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The left-eigenstate completely renormalized (CR) equation-of-motion (EOM) coupled-cluster (CC) method with
singles, doubles, and non-iterative triples, abbreviated as CR-EOMCC(2,3) [M. Wloch et al., Mol. Phys. 104,
2149 (2006); P. Piecuch et al., Int. J. Quantum Chem. 109, 3268 (2009)], and the companion ground-state
CR-CC(2,3) methodology [P. Piecuch and M. Wloch, J. Chem. Phys. 123, 224105 (2005); P. Piecuch et al., Chem.
Phys. Lett. 418, 467 (2006)] are used to determine the total electronic and adiabatic excitation energies
corresponding to the ground and lowest three excited states of methylene. The emphasis is on comparing the
CR-CC(2,3)/CR-EOMCC(2,3) results obtained with the large correlation-consistent basis sets of the aug-cc-pCV
xZ (x¼T, Q, 5) quality and the corresponding complete basis set (CBS) limits with the recently published
variational and diffusion Quantum Monte Carlo (QMC) data [P. Zimmerman et al., J. Chem. Phys. 131, 124103
(2009)]. It is demonstrated that the CBS CR-CC(2,3)/CR-EOMCC(2,3) results are in very good agreement with
the best QMC, i.e. diffusion MC (DMC) data, with errors in the total and adiabatic excitation energies of all
calculated states on the order of a few millihartree and less than 0.1 eV, respectively, even for the challenging,
strongly multi-reference C 1A1 state for which the basic EOMCC approach with singles and doubles completely
fails. The agreement between the CBS CR-CC(2,3)/CR-EOMCC(2,3) and variational MC (VMC) results for
the total energies is not as good as in the DMC case, but the excitation energies resulting from the CBS
CR-CC(2,3)/CR-EOMCC(2,3) and VMC calculations agree very well.

Keywords: equation-of-motion coupled-cluster method; completely renormalized coupled-cluster approaches;
Quantum Monte Carlo; methylene; excited states

1. Introduction

Tremendous progress in photochemistry in recent
years, where increasingly precise experimental tech-
niques can be used to examine a wide variety of light-
driven molecular phenomena, has led to a rapidly
growing need for the development and benchmarking
of new ab initio methods for predictive, high accuracy
calculations for excited electronic states. This, in
particular, applies to methods exploiting the exponen-
tial wave function ansatz of coupled-cluster (CC)
theory [1–5], which offer a possibility of achieving the
best compromise between computer cost and accuracy,
and fastest convergence to the exact results when
compared to other ab initio techniques (see [6–9] for
representative reviews).

Among the most promising and increasingly pop-
ular extensions of the CC formalism to excited states,
which retain the intrinsic simplicity and ‘black-box’
character of the ground-state single-reference CC

calculations, are the equation-of-motion CC

(EOMCC) methodology [10–14] and its symmetry-

adapted-cluster configuration-interaction [15–22] and

linear-response CC [23–28] counterparts. Indeed, the

basic EOMCCSD (EOMCC with singles and doubles)

approach [11–13] and the analogous linear response

CCSD approximation [27–28] (equivalent to

EOMCCSD when excitation energies are considered),

which are characterized by the relatively low com-

puter costs of the standard ground-state CCSD scheme

[29–32], defined by the iterative steps that scale as n2on
4
u

and the storage requirements of the �n2on
2
u type (no and

nu are the numbers of occupied and unoccupied

orbitals, respectively, used in the correlated calcula-

tions), often provide an excellent description of excited

states dominated by one-electron transitions.

Unfortunately, this success does not automatically

extend to the more complicated, more multi-reference,

excited electronic states, such as those characterized
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by a significant two-electron excitation nature.
There also are cases of excited states dominated by
singles, where the EOMCCSD theory level is insuffi-
cient to obtain high-quality results (see, e.g., [33–34]).
In order to describe such challenging states, one must
include the effects of triple excitations in the EOMCC
method, as is done in the full EOMCCSDT (EOMCC
with singles, doubles, and triples) scheme [35–37]. In
fact, there are cases where even this may be insufficient
and the explicit inclusion of quadruple excitations, in
addition to triples, as in the full EOMCCSDTQ
(EOMCC with singles, doubles, triples, and quadru-
ples) approach [38–39], is called for if we want to avoid
a fundamentally more complex and more expert multi-
reference description. The full EOMCCSDT and
EOMCCSDTQ methods substantially improve the
description of excited states dominated by two-electron
transitions, leading to the virtually perfect description
of such states [35–41], but this success comes at a very
high price and a steep increase of the CPU time and
storage requirements that scale as n3on

5
u and �n3on

3
u,

respectively, in the EOMCCSDT case, and n4on
6
u and

�n4on
4
u, respectively, in the case of EOMCCSDTQ,

restricting the applicability of EOMCCSDT and
EOMCCSDTQ to small systems with up to a dozen
or so correlated electrons and, usually, relatively small
basis sets. In order to extend the applicability of the
EOMCC formalism to excited states dominated by
double excitations, without requiring prohibitive levels
of computer effort and without turning to expert,
genuine multi-reference methodologies, the last two
decades have witnessed the development of a large
variety of low-cost EOMCC schemes that account for
the effects of triples or triples and quadruples in an
approximate manner. In this paper, we focus on the
approximate treatment of triple excitations within the
EOMCC formalism.

