the GKS result that would be analogous to eq 5?
Recall that for the KS map, the exchange-correlation potential had
to “absorb” whatever discontinuity of the chemical potential that
was not reflected in the kinetic energy term. In the GKS equation,
some of this “burden” can be shouldered by the other nonlocal
terms, e.g., the Fock one. Thus, it can be expected quite generally
that the DD in the “remainder” potential vR([n];r) would be
smaller.2,58,61,62 Furthermore, it can be hoped that a judicious
choice of the nonlocal operator Ôs[{φi}] would diminish the DD
to a point where quantitative comparison between the GKS
LUMO energy and the electron affinity would no longer be
inconceivable a priori. And if that were to be the case, then the
GKS gap would correctly reflect the fundamental gap.
From a different perspective, recall further that we are hoping

to construct a framework whereby the highest occupied and
lowest unoccupied energy levels are also approximately related
to the picture of lowest quasi-hole and quasi-electron excitation
energies, respectively (Figure 1a). The GKS approach appears
to be indispensable in this sense as well, because the nonlocal
character of Ôs[{φi}] is essential if one is to really mimic
efficiently Dyson’s equation, in which the self-energy operator
is nonlocal by construction.14

Unlike the KS formalism, then, the GKS one does appear to
be an eminently reasonable DFT framework, in principle, for
pursuing fundamental gap calculations, at least to a satisfactory
degree of approximation. The next obvious question is whether
or not these ideas can be applied toward the construction of a
practical, approximate GKS scheme that would be able to
capitalize on its formal benefits.

■ FUNDAMENTAL GAPS FROM CONVENTIONAL
HYBRID FUNCTIONALS?

The most commonly employed flavor of GKS calculations,
although it is seldom depicted as such, is the use of so-called
“hybrid functionals”.2 In this approach, first suggested by Becke,63

the exchange potential is described by a f raction of the Fock
nonlocal exchange operator and a complementary fraction of a
local exchange potential (typically based on GGA), in the form

− ∇ + + + ̂ + −

+ φ = ε φ

⎛
⎝⎜

⎞
⎠⎟

v r v n r aV a v n r

v n r r r

2
( ) ([ ]; ) (1 ) ([ ]; )

([ ]; ) ( ) ( )i i i

2

ext H F x
sl

c
sl

(8)

where V̂F is the standard Fock nonlocal potential operator,
namely,

∫∑̂ φ = − φ ′
| − ′|

φ* ′ φ ′V r r r
r r

r r( ) ( ) d
1

( ) ( )i
j

j j iF
(9)

a is the fixed fraction of Fock exchange used, and vx
sl([n];r) and

vc
sl([n];r) are the approximate semilocal exchange and
correlation potentials used, respectively.
The fraction employed in practice, as well as the details of the

semilocal exchange and correlation potentials, can be chosen
either by semiempirical fitting to a reference data set64 or from
formal considerations.65 The “hybrid” designation reflects the
fact that this approach may be viewed as a heuristic mix of the
Kohn−Sham picture and the Hartree−Fock picture. But such
functionals are easily placed on a rigorous footing within the
GKS approach, simply by choosing S[{φi}] to be the Slater-
determinant expectation value of the sum of the kinetic energy
and a f raction of the electron-repulsion energy operator. This

yields as Ôs[{φi}] the usual kinetic energy operator, together
with a fraction of the Fock operator and the same fraction of
the Hartree term. From this point of view, the rest of the
Hartree term, the fraction of the local exchange potential, and
the correlation potential are simply our specific choice of an
approximate vR([n];r).
Unfortunately, while such conventional hybrid functionals

have found a variety of uses,2 they still do not solve the
fundamental gap problem. While typically much larger than
fundamental gaps derived from GGA eigenvalues, fundamental
gaps derived from hybrid functional eigenvalues are still
typically much smaller than the fundamental gap obtained
from experimental results and/or from a GW-BSE calculation.
Two examples for this observation are given in Figure 3, where
two prototypical organic molecules, 3,4,9,10-perylenetetracar-
boxylicdianhydride (PTCDA) and free-base tetraphenylpor-
phyrin (H2TPP), are considered. For these two molecules, the
HOMO−LUMO gap obtained from the popular Perdew,
Burke, and Ernzerhof (PBE)66 GGA functional are ∼1.5 and
1.8 eV, respectively. As expected, these values are a huge
underestimate with respect to the (experimental or GW)
reference values of ∼4.7 and ∼5.0 eV, respectively. HOMO−
LUMO gaps obtained from the popular Becke-3-parameter-
Lee−Yang−Parr (B3LYP)67 conventional hybrid functional are
∼2.5 and 2.75 eV, respectively. These values are substantially
larger than the PBE-derived ones but still woefully inadequate
with respect to the reference values.
Partly, the unsatisfactory gaps indicate that we have not been

successful in absorbing enough of the DD of the exact (and
unknown) “remainder” potential, vR([n];r), into the nonlocal
potentialan issue we return to below. However, even if we limit
ourselves to the ionization potential alone, the results are poor, as
clearly seen in Figure 3. As a second example, for H2O the
ionization potential predicted from the highest occupied B3LYP
orbital is lower than the experimental value by more than 4 eV.68

This failure is a direct consequence of using only a fraction of
exact exchange. Full Fock exchange cancels the spurious
electrostatic interaction of an electron with itself (known as the
self-interaction error69) that is inherent in the Hartree term.
Fractional Fock exchange only partially cancels this error. As a
result, the electron is partly “repelled from itself”, a fact
reflected in an asymptotic binding potential that is too weak
and ergo an ionization potential that is too small.69,70

■ FUNDAMENTAL GAPS FROM RANGE-SEPARATED
HYBRID FUNCTIONALS

The fact that fractional Fock-exchange GKS calculations do
not offer a practical remedy for the gap problem suggests that
we must seek an additional degree of flexibility in the
construction of the functional form. One idea, which we
found to be of particular promise, is that of the range-
separated hybrid (RSH) functionals, proposed by Savin and
co-workers.71−73 In this novel class of functionals, the repulsive
Coulomb potential is split into a long-range (LR) and short-
range (SR) term, e.g., via r−1 = r−1 erf(γr) + r−1 erfc(γr)
(a choice that is clearly not uniquesee, e.g., refs 73 and 74but
convenient). The SR and LR components are taken together in
the usual way for the Hartree term, yielding the usual Hartree
potential, but the components are treated differently in the
generation of the exchange term. Here, we will focus on a
specific subset of RSH functionals, in which the SR exchange is
represented by a local potential, typically derived from a local
or semilocal expression, whereas the LR part is treated via an
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“explicit” or “exact” exchange term. This leads to the following
equation:

− ∇ + + + ̂ +

+ φ = ε φ

γ γ⎛
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v r v n r V v n r
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where V̂F
lr,γ is the long-range Fock-like operator, namely

