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Coupled-cluster response theory for vertical excitation energies within the second-order
approximate coupled-cluster singles-and-doubles model CC2, including linear-r12 corrections, is
derived and implemented for Ansätze 1 and 2 of R12 theory. An orthonormal auxiliary basis set is
used for the resolution-of-the-identity approximation in order to calculate the three- and
four-electron integrals needed in R12 theory. The basis set convergence is investigated for a selected
set of atoms and small molecules and it is found that in many cases the convergence is not improved.
An analysis of the different contributions to excitation energies shows that the present scheme for
the construction of the R12 pair functions leads in response theory to an unbalanced description of
ground- and excited-state wave functions and needs to be generalized to carry the high accuracy of
R12 methods over to response theory. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2161183�
I. INTRODUCTION

Since Hylleraas1 demonstrated in 1929 for the He atom
that the inclusion of a correlation factor depending on the
interelectronic distance r12 into the wave function leads to an
excellent description of short-range electron correlation,
much progress has been achieved in this field. In 1985,
Kutzelnigg2 proposed the linear-r12 Ansatz and already in
1987 the explicitly correlated second-order Møller-Plesset
perturbation-theory model MP2-R12 was introduced.3

Much improvement has been achieved for this model in
terms of different Ansätze, different approximations, and
more efficient implementations �see Ref. 4 and references
therein�. In 2003, Manby5 combined the MP2-R12 model
with density-fitting techniques, and Ten-no and Manby im-
proved the basis set convergence by rearranging three-
electron integrals before using the resolution-of-the-identity
�RI� approximation.6 In 2005, Kordel et al.7 developed the
analytical calculation of first-order molecular properties such
as quadrupole moments for the MP2-R12 theory. Further-
more, there are other explicitly correlated MP2 approaches
available using various functions of r12 in place of the inter-
electronic distance r12 itself.8–10 In particular, the use
of nonlinear correlation factors such as exp�−�r12� or
r12 exp�−�r12� has been shown11,12 to be an efficient alterna-
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tive to the conventional linear-r12 Ansatz. A recently pub-
lished error analysis of explicitly correlated electronic struc-
ture theory by May et al.13 underlines the importance of this
new correlation factor.

Noga et al. combined the R12 approach with coupled-
cluster �CC� theory to derive the explicitly correlated CC-
R12 methods14–16 CCSD-R12 and CCSD�T�-R12, which al-
low to obtain highly accurate results for ground-state
energies. This was demonstrated in Refs. 17–24. Very re-
cently, a CCSD�R12� method was introduced as an approxi-
mation to the CCSD-R12 model with less computational
costs.25

The R12 and other related explicitly correlated wave
functions are promising remedies for the slow basis set con-
vergence of ground-state energies observed in conventional
�orbital based� correlated wave-function methods of elec-
tronic structure theory. However, while the CC-R12 methods
perform excellently for ground-state energies, nothing is yet
known about the performance of R12 methods in the context
of response theory, for example, for excitation energies or
frequency-dependent properties. The calculation of molecu-
lar properties may be more difficult than the calculation of
ground-state total energies. Methods giving accurate ground-
state energies do not automatically provide the same accu-
racy for excitation energies and frequency-dependent proper-
ties. This was, for example, observed in recent studies with
local correlation methods.26,27

In the present work, we shall investigate the basis set

convergence of excitation energies and how this convergence
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can be improved by linear-r12 terms. For excitation energies,
an established hierarchy28,29 of CC models that converges
systematically to the full configuration-interaction �CI� limit
comprises the models CCS �N 4�, CC2 �Ref. 30� �N 5�,
CCSD �Refs. 31–33� �N 6�, CC3 �Refs. 34 and 35� �N 7�,
CCSDT �N 8�, and so on, with the scaling of the computa-
tional costs with the system size N given in parentheses.
Within this hierarchy, molecular properties can be calculated
with increasing accuracy and increasing computational costs.

In the present work, we derive the CC-R12 response
theory for excitation energies for the CC2-R12 model with
Ansätze 1 and 2 of Klopper and Samson,36 the latter in a
slightly modified form as proposed by Wind et al.37 and
Valeev.38 For both Ansätze, the CC2-R12 model has been
implemented in the integral-direct coupled-cluster
program,30,32,33 which is part of the DALTON program39 pack-
age. An orthonormal auxiliary basis set can be used for the
resolution-of-the-identity approximation to calculate the
three- and four-electron integrals needed in R12 theory.

The paper is organized as follows: The equations for the
CC2-R12 model are discussed in Sec. II. Computational as-
pects are discussed in Sec. III. Technical details such as em-
ployed basis sets, geometries, and programs are given in Sec.
IV. Numerical results for atoms and molecules are presented
in Sec. V, and the article is concluded in Sec. VI.

II. THEORY

A. The CC-R12 wave-function Ansatz

We start from the coupled-cluster wave function,

�CC� = exp�T̂��HF� , �1�

where the reference state is the Hartree-Fock wave function

and the cluster operator contains conventional single �T̂1�
and double �T̂2� excitations as well as R12 double excitations

�T̂2��,

T̂ = T̂1 + T̂2 + T̂2�. �2�

For a closed-shell reference state �HF�, the excitation opera-
tors can be written as

T̂1 = �
ai

ta
i Eai = �

�1

t�1
�̂�1

, �3�

T̂2 = 1
2 �

abij

tab
ij EaiEbj = �

�2

t�2
�̂�2

, �4�

T̂2� = 1
2�

ijkl

ckl
ij�

��

w��
kl E�iE�j = �

�2�

t�2�
�̂�2�

, �5�

with

w��
kl = ����1����2��ŵ12��k�1��l�2�� . �6�

The coupled-cluster amplitudes are denoted as t�i
, and for

the single, double, and R12 double excitation operators, we
use the notation �̂�i

. The amplitudes t�2�
are obtained by

contracting the R12 amplitudes ckl
ij with the integrals w��

kl .

The operators Eai correspond to spin-free single excitations.
They are described in detail in Ref. 40. We use the usual
convention that i , j, …denote occupied and a , b, …unoccu-
pied �virtual� orbitals. The index p is used for general mo-
lecular orbitals and � , �, …for orbitals of a complementary

subspace �vide infra�. The operator T̂2� contains a particular
form of double excitations, which we denote R12 double
excitations. These are double excitations into the correlated
pair functions,41

ŵ12��k�1��l�2�� , �7�

which can be expressed with the help of a complementary
orbital subspace 	��
 as in Eqs. �5� and �6�. For Ansatz 1, ŵ12

is defined as

ŵ12 = �1 − P̂1��1 − P̂2�r12, �8�

with the projection operator,

P̂1 = �
p

��p�1����p�1�� , �9�

onto the finite one-electron orbital basis 	�p
. In Ansatz 1, the
orbital subspace 	��
 consists of all orbitals that are orthogo-
nal to the finite one-electron orbital basis 	�p
. Hence, the
union of 	��
 and 	�p
 forms a complete basis for the one-
electron Hilbert space.