One way to reduce the computer costs of the
full EOMCCSDT and other higher-level EOMCC
calculations is to select higher-than-doubly excited
components of the cluster operator T that defines
the underlying ground-state CC calculations and
higher-than-two-body components of the linear
excitation operator R of EOMCC through the use of
a small subset of active orbitals, as is done in the
so-called active-space EOMCC methods [35,36,42–44]
(see [45–50] for the corresponding active-space CC
methods for the ground electronic states). In particu-
lar, the resulting EOMCCSDt [35,36,42] approxima-
tion offers considerable savings in computer effort
while preserving high accuracies of the parent
EOMCCSDT approach, including extreme cases of
electronic quasi-degeneracies, where one has to deal
with large numbers of densely spaced excited states

dominated by two-electron transitions [51,52].
Methods that are even easier to use and that do not
require the a priori selection of higher-than-two-body
components of the T and R operators are those
resulting from various ways of correcting the
EOMCCSD energies through the proper identification
of the leading terms of higher-order EOMCC
schemes due to higher-than-double excitations, while
eliminating terms that do not contribute too much.
The non-iterative EOMCC methods, such as those
of the type of the triples correction of EOM-CC(2)
PT(2) [53] and its size intensive [28,54] EOM-CCSD
(2)T [55] analogue, CCSDR3 [56,57], EOMCCSD(T)
[58], EOMCCSD( ~T ) [59], EOMCCSD(T 0) [59],
CR-EOMCCSD(T) [40,41,60,61] and the related
N-EOMCCSD(T) approach [62], and CR-EOMCC
(2,3) [63–65] and the spin-flip variant of the CR-
EOMCC(2,3) approach of [63–65] considered in [66],
as well as their iterative EOMCCSDT-n [58,59] and
CC3 [56,57,67,68] counterparts are particularly prom-
ising in this regard, since they represent computational
black boxes with costs similar to those of the popular
CCSD(T) ground-state approach [69] or its CR-
CC(2,3) extension [70–72], which eliminates failures
of CCSD(T) in situations involving single bond
breaking and biradicals. All of the above methods
greatly reduce the computer costs of full EOMCCSDT
calculations, while improving the EOMCCSD results
in situations involving excited states characterized by
significant double-excitation components. For exam-
ple, the most promising EOMCCSD(2)T, CCSDR3,
EOMCCSD(~T), CR-EOMCCSD(T), N-EOMCCSD
(T), and CR-EOMCC(2,3) approaches are character-
ized by the iterative n2on

4
u steps of EOMCCSD and the

non-iterative n3on
4
u steps needed to construct the triples

corrections to the EOMCCSD energies, while elimi-
nating the need for storing the �n3on

3
u triply excited

amplitudes defining the T and R operators. This makes
these methods applicable to relatively large atomic and
molecular problems, including, for example, the
electronic excitations in molecules of biological signif-
icance [34,73], electronic excitations in ionic crystals
[74], electronic excitations and decay pathways in
DNA bases [75–80], and photo-induced isomerizations
in organic systems [33]. At the same time, methods
such as CR-EOMCCSD(T) and its more recent CR-
EOMCC(2,3) analogue can be very effective in
describing excited states dominated by two-electron
transitions [40,41,51,52,60–65,81], and the present
paper provides further strong evidence that this is
indeed the case.

In this paper, we focus on a previously unexplored
way of benchmarking the left-eigenstate CR-
EOMCC(2,3) approach of [63–65], which is based on
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the biorthogonal formulation [70,71] of the method of

moments of the CC/EOMCC equations [40,41,82–85]

and which represents the natural and rigorous exten-

sion of the ground-state CR-CC(2,3) theory of [70–72]

to excited electronic states. As its CR-EOMCCSD(T)

predecessor [40,41,60,61] derived from the original

formulation of the method of moments of the CC/

EOMCC equations [40,41,82–85], the CR-EOMCC

(2,3) approach is based on the idea of adding state-

specific, non-iterative corrections to the EOMCCSD

energies, expressed in terms of the generalized

moments of the EOMCCSD equations corresponding

to projections of these equations on triply excited

determinants. As demonstrated in our earlier work

[63–65], in which we compared the CR-EOMCC(2,3)

results obtained with the small or medium basis sets of

the double- and triple-zeta quality with the corre-

sponding full EOMCCSDT, full configuration inter-

action (CI), and other high accuracy ab initio data, the

most complete implementation of the CR-EOMCC

(2,3) approach, which is referred to as variant D of

CR-EOMCC(2,3), abbreviated as CR-EOMCC(2,3),

D (see the next section and [63,65] for further infor-

mation), significantly improves the EOMCCSD ener-

gies while providing the results which are at least as

accurate as those obtained with CR-EOMCCSD(T)

and noticeably more accurate than those employing

the triples correction of the EOM-CC(2)PT(2) method

of [53,55] (the latter being equivalent to the approxi-

mate variant A of CR-EOMCC(2,3) [63,65]). This is

particularly true for the electronically excited states

dominated by two-electron transitions. The question

emerges if the excellent performance of the CR-

EOMCC(2,3),D method holds for large basis sets

approaching the infinite basis set regime.
Thus, unlike the earlier benchmark studies of the

CR-EOMCC(2,3) approach [63–65], which utilized

relatively small basis sets, the main objective of this

work is an analysis of the results of larger basis set, all-

electron CR-EOMCC(2,3) calculations employing the

correlation-consistent basis sets of the aug-cc-pCVxZ

quality, in which the cardinal number x is as large as 5,

and the corresponding complete basis set (CBS) limit

extrapolations (cf. e.g. [86–90]). The recent Quantum

Monte Carlo (QMC) [91–93] study of the ground and

three low-lying excited states of methylene by

Zimmerman et al. [94] offers an excellent opportunity

for such an investigation of the CR-EOMCC(2,3)

approach, enabling us to compare the CBS CR-

EOMCC(2,3) data with the results that at least

formally correspond to the numerically exact solutions

of the electronic Schrödinger equation in the limit of

an infinite basis set.