∫∑̂ φ = − φ ′ γ| − ′|
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r r

r r
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and vx
sr,γ([n];r) is the SR, semilocal exchange potential. In this

way, the full LR Fock exchange can be obtained, which is
essential to maintaining the correct description of the
asymptotic potential and therefore the ionization potential. At
the same time, the use of an LDA or GGA-type SR exchange
expression provides a natural way for maintaining the
compatibility between exchange and correlation while still
using conventional correlation expressions.
It is readily established that RSH functionals are also a special

case of the GKS approach. Here, we choose S[{φi}] to be the
Slater-determinant expectation value of the sum of the kinetic
energy and the long-range electron-repulsion energy operator,
erf(γr)/r. This yields the usual kinetic energy operator, together
with the LR fraction of the Fock operator and the Hartree term.
Our specific choice of vR([n];r) is then the sum of the SR
Hartree term, the local potential derived from the SR exchange
term, and a standard correlation potential.
The parameter γ is usually referred to as the range-separation

parameter. This is because physically 1/γ can be viewed as the
range below which the exchange is dominated by its SR
contribution and above which the exchange is dominated by its
LR contribution. The obvious question, then, is which value of
γ should we choose to use? Clearly, just as in conventional
hybrid functionals, one can opt to choose γ semiempirically; i.e.,
γ, possibly together with other free parameters in the local
exchange and correlation terms, can be fit based on appropriate
reference data. In fact, most modern RSH functionals are
constructed in this way (see, e.g., refs 74−80). A significant
problem, especially (but not only) in the context of
determining gaps, is whether one can really think of γ as a
universal, i.e., system-independent constant. Any choice of γ
generates a legitimate approximate GKS map. However, both
formal considerations81 and practical simulations for the
homogeneous electron gas problem82 show that obtaining
accurate results often requires significantly different values of γ.
In fact, γ itself can be viewed as a functional of the density,81 of
which little is known. While it is possible that other free
parameters in a semiempirical RSH functional compensate for
the rigid choice of γ, an issue we elaborate below, accuracy
outside the training set (or even a uniform level of accuracy
within it) is not guaranteed. Furthermore, the physical
transparency of the RSH idea is compromised.
Can one, then, choose the range-separation parameter from

physical considerations in a way that makes predictive
computation of gaps possible? As stressed throughout this
article, a key prerequisite is to insist explicitly that Koopmans’
theorem, eq 4, be obeyed, as suggested by Livshits and Baer.82

This means that, for each system, an optimal choice for γ can be
obtained by actively enforcing Koopmans’ theorem,68,82,83 i.e.,
by seeking a value of γ such that

−ε = ≡ − γ − γγ γI N E N E N( ) ( 1; ) ( ; )NHOMO( ) gs gs (12)

where εHOMO(N)
γ is the HOMO of the N-electron system, per a

specific choice of γ, and Iγ(N) is the energy difference between
the ground state energies, Egs, of the N and the N − 1 electron
systems, per the same γ. Importantly, in this way, γ is not fit and
the prescription is not semiempirical. Instead, for any choice of
γ, one can compute both the left-hand and the right-hand sides
of eq 12, and therefore one can seek the value of γ for which
both sides of eq 12 coincide.86 As an example of the strength of
this approach, consider the ionization potential for the set of
molecules shown in Figure 4, all of which are of interest for

Figure 3. Theoretical HOMO and LUMO eigenvalues, as well as lowest
optical singlet excitation energies, for (a) H2TPP and (b) PTCDA,
obtained from the (i) PBE, (ii) B3LYP, and (iii) optimally tuned BNL
functionals, compared to the ionization potential, electron affinity, and
optical gap obtained from (iv) many-body perturbation theory using the
GW-BSE method and (v) experimental results. For each method, the left-
hand side shows quantities compared to the ionization potential and the
electron affinity in blue and red, respectively, and the right-hand side
shows quantities compared to the optical gap.176
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organic photovoltaics. Recently, the ionization potential of this
set of molecules was computed using the GW approach of
Blase et al.87 Subsequently, Refaely-Abramson et al. investigated
the same set with the Baer−Neuhauser−Livshits (BNL) range-
separated hybrid functional,81,82 using a range-separation
parameter optimized for each molecule separately.88 Figure 4

shows that, as expected in light of the discussion in the previous
section, the B3LYP highest occupied eigenvalue is an inconsistent
and a serious underestimate of the experimental value, with a mean
error of 1.76 eV (PBE eigenvalues do even worse and are not
shown). However, the optimized BNL results compare, on
average, as favorably (or even slightly more favorably) to
experiment as the GW results do: The mean unsigned errors for
the BNL and GW results are 0.12 and 0.3 eV, respectively.
Having demonstrated that using asymptotically correct

exchange and insisting that Koopmans’ theorem be obeyed
allows for quantitative prediction of ionization potentials
without empirical considerations, the next question to ask is
whether the same can be true for the fundamental gap. For
this, we also need to determine the electron affinity. As
explained above, the remainder potential in eq 7 may contain
a discontinuity, and therefore an analogous “Koopmans’
theorem” that relates the LUMO energy to the electron affinity
does not exist. This problem can be circumvented by
considering, instead, I of the N + 1 electron anion which,
barring relaxation effects, is the same as A of the N electron
system, i.e., to seek γ such that

−ε = + ≡ γ − + γ+
γ γI N E N E N( 1) ( ; ) ( 1; )NHOMO( 1) gs gs

(13)

Equations 12 and 13 provide two different conditions but only
one optimization parameter, γ. The hope is that if the DD is
small, the γ implied by either conditions would be similar, so
that one may simply seek to minimize the overall error by
seeking to minimize a target function,83 J(γ), given, e.g., by

γ = ε +

+ ε + +

γ γ

+
γ γ

J I N

I N
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2
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To examine the accuracy of this approach, Stein et al.
considered the fundamental gaps for a series of atoms from the
first three rows of the periodic table, computed using several
functionals, and compared in Figure 5 to experimental values.89

As expected, the PBE gaps are much smaller than the
experimental ones and do not even provide a reliable qualitative
guideline for the experimental trends. The B3LYP gaps are at
least in some general qualitative agreement with experimental results
but still underestimate them significantly. Furthermore, the difference
between B3LYP and experimental results is very far from constant
as small as ∼2.6 eV for Li and as large as ∼9.3 eV for F. At the same
time, the BNL functional, optimally tuned on the basis of eq 14,
produces consistently excellent gap prediction, with a mean deviation
of 0.01 eV, a mean absolute deviation of 0.1 eV, and a maximal
absolute deviation of 0.3 eV (for P).
Importantly, Figure 5 also shows that different atoms require

significantly different range parameters: For the alkali metal

atoms, Li and Na, γ is relatively high because these atoms bear
more resemblance to one-electron systems where Hartree−
Fock theory is exact. With the exception of Be, the general
trend along a given row in the periodic table is that higher
values of the gap require larger values of γ. First row atoms
require values of γ that lie between 0.5 and 0.65, whereas
second and third row atoms require lower values, between
0.37 and 0.47. For a given atom, it is found that the gap is a
very sensitive function of the range parameter. For example, for
F and O the gap changes by as much as 8 eV when γ changes
from 0.3 to 1. This clearly shows the difficulty of yielding
consistently accurate gap values with a single choice of γ, no
matter what the precise details of the functional form or the
training set are, and highlights the importance and nontriviality
of the first-principles optimal tuning procedure.
The same optimal-tuning approach has also been found to be

quantitatively useful for prediction of fundamental gaps in
molecular and nanoscale systems. Stein et al. have shown that
the quantum size effect, i.e., the decrease of the fundamental
gap with system size, is quantitatively predicted for a series of
oligoacene molecules and of hydrogenated silicon nanocrystals,89

Refaely-Abramson et al. have shown the same for the set of
molecules depicted in Figure 4.88 These results are not shown
here for brevity. However, consider again the two prototypical
molecules of Figure 3PTCDA and H2TPP. Despite the above-
discussed failure of the GGA and conventional hybrid approaches

Figure 4. Ionization potentials for a set of photovoltaically relevant
organic molecules. Circles, experimental values; stars, optimally tuned
BNL values; diamonds, GW values;87 plus signs, B3LYP values. Figure
adapted with permission from the American Physical Association (ref 88).