For Ansatz 2, the operator ŵ12 was in Ref. 10 chosen as

ŵ12 = �1 − Ô1��1 − Ô2�r12, �10�

with

Ô1 = �
i

��i�1����i�1�� . �11�

In the present article, however, we use the following equiva-
lent but for coupled-cluster theory computationally more
convenient form:37,38

ŵ12 = �1 − Ô1��1 − Ô2��1 − V̂1V̂2�r12, �12�

with

V̂1 = �
a

��a�1����a�1�� . �13�

Above, Ô1 is the projection operator onto the occupied and

V̂1 the projection operator onto the virtual Hartree-Fock or-

bitals. The additional projection �1− V̂1V̂2� keeps the R12
pair functions orthogonal to all orbital products included
through the conventional �i.e., not R12� double excitations.
For Ansatz 2, the indices � , �, … are defined in a manner
different from Ansatz 1. In Ansatz 1, these indices denote the
complementary basis. In Ansatz 2, however, they denote not
only the virtual orbitals of the complementary basis but also
the virtual orbitals of the finite one-electron basis. For Ansatz
2, the set 	��
 forms a complete set together with the occu-

pied orbitals 	�i
.
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It is important to choose ŵ12 as in Eq. �12� for two
reasons: First, it ensures that the correct basis set limit is
obtained independent of the approximations used for the
evaluation of the R12 contributions, since all R12 contribu-
tions vanish in a complete one-electron orbital basis in An-
satz 2 as well as in Ansatz 1. Second, it circumvents numeri-
cal problems in the solution of the coupled-cluster ground-
state amplitude and response equations, which otherwise
occur when the R12 space becomes linearly dependent on
the space spanned by products of virtual orbitals.

B. The CCSD-R12 and CC2-R12 models

As is usual in coupled-cluster theory, the cluster ampli-
tudes t� are determined by solving the projected Schrödinger
equation

���exp�− T̂�Ĥ exp�T̂��HF� = 0. �14�

The coupled-cluster energy is obtained as

ECC-R12 = �HF�Ĥ exp�T̂��HF� . �15�

For the closed-shell CCSD-R12 model, the cluster equation
�Eq. �14�� can be written in more detail as

��1
= ��1�� f̂ ,T̂1� + 	̂

˜
+ �	̂˜ ,T̂2 + T̂2���HF� = 0, �16�

��2
= ��2�� f̂ ,T̂2 + T̂2�� + exp�− T̂�	̂ exp�T̂��HF� = 0,

�17�

��2�
= ��2��� f̂ ,T̂2 + T̂2�� + exp�− T̂�	̂ exp�T̂��HF� = 0,

�18�

if the generalized Brillouin condition �f�
i = f i

�=0� is assumed.

Here, f̂ is the Fock operator, 	̂ is the electron fluctuation
potential, and

	̂
˜

= exp�− T̂1�	̂ exp�T̂1� . �19�

The conventional singles and doubles projection manifolds
are defined as40

� ā

i
� =

1

2
�HF�Eai

† , �20�

�ab

ij
� =

1

6
�HF��2Eai

† Ebj
† + Eaj

† Ebi
† � . �21�

For the R12 doubles, we employ the projection manifold,

�kl

ij
� = �

��

�w†�kl
�����

ij
� , �22�

with

���

ij
�

defined analogously to Eq. �21�. With this choice, the exci-

tation operator and projection manifolds fulfill the equations
� ā

i
��̂ j

b�HF� = 
ab
ij , �23�

�ab

ij
��̂kl

cd�HF� = P̂ij
ab
ac
bd
ik
 jl, �24�

�kl

ij
��̂i�j�

k�l��HF� = P̂ij
kl
ii�
 j j�Xkl,k�l�, �25�

where

Xkl,k�l� = ��k�1��l�2��ŵ12
† ŵ12��k��1��l��2�� , �26�

and where P̂pq
rs symmetrizes with respect to permutations of

the electron indices in the following manner:

P̂pq
rs Apq

rs = Apq
rs + Aqp

sr . �27�

The matrix elements

�kl

ij
��̂i�j�

ab �HF�

and

�ab

ij
��̂i�j�

kl �HF�

vanish not only in Ansatz 1 but also in Ansatz 2 by virtue of
choosing the projection operator as in Eq. �12�. Note that no
approximations or truncations are invoked up to this point,

except that we restrict the operator T̂ to contain only single
and double excitations, which defines the CCSD-R12 model,
and that we use the generalized Brillouin condition.

Let us now turn to the CC2 model.30 In the doubles
equations for this model, the similarity transformation

of the fluctuation potential 	̂ is restricted to T̂1, that is,

exp�−T̂�	̂ exp�T̂� in Eqs. �17� and �18� is replaced by

	̂
˜

=exp�−T̂1�	̂ exp�T̂1�,

��2

CC2 = ��2�� f̂ ,T̂2 + T̂2�� + 	̂
˜ �HF� = 0, �28�

��2�

CC2 = ��2��� f̂ ,T̂2 + T̂2�� + 	̂
˜ �HF� = 0. �29�

We note that the matrix elements ��2�� f̂ , T̂2���HF� and

��2��� f̂ , T̂2��HF� vanish in Ansatz 1. These are the terms that
couple the two sets of doubles equations. In Ansatz 2, these
matrix elements are small but not zero.

C. CC2-R12 excitation energies

In the coupled-cluster response theory, excitation ener-
gies are obtained42 as eigenvalues,

AR = �SR, �30�

of the Jacobi matrix A defined as the first partial derivative
of the vector function ��i

with respect to the cluster ampli-

tudes t�j

,
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A�i�j
=

���i

�t�j

. �31�

The metric S is defined by

S�i�j
= ��i��̂�j

�HF�; �32�

detailed expressions for the different sub-blocks of S have
been given in Eqs. �23�–�25�. S can for CC2-R12 and CCSD-
R12 be arranged as

S�i�j
= 1 0 0

0 1 0

0 0 S�2��2�
� . �33�

Note that the off-diagonal sub-blocks S�2�2�
and S�2��2

vanish

TABLE I. Detailed expressions for the V intermediat
denoted as grs

pq= ��r�1��s�2��1/r12��p�1��q�2��, i
= ��r�1��s�2��r12��p�1��q�2��, and overlap integrals a
functions �̃i and �̃a see Eqs. �45� and �46�.