Although this is a benchmark paper, where our
interest in methylene is dictated by the availability of
the QMC data [94], let us recall that a few decades ago,
methylene was the subject of significant controversies
between theory and experiment regarding the geometry
of its triplet ground state (X 3B1) and the small gap
between the lowest triplet and singlet (A 1A1) states
[95–99] (see [100] for a recent review). The year 1970
was particularly important in the fascinating methylene
story, as that year provided a definitive ab initio
theoretical prediction by Bender and Schaefer of the
bent structure of CH2 [101], confirming the earlier
findings of Foster and Boys [102] and Harrison and
Allen [103], to challenge directly the experimental
findings that were initially suggesting the linear struc-
ture [104] (see [98] for Professor Henry F. Schaefer III’s
personal account). Over the years, methylene has
become an important benchmark for electronic struc-
ture methods due to its small size, which permits all
kinds of electronic structure calculations, including the
aforementioned full CI and QMC techniques, and a
variety of approximate methods, and because some of
its excited states are very difficult to describe in
an accurate and balanced manner (see, e.g.
[72,94,105–136] for selected examples, out of many,
of ab initio calculations for ground and excited states of
methylene, which by no means represent an exhaustive
list). In particular, while the ground X 3B1 state of CH2

and its second excited state (B 1B1) have largely a
single-reference character dominated by dynamical
correlations and as such can be adequately represented
by a dominant configuration (1a1)

2(2a1)
2(1b2)

2(3a1)
(1b1), the first excited A 1A1 state and the third excited
C 1A1 state have a significant multi-reference character
with considerable admixture of the (1a1)

2(2a1)
2

(1b2)
2(3a1)

2 and (1a1)
2(2a1)

2(1b2)
2(1b1)

2 configurations,
and are, therefore, challenging to many quantum
chemistry approaches. The C 1A1 state is particularly
difficult in this regard. To achieve an accurate and
balanced description of total and excitation energies,
both static and dynamic electron correlations must be
treated accurately, which in the case of the EOMCC
methods that treat all correlation effects dynamically
through excitations from a single reference determi-
nant means the explicit inclusion of higher-order
components of the T and R operators, such as triples.
As a result, methylene is an excellent test case for
benchmarking the excited-state CR-EOMCC(2,3)
methodology. Since the QMC methodology used in
the recent methylene study [94] relies on a first
quantized formulation, and so does not utilize the
concept of a basis set, it provides us with an ideal
benchmark against which to analyse the large basis set
and CBS CR-EOMCC(2,3) results.
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2. Methods and computational details

In order to compare the CCSD/EOMCCSD and CR-
CC(2,3)/CR-EOMCC(2,3) data for the ground and
lowest three excited states of methylene with the
corresponding QMC results reported in [94] in a
meaningful manner, we performed a sequence of all-
electron CCSD/EOMCCSD and CR-CC(2,3)/CR-
EOMCC(2,3) calculations using the aug-cc-pCVxZ
(x¼T,Q, and 5) basis sets [86,137,138], which we
subsequently extrapolated to the CBS limit, as
described below. The theoretical details of the CR-
EOMCC(2,3) approach and its ground-state
CR-CC(2,3) analogue can be found in [63–65,70–72],
and will not be repeated here. We would only like to
mention that, as already pointed out in the
Introduction, the CR-CC(2,3) and CR-EOMCC(2,3)
methods are based on adding state specific, non-
iterative corrections due to triply excited clusters to the
total CCSD and EOMCCSD energies of the target
electronic states. As in all approaches based on the
method of moments of the CC/EOMCC equations
[40,41,82–85], including its most recent biorthogonal
formulation [70,71] on which the CR-CC(2,3) and CR-
EOMCC(2,3) schemes are based, these corrections are
constructed through the use of the generalized
moments of the appropriate CC/EOMCC equations.
In the case of the CR-CC(2,3) and CR-EOMCC(2,3)
approaches that interest us in this study, we use the
triply excited moments of the CCSD and EOMCCSD
equations, which correspond to the projections of these
equations on the triply excited determinants jF abc

ijk i,
and the left eigenstates of the similarity-transformed
Hamiltonian of CCSD theory, �HCCSD ¼ e�T1�T2

�HeT1þT2 , where T1 and T2 are the singly and doubly
excited cluster operators obtained in the CCSD calcu-
lations, to construct the relevant triples corrections to
the CCSD and EOMCCSD energies. In addition to the
CCSD/EOMCCSD moments and left eigenstates of
�HCCSD, the triples corrections of CR-CC(2,3)/CR-
EOMCC(2,3) require the determination of the diago-
nal matrix elements hF abc

ijk j
�HCCSDjF abc

ijk i, which enter
the relevant perturbative energy denominators
[63,65,70–72]. In the full CR-CC(2,3)/CR-
EOMCC(2,3) method, which is generally referred to

as variant D of CR-CC(2,3)/CR-EOMCC(2,3), the
complete expression for the diagonal elements hF abc

ijk j
�HCCSDjF abc

ijk i, which involves up to three-body
components of �HCCSD, is used in the definition of
these perturbative denominators. By applying system-
atic approximations to the definition of hF abc

ijk j
�HCCSDj

F abc
ijk i, several additional variants of the CR-CC(2,3)/

CR-EOMCC(2,3) theory can be obtained.
In particular, by replacing hF abc

ijk j
�HCCSDjF abc

ijk i with its

zeroth-order approximation given by the orbital
energy difference (�a þ �b þ �c � �i � �j � �k), we
obtain variant A, which is equivalent to the triples
correction of the CCSD(2) approach of [53], referred to
as the CCSD(2)T method [139], in the ground-state
case, and to the triples correction of the EOM-
CC(2)PT(2) approach of [53] when excited states are
considered. Other variants of CR-CC(2,3)/CR-
EOMCC(2,3), obtained by neglecting selected many-
body terms in hF abc

ijk j
�HCCSDjF abc

ijk i, are possible as well
[63,65,72]. In this work, we focus on the most complete
and most accurate variant D of CR-CC(2,3)/CR-
EOMCC(2,3), although some information about the
performance of variant A is given as well.

In the QMC calculations performed by Zimmerman
et al. [94], the results of which are reproduced here to
facilitate the direct comparison with the CR-CC(2,3)/
CR-EOMCC(2,3) results obtained in this study, two
different variants of QMC were used, namely varia-
tional Monte Carlo (VMC) and diffusion Monte Carlo
(DMC). The trial functions for both variants consisted
of the Jastrow–Slater multi-determinant complete-
active-space (CAS) wave functions which, as explained
in [94], were optimized using the linear optimization
method [140–142]. Three different active spaces were
used to generate CAS trial functions for the QMC
calculations reported in [94], namely, the (2,2), (4,4),
and (6,6) active spaces (as in [94], (n, m) denotes an
active space of n electrons and m orbitals).