Figure 5. HOMO−LUMO eigenvalue gaps obtained from PBE, B3LYP,
and optimally tuned BNL (with the optimal γ value indicated near each
data point), compared with experimental fundamental gaps (NIST,
Reference Database No. 69 (2008)), for a variety of atoms. Figure
adapted with permission from the American Physical Association (ref 89).
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for determining the fundamental gap, with the optimally tuned
RSH approach the fundamental gaps computed were ∼5.2 and
4.8 eV, which agree with the reference values to ∼0.2 eV or
better.
As with atoms, molecular systems also exhibit clear chemical

trends of the optimal range-separation parameter. Stein et al.,89

Refaely-Abramson et al.,88 and Salzner and Aydin90 found that
the optimal γ generally decreases with system size. For example,
Stein et al.89 show that for hydrogenated Si nanocrystals, the
optimal value of γ decreases from 0.4 for the “molecular limit”
of the SiH4 molecule to 0.1 for a 1.3 nm nanocrystal, and in the
bulk Eisenberg et al.91 estimated an optimal γ value on the
order of 0.01. This phenomenon has been attributed to
delocalization trends: As orbitals delocalize with increasing
system size, semilocal approximations become more accurate,
and the spatial range, 1/γ, at which exact-exchange corrections
are needed, becomes larger. This point of view has been
confirmed and further extended by Körzdörfer et al.92 They
have studied optimal-tuning trends for a series of π-conjugated
molecular systems of increasing length. For highly conjugated
chains such as oligoacenes and polyenes, they found 1/γ to
grow almost linearly with the number of repeat units, whereas
for oligothiophenes they found that 1/γ grows linearly for the
shorter oligomers but then saturates at around 10 repeat units,
and for alkane chains, 1/γ saturates already after five or six
repeat units. Their results thus expose a clear relation between
the optimal range-separation parameter and the degree of
conjugation in the system. Furthermore, again as with atoms an
optimal γ is often essential for obtaining quantitatively useful
results. For example, Refaely-Abramson et al.88 found that for
the set of molecules they studied, the average unsigned error
from the reference GW values for the HOMO−LUMO gap was
0.19 eV with an optimally tuned range-separation parameter
but a substantially larger 0.59 eV if a universal range-separation
parameter was used. A similar conclusion was drawn by
Körzdörfer et al.92 for the oligoacene series.
So far, we have examined the accuracy of the optimally tuned

range-separated hybrid functional by means of comparison to
experimental and many-body perturbation theory results.
However, to assess its predictive power, two simple figures of
merit can serve to evaluate a priori if the result is expected to
yield a usefully accurate fundamental gap.89 First, for the γ that
minimizes J of eq 14, which we denote as γ*, J(γ*) should be
smaller than the desired accuracy. Second, if the DD is indeed
small, than replacing εHOMO(N+1)

γ in eq 14 by εLUMO(N)
γ should

yield an alternative optimization criterion:

′ γ = ε +

+ ε + +

γ γ

γ γ
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which should be equally useful, i.e., γ′* (namely, the γ that
minimizes J′2(γ)) should be similar to γ* and J′(γ′*) should be
similar to J(γ*).
For the above-mentioned oligoacene and the Si nanocrystal

series, the tuning procedure resulted in J(γ*) and J′(γ′*) that
are close to zero (∼0.02 eV on average).89 Similar results were
obtained for the set of molecules shown in Figure 4. The fact
that tuning based on eq 14 or eq 15 produces essentially the
same results constitutes direct evidence that with the optimal
range-separation parameter, the DD can indeed be driven to
negligible values for these systems. Atoms are a tougher test
case, because the addition or removal of a single electron

changes their chemical nature appreciably, ergo it may be more
difficult to find an optimal γ that satisfies reasonably well both
conditions on the right-hand side of eq 14 or eq 15. Coupled
with the larger gaps atoms exhibit in general, we expect larger
deviations in this case. Indeed, optimal tuning based on eq 14
or eq 15 yields an average J′(γ′*) or J′(γ′*) of 0.65 or 0.4 eV,
respectively. The difference indicates a non-negligible, but still
small, DD. But J(γ*) in this case is too harsh a criterion. The
nonzero value of J(γ*) leads to remaining errors in I and A that
are of the same sign, resulting in the excellent gaps of Figure 5.
Thus, even in this worst-case scenario of atoms, the method still
yields quantitatively useful fundamental gaps.89

Additional insight into the success of the optimally tuned
range-separated hybrid functional approach may be gained from
considering Figure 2 again. Using the same ensemble
arguments discussed above in the context of KS theory, one
can show that also for GKS mapping, the exact total energy
versus particle number curve must be a series of linear segments
as shown in Figure 2 (left). Furthermore, because Koopmans’
theorem, eq 4, is equally valid for the GKS map, the
interpretation of the slopes of the linear segments in Figure 2
as ionization potentials also holds. Now, Yang’s group has
emphasized the importance of linear segments for accurate gap
prediction79,93−95 (and see ref 86 for an additional perspective).
And several groups have shown that for a well-constructed RSH
functional, curves of the energy as a functional of the fractional
number of electrons are much more linear than those obtained
with conventional functionals.96−98 The conditions of eq 14 or
15 then ensure that the slopes obtained would be as close as
possible to the correct physical one.92,99,100 With the
contribution of the DD minimized by virtue of the nonlocal
potential, this is sufficient to guarantee that the HOMO−
LUMO gap obtained from the optimized functional would be
directly comparable to the quasi-particle gap.
Strictly speaking, obeying the IP (Koopmans’) theorem of eq

12 for an N-particle system is a necessary, but not sufficient,
condition for obtaining a linear total energy versus particle
number curve between N − 1 and N particles. It is therefore
interesting to find out the extent to which tuning γ brings us
closer to the ideal linear E(N) curve. We explore this in Figure 2
for H2O, where we compare E(N) energy curves obtained
with different approaches. As mentioned above, the RSH
partitioning scheme of eqs 10 and 11 is not unique. For this
particular demonstration, we use the Baer−Neuhauser (BN)
functional,81 in which range separation is based on the Yukawa
potential and local SR exchange and correlation are used.102