Ansatz 1 A

Ṽkl
�1�,ij =
ik
 jl− P̂ij

kl�pq�rkl
pq�gpq�

ĩ j̃ +�pqrkl
pqgpq

ĩ j̃ Ṽ

�V†�ãm
�1�,kl=Sãk
lm−�pq�rpq�

kl gãm
pq�−�pq�rpq�

lk gmã
pq�

+�pqrpq
kl gãm

pq
�

both in Ansatz 1 and in Ansatz 2 in its present form.

found in Refs. 30, 32, and 33. We shall in the present article
The R12 part of the product SR can be described with
the help of the overlap matrix X of the MP2-R12 theory as

�
i�j�mn

Sikjl,i�mj�nRmn
i�j� = �

mn

Xkl,mnRmn
ij , �34�

with Xkl,mn defined in Eq. �26�. Rmn
ij denotes the R12 excita-

tion component of a trial vector. The Jacobian A can for
non-approximated coupled-cluster models be written as40

A�i�j
= ��i�exp�− T̂��Ĥ, �̂�j

�exp�T̂��HF�; �35�

Ansätze 1 and 2. Two-electron Coulomb integrals are
als over the interelectronic distance as rrs

pq

for the definition of the similarity transformed basis

2


ik
 jl− P̂ij
kl�mq�rkl

m̃q�gmq�
ĩ j̃ +�mnrkl

m̃ñgmn
ĩ j̃ −�abrkl

abg
ãb̃

ĩ j̃

,kl=Sãk
lm−�mq�rmq�
kl gãm

mq�−�mq�rmq�
lk gmã

mq�

nrmn
kl gãm

mn−�cdrcd
kl gãm

cd
for CC2-R12, the Jacobian takes the form
A�i�j
=��1��Ĥ˜ , �̂�1

� + ��Ĥ˜ , �̂�1
�,T̂2 + T̂2���HF� ��1��	̂˜ , �̂�2

��HF� ��1��	̂˜ , �̂�2�
��HF�

��2��	̂˜ , �̂�1
��HF� �2


�2�2
��2�� f̂ , �̂�2�

��HF�

��2���	̂
˜

, �̂�1
��HF� ��2��� f̂ , �̂�2

��HF� ��2��� f̂ , �̂�2�
��HF�

� , �36�
with

Ĥ
˜

= exp�− T̂1�Ĥ exp�T̂1� �37�

and �2
equal to the difference of the four orbital energies

involved in the double excitation. Note that the matrix ele-

ments ��2�� f̂ , �̂�2�
��HF� and ��2��� f̂ , �̂�2

��HF� vanish for An-

satz 1 and are very small for Ansatz 2 in its present form.

D. Working equations

The working equations for the conventional CCSD and
CC2 models have been described in the literature in several
places. In particular, for the closed-shell case and for the
operators and the projection manifolds used here, the expres-
sions for the cluster equations and the Jacobi matrix can be
focus on the additional R12 contributions in the CC2-R12
model. For the doubles part of the cluster equations, these
are

�ab

ij
�� f̂ ,T̂2���HF� = �

kl

Cab,kl
�ij� ckl

ij , �38�

�kl

ij
�� f̂ ,T̂2���HF� = �

ab

Ckl,ab
�ij� tab

ij , �39�

with

Cab,kl
�ij� = ��a�1��b�2��� f̂1 + f̂2 − i −  j�ŵ12��k�1��l�2��

�40�
es in
ntegr
s Spq;

nsatz

kl
�2�,ij =

V†�ãm
�2�

+�m
and
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�kl

ij
�� f̂ ,T̂2����HF� = �

mn

Bkl,mn
�ij� cmn

ij , �41�

with

Bkl,mn
�ij� = ��k�1��l�2��

�ŵ12
† � f̂1 + f̂2 − i −  j�ŵ12��m�1��n�2�� , �42�

where the matrix C vanishes for Ansatz 1. These terms are
known from MP2-R12 theory and their implementation has
been discussed in detail in Ref. 36. We note here only that
the resolution-of-the-identity approximation with an auxil-
iary basis set �ABS� is used to evaluate the three-electron
integrals and that detailed expressions for C and B depend
on the so-called standard approximations employed. Depend-
ing on the Ansatz used, the generalized and/or extended Bril-

louin conditions are employed. For the generalized Brillouin

terms employing the ABS approximation as
condition �GBC, f�
i = f i

�=0� it is assumed that the occupied
orbitals are eigenfunctions of the Fock operator. For the ex-
tended Brillouin condition �EBC, f�

a = fa
�=0, with � in the

complementary space� it is assumed that the orbital space is
closed under the Fock operator. Both Brillouin conditions are
assumed to be satisfied for Ansatz 1 while for Ansatz 2 only
the GBC is employed.

In addition to the matrix elements known from MP2-R12
theory, we need for the R12 doubles equations also

Ṽkl
ij = �kl

ij
�	̂
˜ �HF� = ��k�1��l�2��ŵ12

† exp�− T̂1�
1

r12

�exp�T̂1���i�1�� j�2�� . �43�

For the singles equations, we need to compute the
contribution,
� ā

i
��	̂˜ ,T̂2���HF� = �

klm

�2ckl
im − ckl

mi���a�1��m�2���1 − T̂1�
1

r12
ŵ12��k�1��l�2��

− �
mnkl

�2cmn
lk − cmn

kl ���m�1��n�2��a�3��
1

r12
�1 + T̂1�ŵ23��i�1��l�2��k�3��

+ �
kmn

�2cmn
ik − cmn

ki ���a�1��m�2�� f̂˜2ŵ12��k�1��l�2�� , �44�
in addition to the terms of conventional CC2 or CCSD. f̂
˜

is a
Fock operator computed from the modified density matrix
��1,2�=2�i�i

*�1��̃i�2�. If one introduces the similarity trans-
formed basis,

�̃i = �i + �
a

�ata
i , �45�

�̃a = �a − �
i

�ita
i , �46�

to account for the contributions of T̂1 already in the integral
transformation, the matrix element in the first term of Eq.

�44� as well as Ṽkl
ij in Eq. �43� can straightforwardly be evalu-

ated similar to the Vkl
ij intermediate in MP2-R12, inserting, in

particular, in the same way the ABS approximation �see Ap-
pendix�. Detailed expressions for Ansätze 1 and 2 are given
in Table I. The V intermediates are in the CC-R12 theory as
in the MP2-R12 theory of particular importance since they
are the Coulomb matrix elements between a product of two
orbitals and a R12 pair function. The B matrix and the V
intermediates are all what is needed for Ansatz 1 to imple-
ment the CC2-R12 vector function, since the second and
third terms in Eq. �44� vanish for this Ansatz. For Ansatz 2
we implemented the matrix elements appearing in these two
− �
�

wa�
mnglk

ĩ� �
ABS

− �
p�

rap�
mn �gkl

ĩp − �
p

gkl
ĩpSpp�� , �47�

�
�

wa�
mnf̃�

k �
GBC

ABS

�
p�

rap�
mn ��

cl

�2gkl
p�c − glk

p�c�tc
l

− �
p

�
cl

�2gkl
pc − glk

pc�tc
l Spp�� , �48�

where we used the generalized Brillouin condition �f�
k = fk

�

=0� and a Schmidt orthogonalization to ensure that the aux-
iliary basis 	�p�
 is orthogonal on the orbital space 	�p
. All
terms needed for the CC2-R12 vector functions of the An-
sätze 1 and 2 are now available.