In this work, rather than restricting ourselves to the
ground X 3B1 and first excited A 1A1 states, as was
done in our group’s previous small basis set CR-CC
calculations for methylene (cf. e.g. [72,134]), we
followed the calculations of Zimmerman and
co-workers [94] and computed the higher-energy B
1B1 and C 1A1 states as well (in making comparisons of
the CC/EOMCC data presented in this article with the
QMC results reported in [94], it should be mentioned
that the authors of [94] use symbol B2 for the states
that are classified here as the B1 states). It should be
noted that since the X 3B1 and A 1A1 states are the
lowest-energy states of their respective symmetries,
they can be obtained with the ground-state CR-
CC(2,3) formalism in which one uses the restricted
open-shell Hartree–Fock (ROHF) determinant as a
reference for the triplet ground state X 3B1 and the
restricted Hartree–Fock (RHF) determinant as a
reference for the first-excited A 1A1 state. This is
exactly what we did in this work. One cannot, however,
apply the same recipe to all other states. Thus, the
remaining B 1B1 and C 1A1 states examined in this
study were calculated in an intrinsic manner, using
the excited-state CR-EOMCC(2,3) approach, with the
previously obtained A 1A1 wave function acting
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as the correlated ground state for the EOMCC ansatz

for the excited-state B 1B1 and C 1A1 wave functions.
The C 1A1 state is particularly important in this
context, since this is a strongly multi-reference state of
the same symmetry as the A 1A1 state (i.e. ‘true’ excited
state that cannot be captured through ground-state
calculations). In both the CC/EOMCC calculations
reported in this article and the QMC calculations of
[94], the geometries for each state were taken from
[108], where they were generated using the full CI
calculations with the [5s3p/2s] triple zeta basis set of
Dunning [143] augmented with two sets of polarization
functions (TZ2P).

As already alluded to above, the CBS limits of the
CCSD/EOMCCSD and CR-CC(2,3)/CR-EOMCC(2,3)
results were determined through extrapolation from the
aug-cc-pCVxZ data (cf. e.g. [86–90]). In order to verify
the numerical stability of the CBS results, two different
extrapolation schemes were utilized in this work. In the
first scheme, referred to here and elsewhere in this paper
as the CBS-A scheme, the CBS energy of the X 3B1 state
was determined by first extrapolating the correlation
energy [CCSD or CR-CC(2,3), as appropriate] using the
well-known formula [87]

DEðxÞ ¼ DE1 þ Ax�3, ð1Þ

where x¼ 3, 4, 5 represents the cardinal number of the

aug-cc-pCVxZ basis set (x¼ 3 for aug-cc-pCVTZ,
x¼ 4 for aug-cc-pCVQZ, and x¼ 5 for aug-cc-
pCV5Z), DE(x) is the correlation energy obtained
with the aug-cc-pCVxZ basis, and DE1 is the corre-
lation energy in the CBS limit. The resulting extrap-
olated correlation energy was then added to the
ROHF/aug-cc-pCV5Z reference energy of the X 3B1

state, which, due to the well-known fast (exponential)
convergence of the ROHF/RHF energies with respect
to the basis set, is equivalent to the CBS reference
energy to an extremely high (0.1 millihartree) accuracy
(we verified this level of accuracy in the ROHF energy
of the X 3B1 state by comparing the corresponding
ROHF/aug-cc-pCV5Z and ROHF/aug-cc-pCVQZ
data). Once the CBS limit of the total correlated
[CCSD or CR-CC(2,3)] energy of the X 3B1 ground
state was determined, the CBS limits of the total
energies of the remaining three states were estimated by
adding the appropriate aug-cc-pCV5Z excitation ener-
gies to the extrapolated total energy of the X 3B1

ground state. This particular method of estimating the
CBS values of the total electronic energies of the X 3B1,
A 1A1, B

1B1, and C 1A1 states of methylene is based on

the assumption that with aug-cc-pCV5Z the excitation
energies are essentially converged with respect to the
basis set, so all one has to do is to obtain the CBS limit

of the ground-state energy and add the aug-cc-pCV5Z
excitation energies to the resulting ground-state energy
value to estimate the CBS energies of the remaining
three states. The validity of this assumption is dis-
cussed in the next section.

In the second extrapolation scheme, referred to as
the CBS-B approach, the CBS total energy of each
state of interest was directly extrapolated using the
formula [86]

EðxÞ ¼ E1 þ Be�ðx�1Þ þ Ce�ðx�1Þ
2

, ð2Þ

with x¼ 3, 4, 5, where x is again the cardinal number
of the aug-cc-pCVxZ basis set, E(x) is the total energy
of the state as computed with the aug-cc-pCVxZ basis,
and E1 is the total energy of the state in the CBS limit.
The difference between the CBS-A and CBS-B extrap-
olation schemes lies in the fact that the latter scheme
extrapolates the total energy of each electronic state
separately, using Equation (2), whereas the former
approach extrapolates the ground-state energy only
using Equation (1) while making an assumption that
the excitation energies converge faster with the basis
set than the total energies, so that one can obtain their
essentially converged values by performing the calcu-
lations with a sufficiently large basis set (in our case,
aug-cc-pCV5Z). A comparison of both extrapolation
schemes in Section 3 will tell us how accurate this
assumption is.

In addition to the large basis set and CBS-limit
EOMCCSD and CR-EOMCC(2,3) calculations that
are compared with the QMC results reported in [94],
we also carried out the CR-CC(2,3)/CR-EOMCC(2,3)
and the corresponding CCSD/EOMCCSD calcula-
tions using the TZ2P basis set [143], so that we could
make a preliminary assessment of the CR-CC(2,3)/CR-
EOMCC(2,3) methodology by comparing the resulting
total and adiabatic excitation energies with those
obtained using full CI [108]. Following the details of
[108], these calculations used the same geometries as
the aug-cc-pCVxZ CC/EOMCC calculations that form
the main focus of this work (recall that these geom-
etries were the full CI geometries taken from [108]),
and in all correlated calculations the lowest-energy
core orbital was frozen and the highest-energy virtual
orbital was deleted.