Therefore, the BN functional reduces to the LDA one for γ → 0
and to Hartree−Fock theory (with LDA correlation) for γ→∞.
As shown in Figure 2 (right), in those limits of the
BN functional, the results exhibit a strongly positive curvature
C  ⟨d2E/dN2⟩ ≈ 11.5 eV and strongly negative curvature
C ≈ −5 eV, respectively, in agreement with previous studies of
curvature in LDA and Hartree−Fock calculations for
atoms.103,104 Thus, there is indeed great sensitivity of the
curvature to the value of γ, and remarkably, enforcing eq 12
and nothing morealready reduces the average curvature to a
mere C ≈ 0.1 eV. A similar behavior has been reported recently
by Srebro and Autschbach for different moleculesβ-pinene99

and CuCl100with a different underlying RSH functional,
underscoring the generality of this analysis.
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■ OPTICAL GAPS FROM TIME-DEPENDENT
KOHN−SHAM AND GENERALIZED KOHN−SHAM
THEORY

DFT, in either the KS or GKS approach, is a ground state theory.
Therefore, in order to consider optical excitations (or, for that
matter, any other excited state property), we must look beyond
DFT. The natural extension of DFT to excited states is given by
time-dependent DFT (TDDFT).33,34 The basic tenet of TDDFT is
the Runge−Gross theorem,32 which extends the Hohenberg−Kohn
theorem by showing that (with reasonable restrictions on the initial
states and potentials) the time-dependent density, n(r,t), of a system
of interacting electrons in some time-dependent external potential,
vext(r,t), determines this potential uniquely (up to an uninteresting,
possibly time-dependent, spatially independent additive constant).
In time-dependent KS theory, one builds on the Runge−Gross

theorem to show that the time-dependent density of the physical
interacting-electron system can be mapped into an equivalent
system of fictitious noninteracting electrons that are subject to a
common local time-dependent external potential, in the form32
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Equation 16 is known as the time-dependent KS equation. Other
than the obvious time dependence in the various quantities, the
main difference between eq 16 and its time-independent
counterpart, eq 2, is that the exchange-correlation potential, vxc
([n];r,t), is now generally a functional of the entire history of the
density, n(r,t), as well as of the initial conditions for the many-
body wave function, making it generally more complicated.
Just like the time-independent KS equation, the time-dependent

KS equation is also exact in principle but approximate in practice
because the exact dependence vxc([n];r,t) is unknown. In addition
to the usual assumptions about the spatial nature of the exchange−
correlation functional, one must now make a further assumption
about its temporal form. In the adiabatic approximation, which is
by far the one used most commonly in actual computations, one
simply assumes that at any given time, the exchange−correlation
potential does not depend on the history of the charge density,
only on its present distribution.105

As discussed above, little is known about general properties
of the GKS mapping. In particular, we are not aware of general
theorems establishing a time-dependent GKS mapping for a
completely arbitrary S[{φi}]. Fortunately, for the specific case
of a mapping involving the Fock operator, including the Fock-
like long-range-exchange operator discussed above, a mapping
to a time-dependent GKS equation can be established by
repeating the steps of the original Runge−Gross theorem in the
presence of this specific nonlocal term. The time-dependent
GKS equation then takes the form
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where the nonlocal operator, V̂nl, is aV̂F of eqs 8 and 9 for a
conventional hybrid functional and V̂F

lr,γ of eqs 10 and 11 for an
RSH functional, and vloc ([n];r,t) represents all local-potential
components of the hybrid functional used.

In most standard optical spectroscopy experiments, the
perturbing electromagnetic field is weak relative to the internal
fields in the probed object. Therefore, most practical
applications of the time-dependent (G)KS equation are
performed via linear-response theory.106−108 In this approach,
the (G)KS system is subjected to a weak perturbing time-
periodic signal. Due to the self-consistent nature of the (G)KS
Hamiltonian, the effective perturbation includes the response of
the self-consistent potential to the perturbation. By changing
the frequency of the perturbing field, this self-consistent
perturbation can be used to compute the dynamic polarizability
of the system. Optical excitation energies and oscillator
strengths can then be computed from the poles and residues
of the dynamic polarizability, respectively.
The linear response process can equivalently be viewed as

the construction of a coupling matrix between all possible
occupied−unoccupied (“electron-hole”) pairs of (G)KS
orbitals. The eigenvalues of this matrix correspond to optical
excitation energies and the eigenvector components are
indicative of the relative contribution of each (G)KS pair to
the excitation. The optical gap is then simply the lowest
eigenvalue of the coupling matrix that corresponds to a dipole-
allowed transition. In the presence of a Fock-like nonlocal
potential of the type discussed above, the linear-response
TDDFT equation is given in the form109
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where X and Y are the electron−hole and hole−electron
components, respectively, of the eigenvector, with
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where σ and σ′ are spin indices, k,j and s,t are, respectively,
indices for occupied and unoccupied (G)KS orbitals, φ, and
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and f xc
γ (r;σ,σ′) is the exchange-correlation kernel (i.e., the

functional derivative of the exchange-correlation potential with
respect to the density), arising from the combination of the
semilocal exchange and the correlation, with
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With straightforward modifications, these adiabatic linear-
response equations are applicable to the conventional func-
tionals discussed above as well. For semilocal functionals, one
sets uγ(r12) = 0 and replaces f XC

γ (r;σ,σ′) with the usual xc kernel,
f XC(r;σ,σ). For conventional hybrid functionals, one replaces
uγ(r12) with a/r12, with a as usual the hybrid mixing parameter,
and replaces f XC

γ (r;σ,σ′) with the appropriate local kernel of the
hybrid. Linear-response time-dependent Hartree−Fock theory
is also obtained as a special case, either by setting γ→∞ in the
RSH form or by setting a = 1 in the conventional hybrid form
and setting the xc kerenel to zero in either case.
Importantly, TDDFT, in either its KS or GKS form, is an

exact theory. Indeed, the structure of the coupling matrix of eq
18 immediately shows that Coulomb and exchange-correlation
interactions between filled and empty orbitals are explicitly
accounted for; i.e., the requisite physics of two-body
interactions is present in the linear-response formalism.
Therefore, given a suitable approximation for the exchange-
correlation functional, the TD−(G)KS optical gap can be
meaningfully compared to experimental results even if the
(G)KS gap of the underlying ground state does not correspond
to the fundamental gap. Indeed, TDDFT with conventional
functionals is by now well-known to produce highly satisfactory
predictions of optical gaps.34,105,110−115 However, due to the
above-discussed failure of fundamental gap prediction with
these functionals, the requisite two-body interaction does not
conform to the physical picture of Coulomb attraction between
a quasi-electron and a quasi-hole.
To understand the last statement, we return to the

prototypical molecules of PTCDA and H2TPP. As shown in
Figure 3, for both molecules the optical gaps computed from
linear-response TDDFT based on GGA, B3LYP, and optimally
tuned BNL are all similar to each other and to the experimental
value. However, with GGA, the KS gap is not only smaller than
the fundamental gap, it is in fact substantially smaller than even
the optical gap. Consequently, putting in the two-body
interactions via the linear-response formalism actually increases
the gap, contrary to the physical picture of gap reduction due to
excitonic attraction. For B3LYP, the GKS gap turns out to be
similar to the optical gap, and so the linear-response formalism
barely changes it, again contrary to the customary physical
picture. Only for the optimally tuned RSH functional, where
the HOMO−LUMO gap does mimic the quasi-particle gap, is
the expected gap closure obtained: the overall exciton-binding
picture is the same as that obtained within many-body
perturbation theory, and the quantitative values are close to
those obtained from a GW+BSE calculation. Thus, the
optimally tuned RSH approach retains the physical quasi-
particle picture for both single- and two-particle excitations

within one logically consistent framework, a feat not previously
achieved within density functional theory.