We shall next focus on the working equations for exci-
tation energies. The eigenvalue problem of Eq. �30� is solved
iteratively using a direct technique which avoids an explicit
construction of the matrices A and S. It requires the imple-
mentation of the linear transformations AR and SR. Expres-
sions for the latter have been given above in Eqs. �33�–�36�.
The expressions for AR can be derived straightforwardly
from those for the vector function using Eq. �31�. In particu-
lar, all terms which depend on the R12 and the conventional
double excitation parts of the trial vector, Rkl

ij and Rab
ij are

obtained simply by replacing in the respective expressions

for the vector function the doubles cluster amplitudes by the
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doubles components of the trial vector. Somewhat more in-
volved are the contributions that depend on the single exci-
tation part of the trial vector Ra

i . The single excitation cluster
amplitudes have mostly been accounted for by using the
similarity transformed orbitals defined in Eqs. �45� and �46�.
Thus, the derivatives of the V intermediates, the integrals

gkl
īp� and gkl

īp, and the matrix f̄ needed for the linear transfor-
mation AR are most conveniently evaluated by introducing
orbitals transformed with the single excitation part of the
trial vector:

�̄i = �
a

�aRa
i , �49�

�̄a = − �
i

�iRa
i . �50�

Detailed expressions for the new V̄ intermediates and the

modified Fock matrix f̄ p�
k obtained thereby are given in Table

II. The expressions for the CC2-R12 vector function and the
linear transformations of the Jacobi and metric matrices dis-
cussed above have been implemented in the coupled-cluster
program,30,32,33 which is part of the DALTON program
package.39

The sub-block ��2��� f̂ , �̂�2�
��HF�, which we shall denote

B for short, is a positive-definite matrix. However, if the
approximations introduced into the R12 theory are inaccu-
rate, for example, when a too small orbital basis or a too
small auxiliary basis is used, it can happen in a practical
calculation that this matrix has one or more negative eigen-
values. This is a very serious problem in a calculation of
excitation energies, of course, yielding completely wrong re-
sults. In the calculations, one must ensure, for example, by
enlarging the basis sets, that B is indeed a positive-definite
matrix.

III. COMPUTATIONAL COSTS

The CC2-R12 model is an iterative method. In each it-
eration the residue of the cluster equations �i.e., the vector
function� is evaluated and is used to update the singles-and-
doubles and R12 doubles amplitudes until convergence is
reached. A CC-R12 calculation is most conveniently started
with a MP2-R12 calculation which gives as a side product all
the integrals over the ŵ12 operator needed later on, as well as
all three-electron integrals needed to construct the matrix B
and for Ansatz 2 also the matrix C on the fly. It provides also
the initial guess for the amplitudes ckl

ij and we calculate at

TABLE II. Detailed expressions for additional interm
matrix in Ansätze 1 and 2. For the notation used fo
Expressions for the intermediates �V†�ām

�2�,kl are obtaine
�̄a are defined in Eq. �50�.

Ansatz 1

V̄kl
�1�,ij =−P̂ij

kl�pq�rkl
pq��gpq�

ī j̃ +gpq�
ĩ j̄ �+�pqrkl

pq�gpq
ī j̃ +gpq

ĩ j̄�
this step a V intermediate with one atomic-orbital index from
which �V†�ãm
kl can be obtained later on by a one-index trans-

formation.
In the following n denotes the number of occupied or-

bitals and N and N� stand for the size of, respectively, the
atomic orbital and auxiliary basis sets. The most expensive
step in the iterative solution of the cluster equations is the
evaluation of the three-electron integrals for the intermediate

Ṽ which scales with n4N�N+N�� for Ansatz 1 and with
n4�N2+nN�� for Ansatz 2. We note at this point that for An-
satz 1 this N6 step could be avoided during the iterative
solution of the cluster equations as described in Ref. 25 for
CCSD-R12, if an additional intermediate is calculated in ad-
vance with n2N4 costs. For CC2-R12 we avoid in the present
implementation any steps scaling worse than n3N3 and itera-
tive steps scaling worse than n4N�N+N��. The terms involv-
ing the matrices B and C scale as n6 and n4N2, respectively.

Due to three-electron integrals needed in explicitly cor-
related methods, CC2-R12 calculations are more expensive
than conventional CC2 calculations, for which the computa-
tional costs scale with nN4. However, this is mainly a prob-
lem for second-order methods as CC2 and MP2. R12 calcu-
lations will not be significantly more expensive at higher-
order coupled-cluster levels. A main perspective of the
present work lies in its future extension to methods such as
CCSD and CC3. Compared to the coupled-cluster singles-
and-doubles model CCSD, which scales with n2N4 and n3N3

in each iteration, the CCSD�R12� model �of which the itera-
tive R12 part scales as n4N2� has already proven to be an
efficient approach for ground-state energy calculations. Al-
though the scaling of the CC2-R12 method is unfavorable in
comparison with the conventional CC2 method, the R12
terms in higher-order methods such as CCSD�R12� or
CCSD-R12 do not require terms that scale worse than those
already present in the conventional CCSD model �n2N4�.

IV. COMPUTATIONAL DETAILS

All CC2-R12 calculations were carried out in the stan-
dard approximation B of the R12 theory,36 in which all inte-
grals are evaluated. The results were obtained with the DAL-

TON program39 using aug-cc-pVXZ basis sets43–45 for the
orbital basis and the 19s14p8d6f4g3h2i basis �9s6p4d3f2g
for H� of Ref. 36 for the auxiliary basis. The calculations
were carried out at experimental bond lengths �re values�
taken from Ref. 46 for BH, CO, N2, and BF, and the frozen-
core approximation was used for the 1s orbitals. The frozen-
core approximation was not employed in the calculations on

s used to evaluate the transformation with the Jacobi
two-electron integrals, see the caption of Table I.
those given in Table I for the �V†�ãm

�2�,kl. The orbitals

satz 2

kl
�2�,ij =−P̂ij

kl�mq��rkl
m̄q�gmq�

ĩ j̃ +rkl
m̃q��gmq�

ī j̃ +gmq�
ĩ j̄ ��

+ P̂ij
kl�mn�rkl

m̄ñgmn
ĩ j̃ +rkl

m̃ñgmn
ĩ j̄ �− P̂ij

kl�abrkl
ab�g

ãb̃

ī j̃
+g

āb̃

ĩ j̃�

p�=�cl�2gkl
p�c−glk

p�c�Rc
l −�p�cl�2gkl

pc−glk
pc�Rc

l Spp�
ediate
r the

d from

An

V̄

f̄k
the atoms Be and Ne.
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The CC2-R12 calculations on Be were carried out using
a 20s17p14d11f8g5h basis set that was used both as orbital
and as auxiliary basis. This basis was constructed from an
uncontracted 18s Partridge3 basis43 by adding two diffuse s
functions and by adding polarization functions with expo-
nents generated from the formula47