Although the present work focuses on a
comparison of the large basis set and CBS-limit CR-
EOMCC(2,3) results with the results of the QMC
calculations described in [94], a comparison of the CR-
EOMCC(2,3) results with the available experimental
data for the A 1A1�X

3B1 and B 1B1�X
3B1 energy

gaps is provided as well. In the former case, the exper-
imental estimate of the non-relativistic, purely
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electronic, adiabatic excitation energy corresponding
to the X 3B1!A 1A1 transition, of 0.406 eV, was
obtained by correcting the experimentally derived
vibrationless adiabatic excitation energy reported in
[144] for the relativistic and non-adiabatic (Born–
Oppenheimer diagonal correction) effects calculated in
[145] and [146], respectively (as was done earlier in
[115]). In the latter case, the experimentally derived
value of the purely electronic adiabatic excitation
energy corresponding to the X 3B1!B 1B1 transition,
of 1.415 eV, was taken from [94], where the authors
corrected the adiabatic separation between the v¼ 0
vibronic levels of the B 1B1 and X 3B1 states, obtained
using the information about the relevant B 1B1�A 1A1

and A 1A1�X 3B1 gaps provided in [110] and [144],
respectively, for the zero-point vibrational energies
obtained in the full CI/TZ2P calculations in [108].
Experimental information about the C 1A1�X 3B1 gap
is not available.

All CC and EOMCC calculations reported in this
article were performed using the routines described in
[72,147] for the CCSD calculations, [60] for the
EOMCCSD calculations, [70,72] for the CR-CC(2,3)
calculations, and [63,65] for the CR-EOMCC(2,3)
calculations that are part of the GAMESS package
[148,149]. As a result, since the integral routines in
GAMESS are currently restricted to g functions, the h
functions of the aug-cc-pCV5Z basis set were omitted
in the calculations. As already alluded to above, the
RHF reference corresponding to the A 1A1 state was
used in the calculations for all singlet states, whereas
the X 3B1 ground state utilized the triplet ROHF
reference. Finally, the spherical components of the d, f,
and g basis functions were employed in all of our
calculations.

3. Results

In order to assess the accuracy of the CR-EOMCC(2,3)
approach in calculations for the ground X 3B1 state
and the excited A 1A1, B 1B1, and C 1A1 states of
methylene prior to the comparison of the large basis set
and CBS-limt CR-EOMCC(2,3) and QMC data, we
first examine the results of the CR-EOMCC(2,3)
calculations using the TZ2P basis set, which we
compare with the available full CI data reported in
[108] [from now on, whenever we refer to EOMCCSD
and CR-EOMCC(2,3), we imply the ground-state
CCSD and CR-CC(2,3) calculations for the X 3B1

and A 1A1 states, which are the lowest-energy states in
their respective symmetries, and the excited-state
EOMCCSD and CR-EOMCC(2,3) calculations
exploiting the A 1A1 wave function as a correlated

ground state in the EOMCC ansatz for the B 1B1 and
C 1A1 states; cf. the previous section]. The results of
this comparison are presented in Table 1.

Focusing first on the total energies, we see that for
the ground X 3B1 state and the excited A 1A1 and B 1B1

states, the basic EOMCCSD approach performs rea-
sonably well, with errors relative to full CI of 3.39–5.19
millihartree. This is related to the fact that the ground
X 3B1 state and the second excited B 1B1 state have a
single-reference character dominated by dynamical
correlations which the EOMCCSD approach can
capture in an accurate manner. The A 1A1 state,
which is more multi-reference than the X 3B1 and B 1B1

states, having some admixture of the (1a1)
2(2a1)

2

(1b2)
2(1b1)

2 configuration in the zeroth-order descrip-
tion, is still largely single-reference and dominated by
the RHF (1a1)

2(2a1)
2(1b2)

2(3a1)
2 determinant, which

makes it tractable by EOMCCSD in an adequate
manner. The nice performance of EOMCCSD
observed in the calculations for the X 3B1, A 1A1,
and B 1B1 states does not mean, however, that one
cannot improve these results any further. Indeed, the
inclusion of the triples effects through the CR-
EOMCC(2,3) approach offers additional non-trivial
improvements in the total energies for the X 3B1, A

1A1,
and B 1B1 states. In particular, the most complete
CR-EOMCC(2,3),D scheme reduces the reasonable
EOMCCSD errors relative to full CI down to
0.04–1.78 millihartree, which represents an excellent
level of agreement with full CI, particularly considering
the relatively low costs of the CR-EOMCC(2,3)
calculations. Interestingly, the approximate variant A
of CR-EOMCC(2,3) is not as accurate as the full
variant D in describing the X 3B1, A

1A1, and B 1B1

states, but the discrepancy between the results of the
two methods is less than 1 millihartree, since none of
the three states has significant contributions from two-
electron transitions [65].

Turning to the considerably more multi-reference
C 1A1 state, which is largely dominated by the two-
electron transitions from the (1a1)

2(2a1)
2(1b2)

2(3a1)
2

reference, we see that an entirely different picture
emerges. Indeed, unlike in the case of the X 3B1, A

1A1,
and B 1B1 states, EOMCCSD is no longer capable of
providing an accurate total energy for the C 1A1 state,
producing a large error relative to full CI of 44.95
millihartree. Accounting for the effects of triples
through the CR-EOMCC(2,3),A approach signifi-
cantly improves the situation, but the resulting error
of 9.08millihartree is still larger than one would like
it to be. As was the case for the X 3B1, A

1A1, and
B 1B1 states, the most complete variant D of
CR-EOMCC(2,3) provides superior accuracy when
compared to the approximate variant A, but unlike
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Table 1. Total energies (in hartree) and adiabatic excitation energies (in eV) for the low-lying states of CH2, as obtained with the full CI, EOMCCSD, CR-EOMCC(2,3),
A, and CR-EOMCC(2,3),D approaches and the TZ2P basis seta.