■ CHARGE TRANSFER OPTICAL EXCITATIONS FROM
TIME-DEPENDENT KOHN−SHAM AND
GENERALIZED KOHN−SHAM THEORY

For the intramolecular excitations of Figure 3, we have seen
that the optimally tuned RSH functional approach is needed to
mimic the picture of exciton binding. However, we have also
seen that if one is interested in the optical gap per se, adiabatic
linear-response TDDFT with a semilocal or conventional
hybrid functional is quite sufficient. However, this is not
universally true. A specific case of optical excitations, already
mentioned in the Introduction, is that of the charge transfer
excitation, where photon absorption induces the transfer of an
electron from a donor unit to an acceptor unit. For this special
but important case, use of a semilocal or a conventional hybrid
functional will lead to an incorrect prediction, both
quantitatively and qualitatively.
To understand why this failure occurs, we first focus on the

limiting case of charge transfer between well-separated donor
and acceptor units.35,36 Consider the adiabatic linear-response
TDDFT equation for the case of a singlet excitation dominated
by the HOMO and LUMO orbitals, separated by a large
distance R, such that their spatial overlap is negligible. In this
limit, the matrices C and D of eq 18 reduce to scalars, and one
can easily establish that the lowest excitation energy is given by
εH − εL − ∫ ∫ |ϕH(r)|

2uγ(|r − r′|)|ϕL(r′)|
2 d3r d3r′. For the three

classes of functionals considered throughout this article, this
reduces to

ϵ − ϵ ‐

ϵ − ϵ −

ϵ − ϵ − ≫ γ

a R

R

semi local functional

/ conventional hybrid functional

1/ RSH functional, R 1/

H L

H L

H L (25)

Now, compare these expressions to the Mulliken limit for
charge transfer excitations, given in eq 1 above, ID − AA − 1/R.
Identity between eq 25 and eq 1 is obtained if and only if εH − εL
can be equated to ID − AA and the third term in eq 25 can be
equated with 1/R. As discussed in detail above, the eigenvalue
gap is significantly smaller than the fundamental gap with either
semilocal or conventional hybrid functionals. Moreover, the
1/R dependence is missed entirely in semilocal functionals, and
only a fraction of it is accounted for in conventional hybrid
functionals.123 Both problems are cured by optimally tuned
RSH functionals: they are designed to produce the correct
fundamental gap, and for 1/R ≪ γ the correct 1/R dependence
is obtained inherently.

Table 1. Charge Transfer Excitation Energies, in eV, for Four Donor-Tetracyanoethylene Complexes, Computed Using TDDFT
with Different Functionals,83 and GW-BSE (With126 and Without125 Partial Self-Consistency), Compared to Gas-Phase
Experimental Data124,a

TDDFT GW-BSE

donor PBE B3LYP BNL (γ = 0.5) BNL (tuned γ) experiment no self-consistency partial self-consistency

benzene 1.6 2.1 4.4 3.8 3.59 3.2 3.6
toluene 1.4 1.8 4.0 3.4 3.36 2.8 3.3
o-xylene 1.0 1.5 3.7 3.0 3.15 2.7 2.9
naphthalene 0.4 0.9 3.3 2.7 2.60 2.4 2.6
MAE 2.1 1.7 0. 8 0.1 0.4 0.1

aFor each computation, the mean absolute error (MAE) with respect to experimental results is also given.
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With the logic of using the optimally tuned RSH functional
approach established via the Mulliken limit, one must examine
how well the approach works for realistic donor−acceptor
distances. The success of the approach for such cases is
demonstrated in Table 1. The table shows the lowest charge
transfer excitation energy obtained from TDDFT with various
functionals for complexes formed by an aromatic donor
(benzene, toluene, o-xylene, and naphthalene) and the
tetracyanoethylene (TCNE) acceptor,83 compared to gas-
phase experimental values124 and to the results of two different
GW-BSE calculations.125,126 As expected from the above
discussion, TDDFT with PBE clearly results in a very severe
underestimate of experimental results, with a mean absolute
error (MAE) of ∼2.1 eV. The results are somewhat better with
B3LYP but still very far from satisfactory, with a MAE of ∼1.7 eV.
In agreement with the general trends discussed above, use
of BNL with its “off the shelf” default γ value of 0.5 provides for
significant further improvement, but the MAE of ∼0.8 eV is still
not satisfactory. With the optimally tuned BNL functional,
however, theory is consistently within ∼0.1−0.2 eV of
experimental results, and the MAE is a satisfying ∼0.1 eV.
Interestingly, the results obtained from the optimally tuned
RSH approach are better than those obtained from “single-shot”
perturbative GW corrections, followed by a BSE calculation,
based on a PBE starting point. The two methods agree
very well, however, if a partially self-consistent update of
the quasi-particle energies when building both G and W is
performed.126

Optimally tuned RSH-based TDDFT and GW-BSE calcu-
lations also agreed well for charge transfer energy of
(substituted-anthracene)/TCNE complexes.83,126 There, the
results could only be compared to solution experiments.
However, whenever a significant disagreement between theory
and experiment was encountered due to solvent effects
(notably for methyl and dimethyl anthracene), RSH-based
TDDFT and GW-BSE results still agreed closely with each
other, indicating the robustness of the optimal-tuning approach.
Optimally tuned RSH-based TDDFT calculations have resulted
in satisfying agreement between theory and experiment also for
other donor−acceptor complexes, e.g., pentacene/C60

127,128

and (functionalized subphthalocyanine)/C60.
129

Importantly, practically relevant charge separation scenarios,
e.g., for photovoltaic applications, often rely on partial charge
transfer from a donating moiety to an accepting moiety, rather
than on complete charge transfer in a weakly bound donor−
acceptor pair, owing to the larger oscillator strength of the
optical absorption. Even in this case, which is further removed
from the Mulliken limit, comparison of optimally tuned RSH
TDDFT calculations with appropriate benchmark theoretical or
experimental data reveals a significantly improved accuracy of
optical gap prediction (with respect to use of conventional
functionals). Successfully studied examples include, e.g.,
coumarin-based dyes,130 oligothiophene-substituted naphtha-
lene diimide,131 and functionalized octahedral silsesquiox-
anes.132