�l = �s
2l + 3

5
, �51�

where l is the angular momentum quantum number of the
polarization functions, �l are their exponents and �s the ex-
ponents of the corresponding set of most diffuse s functions.
For Ne, we used a 20s14p11d9f7g5h3i orbital and a
32s24p18d15f12g9h6i auxiliary basis set.36,37

Extrapolations to the basis set limit were attempted using
the formula48

E� =
�X3EX − Y3EY�

�X3 − Y3�
, �52�

where EX and EY are the excitation energies obtained in the
basis sets with cardinal numbers X and Y, respectively. �For
the Be and Ne basis sets Lmax+1 is used as the cardinal
number.� This formula has proven to be useful for ground-
state correlation energies, but it is not yet clear how well it

TABLE III. Calculated vertical 1P�2p←2s� excitation energies of Be with
Ansatz 2 and approximation B �in eV�, using a 20s17p14d11f8g5h orbital
and auxiliary basis set �almost identical results are obtained with Ansatz 1�.

Basis CC2 CC2-R12

sp 5.541 5.696
spd 5.207 5.267
spdf 5.145 5.174
spdfg 5.126 5.143
spdfgh 5.119 5.130
Estimated limit 5.109
applies to excitation energies. We nevertheless use it here to
obtain at least some estimate of the basis set limit for the
calculated CC2 excitation energies. We choose X=5 and Y
=6 for the extrapolation, assuming that the uncorrelated con-
tribution to the excitation energy is almost converged for
such large basis sets. For Ne, we even use X=6 and Y =7.

V. RESULTS AND DISCUSSION

A. Atoms

The calculated CC2-R12 excitation energies for Ansätze
1 and 2 for Ne and Be are listed in Tables III and IV. The
conventional CC2 results are included for comparison.

For Be, the excitation energies for the 1P�2p←2s� tran-
sition are investigated using a single basis both as auxiliary
basis and as orbital basis. The CC2-R12 excitation energies
for Ansätze 1 and 2 are almost identical in this case. The
operators ŵ12 of Eqs. �8� and �12� are identical when the
auxiliary basis equals the orbital basis, and one would expect
identical results. However, small and in this case negligible
differences occur due to the different manner in which the
standard approximations are implemented in both Ansätze.

For all basis sets the CC2-R12 excitation energies are
slightly larger than the corresponding conventional CC2 re-

TABLE IV. Calculated vertical 1P�3s←2p� excitation energies of Ne with
Ansätze 1 and 2 and approximation B �in eV�, using a 20s14p11d9f7g5h3i
orbital and 32s24p18d15f12g9h6i auxiliary basis set.

Basis CC2 A1 A2

sp 15.808 16.683 16.673
spd 16.030 16.232 16.351
spdf 16.137 16.219 16.292
spdfg 16.215 16.258 16.288
spdfgh 16.244 16.275 16.286
spdfghi 16.257 16.283 16.285
Estimated limit 16.279

FIG. 1. Calculated energies �in Eh� of the ground and
excited states of Ne.



044112-8 Fliegl, Hättig, and Klopper J. Chem. Phys. 124, 044112 �2006�
sults. Nevertheless a clear convergence of the CC2-R12 re-
sults to the basis set limit is observed, although the conver-
gence is found to be slower than in the conventional CC2
model. The difference between the CC2-R12 and the ex-
trapolated basis set limit is 0.021 eV in the largest basis,
while without the R12 Ansatz the difference is 0.01 eV.

For Ne we calculated the excitation energies for the
1P�3s←2p� transition. A very large auxiliary basis is used in
this case to make sure that the errors introduced by the ABS
approximation are negligible. We observe that the results for
Ansatz 2 are always slightly larger than those for Ansatz 1,
and the results for both Ansätze are larger than the conven-
tional CC2 results. All Ansätze converge to the same limit
and the convergence of Ansatz 2 is faster than for Ansatz 1.
In the largest basis, the difference between CC2-R12 and the
estimated basis set limit is only 0.004 eV, which shows that
the limit is almost reached with an spdfghi basis set. Without
the R12 Ansatz the remaining basis set error is in this case
about three times larger.

In Fig. 1, the basis set convergence of the total energy of
the ground and excited states of Ne is given in comparison
with conventional CC2. Both CC2-R12 Ansätze converge to
the same limit. In this example, we observe a similar conver-
gence for the excited state as for the ground state.

B. Molecules

The results for the four investigated molecules are pre-
sented in Tables V–VII. For BH, the B 1�+ and A 1� transi-
tions have been studied. With conventional CC2 the excita-
tion energies for the 1�+ state increase with increasing basis
set, whereas the CC2-R12 excitation energies decrease for
both Ansätze. The CC2-R12 excitation energies are again
larger than their CC2 counterparts. The transition energies
for the 1� state decrease with increasing cardinal number.

TABLE V. Calculated vertical excitation energies of
using an spdfghi auxiliary basis set.

B 1�+

Basis CC2 A1

aug-cc-pVDZ 6.393 6.494
aug-cc-pVTZ 6.444 6.491
aug-cc-pVQZ 6.465 6.491
aug-cc-pV5Z 6.469 6.486
aug-cc-pV6Z 6.472 6.486
Estimated limit 6.476

TABLE VI. Calculated vertical excitation energies of BF with Ansätze 1 an

B 1�+

Basis CC2 A1 A2

aug-cc-pVDZ 8.212 8.309 8.342
aug-cc-pVTZ 8.268 8.313 8.316
aug-cc-pVQZ 8.274 8.299 8.299
aug-cc-pV5Z 8.271 8.288 8.287
aug-cc-pV6Z 8.247 8.261
Estimated limit
The convergence of the excitation energies is in this case
for the �+ state faster with CC2-R12, although the result in
the largest basis deviates by 0.01 eV from the estimated
limit. However, as noted above, this limit might be inaccu-
rate. For the 1� state the convergence is faster without R12.
At each step in this basis set hierarchy the variation of the
CC2-R12 results is considerably larger than for the conven-
tional CC2 results.

Also for the BF molecule �Table VI�, the CC2-R12 ex-
citation energies for Ansätze 1 and 2 are close to each other,
with the results for Ansatz 2 slightly larger than those for
Ansatz 1. The conventional CC2 results decrease smoothly
with increasing basis set for the 1� state, but for the two 1�+

states the convergence is somewhat irregular and the ex-
trapolated limits are probably not reliable for the latter two
states. Again, the R12 results seem to converge somewhat
slower than the results of the calculations without R12.