Total energy (hartree) Adiabatic excitation energy (eV)

Method X 3B1 A 1A1 B 1B1 C 1A1 A 1A1–X
3B1 B 1B1–X

3B1 C 1A1–X
3B1

Full CIa �39.066738 �39.048984 �39.010059 �38.968471 0.483 1.542 2.674
EOMCCSD �39.063351 �39.043791 �39.005609 �38.923521 0.532 1.571 3.805
CR-EOMCC(2,3),A �39.066097 �39.047631 �39.007791 �38.959394 0.502 1.587 2.904
CR-EOMCC(2,3),D �39.066699 �39.048509 �39.008283 �38.971988 0.495 1.590 2.577

Note: aThe basis set, geometries, and full CI energies were taken from [108]. The geometries used here were generated using full CI with the TZ2P basis set. In all
correlated calculations, the lowest occupied orbital was frozen, the highest virtual orbital was deleted, and the spherical components of the carbon d orbital were
employed.
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what was observed for the X 3B1, A
1A1, and B 1B1

states, where the improvement offered by variant D
was less than 1 millihartree, for the C 1A1 state variant
D of CR-EOMCC(2,3) reduces the magnitude of the
CR-EOMCC(2,3),A error by as much as 5.56 milli-
hartree. As a result, the CR-EOMCC(2,3),D approach
produces a highly accurate result for the total energy of
the challenging C 1A1 state that differs from full CI by
only 3.52 millihartree.

Moving on to the adiabatic excitation energies
obtained with the TZ2P basis set, we see that a similar
pattern emerges. Indeed, for the less challenging A 1A1

and B 1B1 states, EOMCCSD performs quite well,
producing errors relative to full CI of 0.05 and 0.03 eV,
respectively. Furthermore, the incorporation of triples
has a relatively small impact on the results, with the
CR-EOMCC(2,3),A method producing errors relative
to full CI of 0.02 and 0.05 eV for the A 1A1 and B 1B1

states, respectively, and CR-EOMCC(2,3),D offering
additional small improvements. As was the case for the
total energies, however, the effect of triple excitations is
much larger in the case of the C 1A1 state, for which the
difference between the EOMCCSD and full CI excita-
tion energies is 1.13 eV. The CR-EOMCC(2,3),
A approach reduces this discrepancy down to the
more acceptable level of 0.23 eV, and the full
CR-EOMCC(2,3),D scheme further reduces the error
relative to full CI down to 0.10 eV, which is a
considerable improvement compared to EOMCCSD
and CR-EOMCC(2,3),A. Thus, for both total and
adiabatic excitation energies, the full variant D of
CR-EOMCC(2,3) provides the most accurate results,
which are in excellent agreement with the results of the
exact, full CI diagonalization. Similarly superb perfor-
mance of CR-EOMCC(2,3),D has been observed in
our other benchmark studies using finite basis sets
(cf. e.g. [63–65]).

We now turn to the main objective of the present
study, which is the comparison of the EOMCCSD,
CR-EOMCC(2,3), and QMC data, as shown in
Table 2. Because of our earlier observation that the
complete variant D of CR-EOMCC(2,3) is more
accurate than variant A, from now on we only consider
the results obtained with variant D of CR-
EOMCC(2,3) [referred to for the rest of this discussion
as CR-EOMCC(2,3), with no additional labels].
We begin the examination of the EOMCCSD and
CR-EOMCC(2,3) data in Table 2 by analysing the
numerical stability of the CBS extrapolations.
As explained in Section 2, the CBS-A extrapolation
scheme is based on an assumption that although the
total EOMCC energies are not converged to the CBS
limit with the aug-cc-pCV5Z basis, the excitation
energies are. An analysis of Table 2 reveals that this

is indeed a valid assumption, as the EOMCCSD and
CR-EOMCC(2,3) excitation energies do not signifi-
cantly change when moving from the aug-cc-pCVQZ
to aug-cc-pCV5Z basis sets, with the largest change of
0.02 eV occurring for the most challenging C 1A1 state.
Moving on to a direct comparison of the two types of
CBS CR-EOMCC(2,3) total energies for each state,
resulting from the CBS-A and CBS-B approaches,
we see that the two extrapolation schemes produce
results that are in reasonably good agreement with
each other. Indeed, the discrepancies between the two
sets of CBS CR-EOMCC(2,3) results do not exceed 2.8
millihartree, independent of the electronic state con-
sidered. The situation for the EOMCCSD total ener-
gies is essentially identical. The agreement between
the two different CBS extrapolation schemes for
the adiabatic excitation energies is even better. For
the X 3B1!A 1A1 and X 3B1!B 1B1 excitation
energies, the two CBS CR-EOMCC(2,3) values differ
by 0.001 eV or less, while in the case of the C 1A1 state,
the discrepancy in the excitation energies resulting
from the CBS-A and CBS-B extrapolations is 0.013 eV.
Again, similar observations apply to the EOMCCSD
approach. We can conclude that the CBS EOMCCSD
and CR-EOMCC(2,3) values are stable to the level of
approximately 2 millihartree for total energies and
approximately 0.01 eV for excitation energies, i.e. we
can regard them as essentially converged. This is more
than sufficient to make a meaningful comparison with
the DMC and VMC calculations of [94], which are
characterized by a larger scatter of data when different
QMC methods are compared with one another
(cf. Table 2).

Let us then compare the CBS EOMCCSD and CR-
EOMCC(2,3) results with the QMC data. Beginning
with the basic EOMCCSD calculations, we see that the
resulting A 1A1�X 3B1 and B 1B1�X 3B1 gaps are in
reasonably good agreement with the various QMC
results, not only in the CBS limit, but also for the finite
aug-cc-pCVxZ basis sets with x¼T, Q, and 5.
Furthermore, as observed in the preliminary analysis
using the TZ2P basis set, accounting for the effects of
triples through CR-EOMCC(2,3) does not significantly
alter the values for these gaps, changing the excitation
energies for the A 1A1 and B 1B1 states in the CBS limit
by only about 0.03–0.04 eV. In analogy to the TZ2P
results discussed above, the situation is quite a bit
different for the X 3B1!C 1A1 excitation energy. In
this case, the EOMCCSD excitation energies differ
from those generated by CR-EOMCC(2,3) and the
various QMC approaches by roughly 1.4– 1.5 eV,
confirming that this is by far the most challenging state
considered here, which is characterized by a significant
multi-reference or two-electron excitation nature that
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Table 2. Comparison of the total energies (in hartree) and adiabatic excitation energies (in eV) for the low-lying states of CH2, as obtained with the EOMCCSD and
CR-EOMCC(2,3) approaches using the aug-cc-pCVxZ (x¼T,Q, 5) basis sets and extrapolating to the CBS limit, with the various QMC resultsa.