RSH functionals in general,133−136 and optimally tuned ones
in particular,109 were also recently found to provide quantitative
accuracy in the prediction of low-lying singlet excitation
energies of oligoacenes and other polyaromatic hydrocarbon
systems. For this problem, semilocal and conventional hybrid
functionals are indeed known to fail,137,138 but the success of
the RSH approach is surprising because the relevant transitions
are clearly not of a charge transfer nature. Kuritz et al.109

dubbed such excitations as “charge-transfer-like” and showed
that the seemingly unrelated issue of the failure in predicting
their energies is in fact strongly related to the above-discussed
charge transfer problem. It is again a consequence of the
presence of weakly spatially overlapping orbitals and the
absence or presence of adequate nonlocal exchange. However,
here the weakly spatially overlapping orbitals are not those
obtained directly from the ground-state DFT calculation but
rather those obtained from a unitary transformation thereof.
For example, in anthracene, the optical excitation dominated by
a HOMO−LUMO transition is poorly described by TDDFT
with conventional functionals. The HOMO and LUMO do
strongly overlap spatially, but the orbitals formed from their
(normalized) sum and difference overlap spatially very
weakly.109 Thus, the bad news is that the charge-transfer-like
character cannot be exposed by considering only the
untransformed orbitals or the density difference induced by
the excitation. The good news, however, is that the optimally
tuned RSH approach inherently cures the failures associated
with charge-transfer-like scenarios, even if they went
undetected.
Perhaps the simplest special case of the general “charge-

transfer-like” scenario, analyzed in detail by Hieringer and
Görling,139−141 is that of excitations in a spatially separated
homodimer. There, the transition is dominated by four orbitals,
two corresponding to a linear combination of the HOMO of
each monomer and two corresponding to a linear combination
of the LUMO of each monomer. Also in this case, the
excitation does not involve charge-transfer that can be deduced
from density differences, and yet linear-response TDDFT based
on GGA fails. But a 4 × 4 unitary transformation exposes the
absence of spatial overlap between the HOMO of one
monomer and the LUMO of the other as the true source of
this failure. Hieringer and Görling demonstrated this failure for
the well-separated ethene dimer, and indeed Phillips et al.142

recently showed that also for this system the optimally tuned
RSH approach overcomes the failure, for the same reason.
Finally, we note that the optimally tuned RSH functional has

also been shown recently to improve other issues associated
with the description of optical excitations using TDDFT,
notably the description of triplet excitations143 (without the
Tamm−Dancoff approximation144) and the calculation of
optical rotation.99 A detailed discussion of these interesting
results is outside the scope of this article.

■ THE IMPORTANCE OF OPTIMALLY TUNING A
RANGE-SEPARATED HYBRID FUNCTIONAL

In the preceding sections, we showed that an optimally tuned
RSH functional allows for the prediction of quantitatively
accurate fundamental and optical gaps for a variety of systems.
Furthermore, we explained the physical rationale that allows
this achievement without recourse to empirically adjusted
parameters. However, one may still wonder whether by
sacrificing the absence of empiricism, one may gain equally
accurate fundamental and optical gaps even without range-
separation, or optimal tuning, or both. To answer this
question, in this section we consider three classes of alternative
exchange-correlation functionals that could potentially be
viewed as viable candidates for gap calculations within a GKS
scheme.
The first class consists of short-range (“screened”) hybrid

functionals145,146 and is best exemplified by the Heyd, Scuseria,
and Ernzerhof (HSE) functional.147,148 In this approach, the
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Coulomb repulsion operator is partitioned into SR and LR
components using the error function, as explained above.
However, unlike in the RSH scheme of eqs 10 and 11, a
conventional-hybrid f raction of Fock exchange is used in the SR
only, with no LR Fock exchange. Specifically for HSE, the Fock
fraction is a nonempirical a = 0.25, adapted from the PBE-based
conventional hybrid (PBE065,149,150), and γ is determined
empirically to be 0.11, based on its performance for extensive
training sets. It is interesting to examine HSE-based gaps for
finite systems, because for many bulk solids the HSE HOMO−
LUMO gap has been found to be in very good agreement with
experimental gap values.151−153

The second class we examine consists of semiempirical
conventional hybrid functionals, whose functional forms for the
various exchange and correlation components contain a
(possibly large) number of empirical parameters. These
parameters are fixed by fitting to a large and diverse training
set, with the aim of providing a balanced treatment of main
group thermochemistry and kinetics, transition metal chem-
istry, long-range charge transfer, and noncovalent interactions.
As an example for this class, we consider here the M06 set of
functionals,154,155 a family of meta-GGA-based functionals (i.e.,
functionals whose “semi-local” component includes kinetic
energy spin densities, in addition to the spin-densities and their
gradients2), with varying fractions of exact exchange, and
several dozen additional empirical parameters in the functional
form. Here, we consider two members of the M06 family: (1)
M06, recommended as having the best “across-the-board”
accuracy,154 which is comparable to B3LYP or PBE0 in terms of
its fraction of exact exchange (a = 0.27), and (2) M06-HF,156

which has full Fock exchange (a = 1) and therefore exhibits the
correct asymptotic potential, but with some sacrifice of ground
state accuracy.154 It is interesting to examine M06 to see if the
large degree of empiricism assists gap predictions, and it is
interesting to examine M06-HF in order to test the extent to
which it improves gap predictions owing to its correct
asymptotic potential.
The third class of functionals we consider consists of long-

range RSH functionals, but with γ determined semiempirically
once and for all, rather than tuned per system. Of those, we
consider here two representative functionalsLC-ωPBE, a
PBE-based long-range RSH,76,157 and ωB97X, a B97-based
long-range RSH that also includes a fraction of short-range
Fock exchange.75 The former is “in the spirit of HSE” in the sense
that its γ = 0.4 is the only empirically fit parameter. The latter is “in
the spirit of the M06 family” in the sense that it contains 16
additional fitting parameters, other than its γ = 0.3. Both functionals
have been found to do well for a broad range of molecular
properties. It is interesting to examine these functionals so as to test
to what degree their universal range-separation parameter, possibly
augmented with additional flexibility in the functional form, can
provide sufficient accuracy for various systems.
To facilitate a comparison between the different approaches,

we revisit the systems studied in Figures 3−5, namely, the
fundamental gaps of atoms, the ionization potentials for a set of
photovoltaically relevant organic molecules, and the funda-
mental and optical gaps of our two prototypical molecules,
PTCDA and H2TPPall with the same basis sets used in the
original articles.88,89 The results are presented in Figure 6a−c.
Many observations are drawn from Figure 6. First, it is clear

that HSE and M06 are essentially equivalent to B3LYP: using
their eigenvalues to predict ionization potentials and
fundamental gaps results in qualitatively identical and

quantitatively similar underestimates, while the optical gap
obtained from TDDFT is very close. In other words, the
fraction of Fock exchange is the primary factor in gap determination,
with elimination of long-range exchange or semiempirical
optimization of other exchange and correlation components playing
a secondary role. For HSE in particular, it has been repeatedly
observed (see, e.g., refs 153, 158−162) that gaps derived from
the HSE HOMO−LUMO gap are often close to the optical
gap, rather than the fundamental one. Figure 6c shows that this
is true also for PTCDA and H2TPP, but still a time-dependent
HSE is required for quantitative accuracy. In any case, neither
HSE nor M06 provide the above-discussed desired physical
picture of gap reduction due to excitonic attraction.
In principle, one can consider whether this limitation can be