For CO �Table VII�, the conventional CC2 energies de-
crease from the triple zeta basis set onwards for all investi-
gated transitions, which are the two lowest 1�+ states and the
first 1� transition. The CC2-R12 results decrease monotoni-
cally from double to hextuple zeta, as for all the cases inves-
tigated so far. The deviations from the estimated limits for
the largest basis set are 0.08 eV for B 1�+, 0.05 eV for C 1�+,
and 0.01 eV for 1�.

For the excitation into the 1�+ states, the deviations are
larger than those obtained in the previous examples, but in
these cases also the conventional CC2 results in the aug-cc-
pV6Z basis differ still by 0.06 and 0.03 eV from the extrapo-
lated limits. The slower convergence for these states is prob-
ably related to their partial Rydberg character.

The results for N2 are given in Table VIII. The CC2
results converge rapidly in this case and no fluctuations are
observed. The extrapolated limits are considered to be trust-

with Ansätze 1 and 2 and approximation B �in eV�,

A 1�

A2 CC2 A1 A2

6.505 2.866 2.985 3.033
6.490 2.834 2.888 2.899
6.492 2.823 2.852 2.856
6.486 2.819 2.838 2.839
6.483 2.817 2.834 2.831

2.814

nd approximation B �in eV�, using an spdfghi auxiliary basis set.

C 1�+ A 1�

A1 A2 CC2 A1 A2

8.709 8.737 6.521 6.594 6.659
8.701 8.701 6.457 6.484 6.502
8.668 8.668 6.437 6.453 6.456
8.648 8.648 6.428 6.437 6.438
8.617 6.424 6.429

6.419
BH
d 2 a

CC2

8.618
8.655
8.642
8.631
8.603
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worthy, since they are within 0.001 eV of the conventional
CC2 results obtained in the hextuple zeta basis set. We see
again the same trends as for the other molecules for the CC2-
R12 results: Ansätze 1 and 2 yield results which are very
close to each other, with the values for Ansatz 2 always
slightly larger than those for Ansatz 1, and again CC2-R12
seems to converge slower than conventional CC2. In the
largest basis, the deviations from the estimated basis set lim-
its amount still to 0.01–0.02 eV.

C. Analysis of R12 contributions to excitation
energies

For ground-state energies, the R12 Ansatz is known to
greatly improve the convergence to the basis set limit when
the dominant source of error is dynamic correlation. To un-
derstand the unexpected slow convergence found for excita-
tion energies, we need to look closely at the individual cor-
relation contributions to the latter. However, for excitation
energies the separation into an uncorrelated and a correlated
contribution is problematic, since in contrast to ground states
there is for excited states no undisputable noncorrelated ref-
erence model as Hartree-Fock and even the character of the
wave function �i.e., the most important Slater determinants�
can change upon the inclusion of dynamic correlation.

Therefore, we introduce for analysis of the coupled-
cluster response results for excitation energies a decomposi-
tion into characteristic contributions, which is motivated
from the structure of the Jacobian in Eqs. �35� and �36�. For
CC2 and CCSD, the excitation energy can �avoiding for no-
tational convenience a separation into conventional and R12
doubles� be written as

TABLE VII. Calculated vertical excitation energies of CO with Ansätze 1 a

B 1�+

Basis CC2 A1 A2 C

aug-cc-pVDZ 11.086 11.213 11.268 11
aug-cc-pVTZ 11.103 11.163 11.178 11
aug-cc-pVQZ 11.067 11.100 11.108 11
aug-cc-pV5Z 11.007 11.030 11.033 11
aug-cc-pV6Z 10.965 10.984 11
Estimated limit 10.907 11

TABLE VIII. Calculated vertical excitation energies of N2 with Ansätze 1 a

a� 1�u
−

Basis CC2 A1 A2

aug-cc-pVDZ 10.486 10.630 10.759
aug-cc-pVTZ 10.377 10.437 10.486
aug-cc-pVQZ 10.371 10.399 10.419
aug-cc-pV5Z 10.373 10.395 10.401
aug-cc-pV6Z 10.374 10.391 10.391
Estimated limit 10.375
� =
1

R†SR
�R1

†A11R1 + R1
†A12R2 + R2

†A21R1 + R2
†A22R2� .

�53�

The denominator is only a normalization constant which can
be chosen as 1 by appropriate normalization of the eigenvec-
tors R. For single excitation dominated transitions, as inves-
tigated in the present study, �R2�� �R1� and the last two
terms �almost� cancel each other because

R2
†�A21R1 + A22R2� = �R2

†S22R2 = O��R2�2� � 0, �54�

and we can restrict the discussion to the first two terms.
Introducing the shorthand notation �Ri�=��i

��i� �with i=1,
2�, the first term can be split into the two matrix elements

�R1��Ĥ˜ , R̂1��HF�, which can be called a “singles only” term
and considered as the uncorrelated value, and

�R1���Ĥ , T̂2� , R̂1��HF�, which describes the effect of dynamic
correlation in the ground state on the excitation energy and is
thus usually positive. The second term, the matrix element

�R1��Ĥ˜ , R̂2��HF�, describes a contribution from the differen-
tial correlation effects between the ground and the excited
state. It is thus usually negative and in most cases of the

same order of magnitude as �R1���Ĥ , T̂2� , R̂1��HF�. The final
results are therefore very sensitive to the balance between
these two terms, i.e., between dynamic correlations in the
ground- and excited-state wave functions. In CC-R12 one
gets for both matrix elements, in addition to the contribution
from the conventional doubles, a R12 contribution from the
R12 parts of the amplitudes and the trial vector, T2� and R2�,
respectively.

Detailed results for an analysis of the excitation energies
along the above lines are given for three examples, the

and approximation B �in eV�, using an spdfghi auxiliary basis set.

C 1�+ A 1�

A1 A2 CC2 A1 A2

11.755 11.807 8.772 8.867 8.970
11.685 11.699 8.687 8.725 8.761
11.629 11.638 8.668 8.687 8.699
11.568 11.571 8.662 8.675 8.679
11.539 8.660 8.669

8.657

and approximation B �in eV�, using an spdfghi auxiliary basis set.

a 1�g w 1�u

A1 A2 CC2 A1 A2

9.690 9.822 11.016 11.108 11.278
9.529 9.577 10.918 10.955 11.017
9.489 9.507 10.909 10.922 10.949
9.481 9.488 10.907 10.920 10.931
9.477 9.478 10.907 10.918 10.921

10.907
nd 2

C2

.624

.622

.595

.544

.519

.485
nd 2

CC2

9.569
9.481
9.467
9.465
9.465
9.465
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1P�2s←2p� transition in Be and the B 1�+ and A 1� states
of BH; similar trends have been found also for the other
excited states investigated in the present work.