Total energy (hartree) Adiabatic excitation energy (eV)

Method Basis Set X 3B1 A 1A1 B 1B1 C 1A1 A 1A1–X
3B1 B 1B1–X

3B1 C 1A1–X
3B1

EOMCCSD x¼T �39.126182 �39.108786 �39.072643 �38.978950 0.473 1.457 4.006
x¼Q �39.137932 �39.120739 �39.085176 �38.988201 0.468 1.436 4.074
x¼5 �39.140567 �39.123385 �39.087917 �38.990384 0.468 1.433 4.087
CBS-A �39.144329 �39.127147 �39.091680 �38.994146 0.468 1.433 4.087
CBS-B �39.142082 �39.124905 �39.089492 �38.991641 0.467 1.431 4.094

CR-EOMCC(2,3) x=T �39.130497 �39.114493 �39.075964 �39.034496 0.435 1.484 2.612
x=Q �39.142544 �39.126736 �39.088654 �39.046556 0.430 1.466 2.612
x=5 �39.145196 �39.129390 �39.091392 �39.048426 0.430 1.464 2.633
CBS-A �39.149079 �39.133273 �39.095275 �39.052309 0.430 1.464 2.633
CBS-B �39.146720 �39.130914 �39.092964 �39.049486 0.430 1.463 2.646

DMC: CAS(2,2) �39.1406(1) �39.1255(1) �39.0890(1) �39.0451(1) 0.412(4) 1.405(4) 2.600(4)
DMC: CAS(4,4) �39.1408(1) �39.1257(1) �39.0891(1) �39.0465(1) 0.412(4) 1.408(4) 2.566(4)
DMC: CAS(6,6) �39.1428(1) �39.1279(1) �39.0908(1) �39.0501(1) 0.406(4) 1.416(4) 2.524(4)
VMC: CAS(2,2) �39.1273(2) �39.1124(2) �39.0755(2) �39.0311(2) 0.407(8) 1.411(8) 2.620(8)
VMC: CAS(4,4) �39.1279(2) �39.1126(2) �39.0758(2) �39.0334(2) 0.416(8) 1.417(8) 2.573(8)
VMC: CAS(6,6) �39.1327(2) �39.1169(2) �39.0790(2) �39.0389(2) 0.430(8) 1.460(8) 2.550(8)
Experiment 0.406b 1.415c

Notes: aThe geometries were taken from [108] and were generated using full CI with the TZ2P basis set. In all CC/EOMCC calculations, all electrons were correlated and
the spherical components of the d, f, and g basis functions were employed. Since the integral routines in GAMESS used in the CC/EOMCC calculations are currently
restricted to g functions, the h functions of the aug-cc-pCV5Z basis set were omitted. All DMC and VMC results are taken from [94]. The CR-EOMCC(2,3) acronym
stands for the complete variant D of CR-EOMCC(2,3).
bObtained by correcting the experimentally derived value of the vibrationless adiabatic A 1A1�X 3B1 energy gap reported in [144] for the relativistic and non-adiabatic
(Born–Oppenheimer diagonal correction) effects calculated in [145] and [146], respectively (as described in [115]).
cObtained by correcting the adiabatic separation between the v¼ 0 vibronic levels of the B 1B1 and X 3B1 states, based on the information about the B 1B1�A 1A1 and
A 1A1�X 3B1 gaps provided in [110] and [144], respectively, for the zero-point vibrational energies obtained in the full CI/TZ2P calculations in [108] (as described in [94]).
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the EOMCCSD approach cannot capture. Looking at
the total energies of each state listed in Table 2, we see
that for the X 3B1, A

1A1, and B 1B1 states, for which
the corresponding EOMCCSD excitation energies are
reasonable, the EOMCCSD approach produces errors
relative to CR-EOMCC(2,3) on the order of 3.3 to 6.1
millihartree, i.e. errors which are relatively small, for
both the aug-cc-pCVxZ basis sets with x¼T, Q, and 5,
and in the CBS limit. However, the EOMCCSD
calculations for the C 1A1 state generate a huge error
relative to CR-EOMCC(2,3), which in the CBS limit is
on the order of 58 millihartree, illustrating once again
the much larger role of triply excited clusters in the
description of this multi-reference state.

Moving on, it can be seen from Table 2 that the CR-
EOMCC(2,3) results for the adiabatic excitation ener-
gies, obtained with the aug-cc-pCVxZ basis sets with
x¼T, Q, and 5, and in the CBS limit, are in very good
agreement with the various QMC results and the
available experimental data. In particular, depending
on the size of the CAS for the trial functions used in the
QMC calculations, the discrepancies between the DMC
excitation energies and the corresponding
CBS-extrapolated CR-EOMCC(2,3) values range
from 0.018–0.024, 0.047–0.059, and 0.033–0.122 eV for
the A 1A1, B 1B1, and C 1A1 states, respectively.
Interestingly, the agreement of the CR-EOMCC(2,3)
excitation energies with the corresponding VMC data is
even better, with the discrepancy ranges reducing to
0.000–0.023, 0.003–0.053, and 0.025–0.096 eV for the
A 1A1, B

1B1, and C 1A1 states, respectively, when the
CBS CR-EOMCC(2,3) and VMC data are compared
with one another. It is worth noting, however, that the
changes in the excitation energies when going from
DMC to VMC are not dramatic, and so we can
conclude that the two QMC variants produce compa-
rable results in this regard. The same can be seen when
comparing the CR-EOMCC(2,3), DMC, and VMC
results with the experimentally derived data for the adi-
abatic A 1A1�X 3B1 and B 1B1�X 3B1 gaps. It is quite
clear from Table 2 that both variants of QMC and the
CBS-extrapolated CR-EOMCC(2,3) approach provide
excitation energies which are in excellent agreement
with one another and with experiment.