overcome by tuning the fraction of exact exchange in a con-
ventional hybrid functional (namely, the parameter a of eq 8),
so as to minimize the curvature of the total energy versus
particle number curve. This procedure has in fact been
employed recently by Sai et al.163 For small oligoacenes, they
found that for PBE0 (where usually65 a = 0.25) this procedure
leads to a = 0.75, which results in improved gap predictions and
an improved description of hole localization in the molecular
solid. Similar behavior has been found by Imamura et al. for
other small molecules and other underlying functionals.164 We
note, however, that such a large fraction of exact exchange is
above-and-beyond that known to result in quantitative
predictions of thermochemical149,150,154 or electronic struc-
ture165,166 properties. Thus, obtaining quantitatively accurate
ionization potentials and quasi-particle gaps from conventional
hybrid functionals, without disrupting the delicate balance
between exchange and correlation in ways that could be
otherwise detrimental, appears to be very difficult indeed.
Consider now the M06-HF functional, which is still a

conventional hybrid functional “in spirit” but is unusual in
having the full Fock exchange. For atoms, we have encountered
serious convergence issues with M06-HF. Therefore, M06-HF
data do not appear in Figure 6a. Clearly, M06-HF does offer
some quantitative improvement over M06 for the ionization
potentials in Figure 6b (reducing the mean error from
∼1.6 eV to ∼0.9 eV). Importantly, whereas M06 consistently
underestimates ionization potentials, M06-HF consistently
overestimates them. For the fundamental gaps in Figure 6c,
the quantitative improvement is much more significant.
Furthermore, considering the optical gaps as well, the physical
picture of gap reduction due to excitonic attraction is now
obtained, emphasizing yet again the importance of utilizing
functionals that yield the correct asymptotic potential.
Unfortunately, M06-HF again results in an overestimate of the
experimental and/or many-body perturbation theory results,
by an unsatisfying ∼1 eV.
Overestimation of ionization potential and fundamental gaps

is qualitatively typical of Hartree−Fock calculations. We
interpret this behavior of M06-HF as indicative of the difficulty
of obtaining sufficiently accurate correlation expressions that
are compatible with full exact exchange, even with extensive
empiricism. Such compatibility is quite generally a very difficult
task, because it inherently requires a highly nonlocal depend-
ence of the correlation on the density,2 and its absence is the
Achilles heel of M06-HF. Consequently, while gap prediction
from M06-HF eigenvalues offers both qualitative and
quantitative advantages over other hybrid functionals, this
comes at the cost of M06-HF being inferior to other hybrid
functionals for other ground state properties, and despite this
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sacrifice its gap results are still quantitatively unsatisfying. This
naturally points to RSH functionals which, as discussed above,
provide a natural way for maintaining the compatibility
between exchange and correlation.

The remaining question, then, is whether tuning of RSH
functionals is really essential for gap prediction, or whether
it can be circumvented by fitting of the range-separation
and other parameters. Consider, then, the performance of
LC-ωPBE and ωB97X. For the atomic gaps of Figure 6a, both
functionals provide a dramatic improvement in accuracy over
conventional hybrid functionals, in agreement with previous
studies on the performance of nontuned RSH functionals for
atomic gaps.96,98 However, quantitatively both still exhibit a
significant erroras large as ∼3 eV for F. More interestingly,
they exhibit a qualitative problem similar to that of conven-
tional hybrid functionals, namely, a clear error trend across
rows of the periodic table, especially the first one. This trend
does not exist in the optimally tuned BNL results, a fact which
we attribute directly to the strong variations in the optimal
range-separation parameter across the first row of the periodic
table (cf. Figure 5). Complementarily, while optimally tuned BNL
results are superior throughout, LC-ωPBE results are closest to
them for the heavier elements, where its range-separation
parameter (γ = 0.4) is generally close to the optimized value.
For the molecular ionization potentials of Figure 6b, both of

the semiempirical RSH functionals again provide a dramatic
improvement in accuracy over conventional hybrid functionals,
as well as a significant quantitative improvement over M06-HF.
Still, their results clearly fall short of those obtained by optimal
tuning. Unlike the atomic case, here it is ωB97X, rather than
LC-ωPBE, which is closer to experimental results. We attribute
this to its smaller range-separation parameter (γ = 0.3), which is
more appropriate for these systems, as well as to its additional
empirical parameters. Most importantly, Figure 6c shows that,
as expected, both functionals provide the physical picture of gap
reduction due to excitonic attraction, but neither is
quantitatively usefulfor PTCDA, for example, the predicted
fundamental gap is off the GW value by ∼1 eV and is only
marginally better than that obtained from M06-HF. This can be
further understood by considering the series of hydrogenated Si
nanocrystals mentioned above.89 For the SiH4 molecule,
we find that ωB97X predicts a gap that is within a satisfying
∼0.2 eV from the reference GW value. However, for the larger
Si35H36 passivated nanocrystal, the same functional predicts a
gap that overestimates the GW reference data by an entirely
unsatisfying ∼2.1 eVa direct consequence of the failure of a
fixed range-separation parameter to follow the delocalization
trends discussed in previous sections. Thus, we find that for all
functionals tested the additional degrees of empiricism are not
capable of reaching the accuracy afforded by optimal tuning of
the range-separation parameter.
As explained above on the basis of the Mulliken limit, correct

prediction of the fundamental gap is essential to the correct
prediction of charge transfer optical excitations. Thus, it comes
as no surprise that the above-discussed trends recur upon
revisiting the charge-transfer excitations of Table 1. We do not
provide the full results for brevity, but as before, HSE and M06
are essentially equivalent to B3LYP, whereas M06-HF provides
an overestimate of excitation energies. Here, it is important to
point out that in recent years a significant body of literature, too
vast to review here in detail (but see, e.g., refs 75, 133, 167−172
for some examples), has shown that empirically constructed
RSH functionals greatly improve the prediction of (full or
partial) charge transfer excitation energies, often reaching
quantitative agreement with experimental results. For the test
systems of Table 1, we too find that the semiempirical RSH
functionals provide for further improvement, but that they

Figure 6. Comparative study of error trends obtained from the
different functionals discussed in the text. (a) Difference between
HOMO−LUMO eigenvalue gaps and experimental fundamental gaps
for a variety of atoms. (b) Difference between HOMO eigenvalue and
experimental ionization potential for a set of photovoltaically relevant
organic molecules. (c) Fundamental and optical gaps for PTCDA and
H2TPP, compared to many-body perturbation theory and exper-
imental values.