The results for Be are listed in Table IX. In this case the
contribution arising from dynamic correlation in the ground
state is of the order of 0.7–0.9 eV, depending on the basis set,
and is with CC2-R12 already practically converged in the
smallest basis �sp�, while in conventional CC2 the conver-
gence is considerably slower. However, the largest basis set
error and slowest convergence arise in the contribution from
the double excitation part of the eigenvector, which has as
expected the opposite sign. This contribution remains basi-
cally unchanged upon inclusion of the R12 terms. For the
1P�2s←2p� transition of Be, this has a simple explanation:
the ground-state configuration of Be is 1s22s2 and since the
R12 pair functions are constructed by multiplying all prod-
ucts of occupied orbitals with the correlation factor ŵ12, there
are in this case no pair functions or R12 double excitations
with a symmetry appropriate to contribute to this transition.
The conventional CC2 results for the excitation energies in
Table III only seem to converge faster because of a fortunate
cancellation of the basis set errors in the two correlation
contributions.

For the B 1�+ state of BH the situation is different �Table
X�. In this case the correlation contribution arising from the
doubles contribution to the eigenvector converges both with
and without the R12 Ansatz very quickly and the overall
convergence of the excitation energies is dominated by the
basis set errors in the singles-only term and the correlation
contributions arising from the ground-state cluster ampli-
tudes. Since the errors in the singles-only term are as large as

those in the contribution of T̂2, the suppositions for the ex-
trapolation formula �Eq. �52�� might not be given. The limit
given in Table V might indeed be inaccurate. Anyway, for
the individual contributions we see for this state a slightly

TABLE IX. Analysis of the different CC2-R12 contri
Be in comparison with CC2.

�R1��Ĥ˜ , R̂1��HF� �R1���

Basis CC2 CC2-R12 CC2

sp 4981 4978 735
spd 4923 4921 834
spdf 4923 4922 865
spdfg 4924 4924 878
spdfgh 4925 4925 883

TABLE X. Analysis of the different CC2-R12 contributions �in meV� to th

�R1��Ĥ˜ , R̂1��HF� �R

Basis CC2 A1 A2 CC

aug-cc-pVDZ 6295 6281 6268 88
aug-cc-pVTZ 6214 6207 6201 104
aug-cc-pVQZ 6188 6184 6182 109
aug-cc-pV5Z 6171 6169 6168 112
aug-cc-pV6Z 6164 6162 6162 113
better convergence for CC2-R12 than for conventional CC2.
For the A 1� state, however, we again find a similar situation
as for the 1P�2s←2p� transition of Be: a very fast conver-
gence of the singles-only term and a �in this case almost
complete� cancellation of the two correlation contributions
�Table XI�. Again, CC2-R12 only improves the convergence
of the contribution arising from the dynamic correlation in
the ground state since the R12 part of the eigenvector van-
ishes for symmetry reasons. Therefore, the excitation ener-
gies are overestimated by CC2-R12 in the small basis sets
since the positive contribution of the ground-state amplitudes
is included with much higher accuracy than the negative con-
tribution of excited-state doubles.

VI. SUMMARY AND CONCLUSIONS

In this paper, the fundamental equations for the CC-R12
response theory have been derived and implemented for the
calculation of excitation energies with the approximate
coupled-cluster singles-and-doubles model CC2. This al-
lowed a first application of the coupled-cluster response
theory for vertical excitation energies with terms linear in the
interelectronic distance r12 included in the wave-function An-
satz.

After investigating a small set of atoms and molecules,
we find that the results we have obtained with the present
approach, where the R12 pair functions are chosen as it is
standard for ground-state correlation energies, are not always
as fast as anticipated. In several cases, CC2-R12 does not
give a faster convergence of the excitation energies to the
basis set limit than conventional CC2. Furthermore, for both
Ansätze most CC2-R12 results are larger than the excitation
energies calculated without the R12 terms included, in par-
ticular, with small basis sets and with Ansatz 2.

An analysis of the investigated excitation energies shows

ns �in meV� to the investigated excitation energies of

+ T̂2�� , R̂1��HF� �R1��Ĥ˜ , R̂2+ R̂2���HF�

CC2-R12 CC2 CC2-R12

892 −224 −225
894 −671 −672
895 −773 −773
895 −807 −807
895 −821 −821

estigated B 1�+ excitation energies of BH in comparison with CC2.

, T̂2+ T̂2�� , R̂1��HF� �R1��Ĥ˜ , R̂2+ R̂2���HF�

A1 A2 CC2 A1 A2

1001 1040 −970 −976 −983
1099 1107 −1004 −1006 −1009
1129 1132 −1014 −1015 −1016
1139 1140 −1015 −1016 −1016
1146 1144 −1015 −1016 −1016
butio

Ĥ , T̂2
e inv

1���Ĥ

2

4
4
9
0
0
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that, as expected, the description of the singles contributions
to excitation energies is usually equally good for conven-
tional CC2 and CC2-R12 with both Ansätze. However, from
the two dynamical correlation contributions arising from the
doubles parts of, respectively, the ground-state amplitudes
and the excited-state eigenvector, the R12 Ansatz improves
in the present approach only the former �positive� contribu-
tion considerably, while the latter �negative� contribution is
only marginally changed by R12. This unbalanced treatment
of the ground- and excited-state contributions to the excita-
tion energies is seen for several of the investigated states and
explains the observed slow convergence behavior. Conven-
tional CC2 �and other CC response methods� benefits from a
fortunate cancellation of the basis set error in the two terms
and therefore appears to converge for excitation energies in
most cases faster than if the R12 terms are included. Since
Ansatz 2 covers an even larger fraction of the �ground state�
correlation than Ansatz 1, the effects are slightly more pro-
nounced with Ansatz 2 than with Ansatz 1.

Even though the 1P�2s←2p� transition of Be and the
A 1� state of BH analyzed in Sec. V C are two extreme cases
as here the R12 doubles part of the eigenvectors must vanish
for symmetry reasons with the present approach for con-
structing the R12 pair functions, they clearly show that the
reason for the unexpected slow convergence of the excitation
energies with CC2-R12 is related to a diminished balance in
the two correlation contributions that arise from the ground-

state and the excited-state doubles, T̂2+ T̂2� and R̂2+ R̂2�. Ap-
parently, the construction of the R12 pair functions from only
products of occupied orbitals in Eq. �7� is an efficient choice
for the ground-state energies and properties derived as ana-
lytic derivatives thereof, but leads in response theory to a
bias towards the unperturbed ground state. For excitation en-
ergies an accurate description of the differential correlation
effects, described in response theory by the doubles part of
the eigenvector, is essential. The studied examples made ap-
parent that these are only partially covered with the present
scheme, which leads in small basis sets to an overestimation
of the excitation energies since the ground state is described
with higher accuracy than the excited state.