The total energies of the X 3B1, A
1A1, B

1B1, and
C 1A1 states, however, paint a different picture. The
discrepancies between the VMC and DMC results
are now on the order of 10 millihartree, which is a
rather substantial disagreement within the QMC
methodology. Looking at the CBS-extrapolated
CR-EOMCC(2,3) total energies listed in Table 2, it is
quite clear that they agree much more strongly with the
DMC results than with the VMC results. If we focus
on the largest CAS(6,6) QMC calculations, then the

CBS-A CR-EOMCC(2,3) energies differ from the
DMC results by 2.2–6.3 millihartree, while the corre-
sponding CBS-B energies, in which the CR-
EOMCC(2,3) energy of each state is extrapolated to
the CBS limit separately using Equation (2), differ by
only 0.6–3.9 millihartree. This is an excellent level of
agreement, particularly when we realize the entirely
different nature of the CR-EOMCC(2,3) and QMC
calculations and the fact that we are examining four
different electronic states, not just the ground state.
The discrepancy with the VMC energies, on the other
hand, is an order of magnitude worse, ranging
from 13.4 to 16.4 millihartree for the CBS-A
CR-EOMCC(2,3) results and 10.6 to 14.0 millihartree
for the CBS-B CR-EOMCC(2,3) values. Given the
excellent agreement between the independent CR-
EOMCC(2,3) and DMC results, and the excellent
performance of the CR-EOMCC(2,3) approach rela-
tive to full CI in the TZ2P calculations, it is safe to
conclude that the VMC results are the ones in larger
error, producing total energies that are too high.
On the other hand, given the fact that the increase in
the VMC energies relative to the CR-EOMCC(2,3) and
DMC approaches is nearly constant for all four states,
the resulting adiabatic excitation energies are still
highly accurate and in very good agreement with
those of the latter two methods.

4. Summary and concluding remarks

We used the CR-EOMCC(2,3) approach and the
associated ground-state CR-CC(2,3) methodology to
determine the total electronic and adiabatic excitation
energies corresponding to the ground and lowest three
excited states of methylene. We focused on comparing
the CR-CC(2,3)/CR-EOMCC(2,3) results, obtained
with the larger correlation-consistent basis sets of the
aug-cc-pCVxZ (x¼T,Q, 5) quality and the corre-
sponding CBS limits, with the VMC and DMC data
for the X 3B1, A

1A1, B
1B1, and C 1A1 states reported

in [94], although a comparison of the CR-CC(2,3)/CR-
EOMCC(2,3) and full CI data, using the full CI results
obtained with the TZ2P basis set in [108], and a
comparison of the CR-CC(2,3)/CR-EOMCC(2,3) adi-
abatic X 3B1!A 1A1 and X 3B1!B 1B1 excitation
energies with the available experimentally derived data
were made as well.

We demonstrated that the CBS-extrapolated
CR-CC(2,3)/CR-EOMCC(2,3) results, based on
the full implementation of CR-CC(2,3)/CR-EOMCC
(2,3) defining variant D of the CR-CC(2,3)/CR-
EOMCC(2,3) methodology, are in excellent agreement
with the best DMC data, both for the total energies and
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the adiabatic excitation energies. Indeed, the CBS
values of the CR-EOMCC(2,3),D energies, in which
the energy of each state of interest is extrapolated
separately, differ from the corresponding CAS(6,6)
DMC data reported in [94] by only 0.6–3.9
millihartree, while the discrepancies between the
X 3B1!A 1A1, X

3B1!B 1B1, and X 3B1!C 1A1

adiabatic excitation energies resulting from the inde-
pendent CBS CR-EOMCC(2,3) and CAS(6,6) DMC
calculations are 0.024, 0.047, and 0.122 eV, respectively.
The agreement between the CBS CR-CC(2,3)/CR-
EOMCC(2,3) and VMC results for the total energies
is not as good as in the DMC case, indicating that the
VMC results are the ones in larger error, but the
excitation energies resulting from the CBS CR-CC(2,3)/
CR-EOMCC(2,3) and VMC calculations agree very
well, independent of the electronic state considered. The
CR-CC(2,3)/CR-EOMCC(2,3) adiabatic excitation
energies obtained with the larger aug-cc-pCVxZ basis
sets and in the CBS limit are in excellent agreement with
the available experimentally derived data for the A
1A1�X 3B1 and B 1B1�X 3B1 gaps.

We demonstrated that the full variant D of CR-
EOMCC(2,3) provides significantly more accurate
results than the EOMCCSD and CR-EOMCC(2,3),
A or EOM-CC(2)PT(2) calculations, particularly when
the multi-reference states dominated by two-electron
transitions, such as the C 1A1 state of methylene, are
examined, independent of the basis set employed,
confirming the earlier findings in this regard when
other molecular systems were studied [63–65]. The
novelty of the present findings in this regard lies in the
fact that we demonstrated their validity in the large
basis set and CBS-limit calculations. In particular,
the CBS-extrapolated CR-EOMCC(2,3),D approach
reduces the huge, 60 millihartree and �1.6 eV errors in
the CBS EOMCCSD total and excitation energies,
relative to the corresponding CAS(6,6) DMC data for
the most challenging, doubly excited C 1A1 state to less
than 1 millihartree and about 0.1 eV, respectively.

To conclude, we showed that by using the
correlation-consistent basis sets to extrapolate the
CBS limit of the CR-CC(2,3)/CR-EOMCC(2,3) ener-
gies, we can obtain the total and excitation energies,
including excited states dominated by two-electron
transitions, that match the highly accurate results of
the computationally demanding QMC calculations,
which produce the CBS-quality results in an intrinsic
manner. This very encouraging finding illustrates the
considerable potential of the CR-EOMCC(2,3) meth-
odology and its ground-state CR-CC(2,3) counterpart
in applications involving low-lying electronic states of
molecular species, and, with the help of CBS extrap-
olations, in testing different QMC approaches,

particularly in situations involving challenging excited
states dominated by two-electron transitions.
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