Journal of Chemical Theory and Computation Perspective

dx.doi.org/10.1021/ct2009363 | J. Chem. Theory Comput. 2012, 8, 1515−15311527



become quantitatively accurate only if their range-separation
parameter happens to be appropriate. Similar findings as to the
importance of tuning for the quantitative accuracy of RSH
functionals have been recently given by Minami et al. for the
pentacene/C60 complex.128

Specifically, we believe that several important advantages are
associated with using optimally tuned, rather than empirical,
RSH functionals, for charge-transfer excitations. First, optimal
tuning allows for computation of accurate excitation energies
without the introduction of any empirical parameters or fitting
proceduresan important issue for obtaining truly predictive
power even for systems sufficiently different from those in the
training set. Second, it naturally overcomes the fact that the
value of γ that is optimal for, e.g., thermochemistry may not
necessarily be the one optimal for excited state proper-
ties61,78,173 (and cf. Table 1). Last but not least, with optimal
tuning, the underlying physicsfulfillment of the Mulliken
limit via explicit enforcement of eq 25is transparent and not
obscured by additional constructs in the exchange and/or
correlation functionals.
To summarize, while one can never rule out future ingenuity,

presently non-RSH functionals, as well as RSH functionals that are
not optimally tuned, do not offer satisfactory quantitative prediction
of fundamental and optical gaps for a sufficiently wide variety of
systems, even if one is willing to embrace empiricism.

■ CONCLUDING REMARKS
The most important message of this article is that in finite
systems, contrary to conventional wisdom, both single- and
two-quasi-particle excitation thresholds can be reliably
predicted from the HOMO−LUMO eigenvalue difference of
a DFT calculation and the lowest eigenvalue of a TDDFT
calculation, respectively, using the same exchange-correlation
functional.
Throughout this article, we have attempted to show that this

newly discovered capability, which conventional semilocal and
hybrid functionals do not possess, is made possible by nesting
three essential concepts, each of which removes a different
obstacle. The first essential concept is the generalized Kohn−
Sham scheme. It provides the hope for minimizing the role of
the derivative discontinuity, which precluded the identification
of the HOMO−LUMO gap with the fundamental gap in the
original Kohn−Sham approach. Within the generalized Kohn−
Sham scheme, the second essential concept is that of the range-
separated hybrid functional. It allows us to bridge two
requirementsthe need for exact exchange so as to obtain
the correct asymptotic potential and the notoriously difficult need
to devise computationally convenient correlation expressions that
would be compatible with exact exchange. In the range-separated
hybrid scheme, the semilocal correlation provides a quantitative
approximation of the dynamic correlation, whereas the short-range
semilocal exchange also mimics the static correlation, such that a
useful balance of all exchange and correlation components can be
obtained in a natural manner.
From an exchange-correlation energy point of view, the

range-separated hybrid functional belongs in the fourth rung of
Perdew’s famous “Jacob’s ladder” classification of density
functionals174it is an explicitly orbital-dependent functional,
which uses the density and its gradient along with filled orbitals,
so as to create an approximation for what can effectively be
viewed as exact exchange with approximate compatible
correlation. As such, it may still be used in two different
ways:2 (1) within the Kohn−Sham scheme, where the

corresponding local (multiplicative) exchange-correlation
potential is derived by taking the functional derivative with
respect to the density using the optimized effective potential
equation, and (2) within the generalized Kohn−Sham
scheme, where the nonlocal component of the exchange-
correlation potential is derived by taking the functional
derivative with respect to the orbitals. We emphasize again
that only the generalized Kohn−Sham scheme, however, is
suitable for describing single-quasi-particle excitations based
on frontier eigenvalues, underscoring the need to combine
the first two essential concepts.
Within the range-separated hybrid functional approach, the

third essential concept is the use of system-specific optimal tuning
to determine the range separation parameter. It is needed because
it allows us to overcome the difficulty of the absence of a universal,
system-independent value for a range-separation parameter. By
providing us with a natural, physically motivated procedure for
finding a system-dependent range-separation parameter, the
correct balance between exchange and correlation is attained for
any system of interest. However, the optimal tuning idea is more
than just a mathematical device. Fundamentally, we view it as a
significant departure from the usual paradigm for functional
construction and application. Typically within DFT, we seek an
increasingly general functional form that can come as close as
possible to the ideal of a universal functional. The price to pay for
that, however, is an increasingly complex functional and an
increasingly larger computational cost (a fact made clear from, e.g.,
consideration of the different rungs in the above-mentioned
“Jacob’s ladder” of functionals). Here, we choose to sacrifice the
notion that we always seek an all-purpose functional expression
the theoretical equivalent of a “Swiss army knife”so as to gain
greatly in simplicity and applicability without a loss of accuracy.
Specifically, we gain by retaining a reasonably simple, low-cost
functional form (i.e., that of eq 10). In return, we pay the relatively
modest price of the system-specific tuning step, through which we
retrieve the flexibility that was lost in the choice of the functional
form. Importantly, we sacrifice neither the predictive power nor
the first principles nature of the approach. This is because we do
not f it the parameter against a set of empirical data but rather tune
it so as to uphold a physical requirement.
At this point, we need to emphasize that the above approach

is not a panacea. Many challenges remain, some of which we
briefly sketch here. First of all, throughout this text we have
focused on excitation thresholds only and have not addressed
higher energy excitations. Second, a major limitation is that the
approach is not size consistent. This means that if we take a
system comprised of two well-separated and different subunits,
the total energy of the system is not guaranteed to be the sum
of the total energy for each separately calculated subunit, due to
a possibly different optimal choice of the range-separation
parameter. This failure severely limits binding energy
calculations. More generally, it is expected to limit the accuracy
of the approach for significantly heterogeneous systems where
different moieties may require different effective range-
separation parameters. Third, the approach as given here is
applicable to finite-sized systems. For periodic systems, such as
solids, or partially periodic systems such as surfaces, nanowires,
or nanotubes, adding or removing an electron explicitly is not
possible due to periodic boundary conditions. Last but not
least, in some cases, quantitative differences with respect to
experimental results may remain (see, e.g., refs 90 and 99), and
in other cases (e.g., systems with a strong multireference
character), the performance of the approach has not been
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sufficiently investigated yet. We attribute such difficulties to the
delicate balance between the remaining exchange and
correlation components.
Despite these remaining limitations and others, we do believe

that the approach presented in this article provides a useful
intellectual and practical framework for further research, develop-
ment, and application. Consider that in their 2002 overview on
density-functional versus many-body Green’s function approaches
to electronic excitations, Onida et al. pointed out that “progress in
the theoretical description of spectroscopy is in fact very often
linked to progress in finding better effective one- or two particle
Hamiltonians”.1 We find that this is precisely what the work
presented here accomplishes and, in doing so, provides a major
step forward in bridging the typical chasm between the DFT and
the quasi-particle point of view. Specifically, we have provided a
procedure for determining an effective one-particle Hamiltonian
within DFT, which is “better” in the sense of it being able to
mimic single-quasiparticle many-body perturbation theory more
effectively. Furthermore, within TDDFT, the linear-response
kernel based on the same approach allows us to mimic the two-
particle interaction in general and the exciton binding energy in
particular. This opens the door for reliable theoretical spectroscopy
for a great variety of systems that are computationally out of reach
for many-body perturbation theory techniques.
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