A possible remedy to the unbalanced treatment of
ground- and excited-state correlation effects could be the in-
clusion of additional pair functions such as ŵ12��i�1��a�2��,
where �a should be the most important virtual orbitals in-
volved in the investigated transitions. Since the introduction
of two inequivalent indices �as i and a� would considerably

TABLE XI. Analysis of the different CC2-R12 contributions �in meV� to th

�R1��Ĥ˜ , R̂1��HF� �R

Basis CC2 A1 A2 CC2

aug-cc-pVDZ 2800 2798 2799 1012
aug-cc-pVTZ 2803 2802 2802 1181
aug-cc-pVQZ 2803 2802 2802 1239
aug-cc-pV5Z 2802 2802 2801 1261
aug-cc-pV6Z 2802 2802 2802 1271
complicate the implementation, a slightly different but sym-
metric scheme, where the correlated pair functions are con-
structed as ŵ12��u�1��v�2�� with �u and �v taken from a set
comprised of occupied and the most important virtual orbit-
als might be more convenient. Such a scheme is expected to
provide a balanced treatment of the ground and excited
states, which is not only needed for excitation energies, but
also for the calculation of frequency-dependent properties, as
polarizabilities and hyperpolarizabilities, within the frame-
work of the CC-R12 response theory. The inclusion of such
new pair functions for CC-R12 response methods will be the
subject of future work, but preliminary results49 indicate that
they indeed help to improve the convergence of excitation
energies. When this problem will be solved, the adaption of
the CABS approach38 and of new correlation factors such as
the function r12 exp�−�r12� proposed by Tew and Klopper12

could further improve the performance and computational
efficiency of the CC-R12 response methods.
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APPENDIX: INTRODUCTION OF THE ABS
APPROXIMATION IN CC-R12

During the derivation of the working equations in Sec.
II D the auxiliary basis set approximation �ABS� has been
employed several times. Here we give additional information
on how the ABS is inserted in detail. Generally, the ABS
approximation is introduced as proposed by Klopper and
Samson36 to avoid three-electron integrals, i.e., for Ansatz 1
we substitute in the correlation factor,

w12 = �1 − P̂1 − P̂2 + P̂1P̂2�r12, �A1�

the second and third terms by

P̂1 → P̂1P̂2�, P̂2 → P̂2P̂1�, �A2�

where the projection operators P̂1� and P̂2�, defined by

P̂2� = �
p�

��p��2����p��2�� , �A3�

estigated A 1� excitation energies of BH in comparison with CC2.

, T̂2+ T̂2�� , R̂1��HF� �R1��Ĥ˜ , R̂2+ R̂2���HF�

A1 A2 CC2 A1 A2

1133 1181 −970 −1009 −1009
1237 1247 −1216 −1217 −1217
1268 1272 −1284 −1285 −1285
1280 1282 −1310 −1310 −1310
1287 1285 −1322 −1322 −1322
e inv

1���Ĥ
provide an approximate resolution of the identity in an or-
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thonormal auxiliary basis set 	�p�
. For Ansatz 2 we follow a

similar procedure with Ô1 in place of P̂1. For example, we
obtain the following expression for the product ŵ12

† �1/r12� in
Ansatz 2:

ŵ12
† 1

r12
�

ABS

1 − r12Ô1P̂2�
1

r12
− r12Ô2P̂1�

1

r12
+ r12Ô1Ô2

1

r12

− r12V̂1V̂2
1

r12
. �A4�

In the CC-R12 theory one often encounters operators simi-

larity transformed with either exp�T̂� or exp�T̂1�, as, e.g., in

the intermediate Ṽ in Eq. �43�. The latter is defined as the
matrix representation of

ŵ12
† exp�− T̂1�

1

r12
exp�T̂1�

= ŵ12
† exp�− T̂1�1� − T̂1�2��

1

r12
exp�T̂1�1� + T̂1�2�� , �A5�

where we have used that, as any one-electron operator, T̂1

can be expanded as T̂1=�iT̂1�i�, where T̂1�i� is the contribu-

tion which acts on electron i or, to be more specific, T̂1�i�
excites the electron i from an occupied orbital into a virtual
orbital. The leftmost operator exponential can in the calcula-
tion of matrix elements be accounted for by using for the ket
state the similarity transformed basis in Eqs. �45� and �46� as
described, e.g., in Ref. 40 and will in the following not be
discussed further.

Since the same electron cannot be promoted twice from

an occupied to a virtual orbital, �T̂1�i��2 and all higher pow-

ers of T̂1�i� vanish and thus

ŵ12
† exp�− T̂1�1� − T̂1�2��

1

r12

= ŵ12
† �1 − T̂1�1���1 − T̂1�2��

1

r12
. �A6�

Furthermore, �1− P̂i�T̂1�i�=0 since �1− P̂i� projects out
any contribution where electron i is in a virtual �or occupied�
orbital contained in the basis set. Thus, we have for Ansatz 1
the identity

ŵ12
† exp�− T̂1�1� − T̂1�2��

1

r12
= ŵ12

† 1

r12
, �A7�

and the ABS approximation can be inserted as described
above.

For Ansatz 2, however, the projection included in ŵ12

leads to somewhat more complicated expressions. We first
rewrite Eq. �12� as

ŵ12
† = r12��1 − Ô1��1 − Ô2� − V̂1V̂2� . �A8�

For the contribution of the last term in the brackets on the
right-hand side to the operator product that appears in the V

intermediates one obtaines
r12V̂1V̂2�1 − T̂1�1���1 − T̂1�2��
1

r12
= r12V̂

˜
1V̂
˜

2
1

r12
, �A9�

with the modified projection operators defined with the help
of the similarity transformed virtual orbitals in Eq. �46� as

V̂
˜

1=�a��a�1����̃a�1��. Using that T̂1�i�Ôi= T̂1�i� and ÔiT̂1�i�
=0, the contribution from the second term in the brackets in
Eq. �A8� can be rewritten as

r12�1 − Ô1��1 − Ô2��1 − T̂1�1���1 − T̂1�2��
1

r12

= r12�1 − Ô
˜

1��1 − Ô
˜

2�
1

r12
, �A10�

with Ô
˜

1=� j��̃ j�1���� j�1��, where �̃ j are the similarity trans-
formed occupied orbitals from Eq. �45�. Now the ABS ap-
proximation can be introduced in almost the same manner as
in MP2-R12 �Eq. �A2�� as

r12�1 − Ô
˜

1P̂2� − Ô
˜

2P̂1� + Ô
˜

1Ô
˜

2 − V̂
˜

1V̂
˜

2�
1

r12
. �A11�

A similar approach leads to the expressions given for the
additional V intermediates that are used to evaluate the trans-
formation of trial vectors with the Jacobi matrix A.
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