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A modified ansatz for explicitly correlated coupled-cluster wave functions
that is suitable for response theory
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A modified ansatz for explicitly correlated coupled-cluster wave functions with a single correlation
factor is set forward. It is based on the fixed amplitude ansatz of Ten-no �Chem. Phys. Lett. 398, 56
�2004�� to which an extra term is added that allows for the explicitly correlated description of singly
excited configurations. The new approach has been implemented for coupled-cluster singles and
doubles with the aid of automated techniques. Numerical results are presented for vertical excitation
energies, and ground and excited state equilibrium distances and harmonic frequencies of diatomics.
The new approach is shown to provide a nearly unbiased description of ground and predominantly
singly exited states, and the improvements seen for explicitly correlated treatments of ground states,
as compared to conventional orbital expansions, carry over to excited states. In addition, a
correction for contributions from one-electron terms—which are not improved by the correlation
factor—is suggested, again with focus on applicability to a response formalism. © 2009 American
Institute of Physics. �DOI: 10.1063/1.3079543�

I. INTRODUCTION

The introduction of geminal functions that explicitly de-
pend on the interelectronic distance is known to significantly
improve the basis set convergence of the ground state corre-
lation energy, which was already recognized in the early days
of quantum mechanics.1 In particular the so-called R12 an-
satz of Kutzelnigg and Klopper2 has enabled the application
of such correlation factors in molecular calculations,3 and the
introduction of Slater-type geminals4,5 has lead to significant
progress in that area �usually called F12 ansatz�. Coupled-
cluster calculations with Slater-type correlation factors give a
fully nonempirical access to highly accurate solutions of the
electronic Schrödinger equation and may in the near future
play an important role in the development of efficient ab
initio protocols for the prediction of thermochemical
quantities.6,7

In this contribution, we will make a new attempt to
transfer the improvements seen for the ground state energy to
response properties, in particular, to excitation energies
which—in the coupled-cluster linear response
framework8–10—are obtained as the poles of response func-
tions. Earlier attempts in this direction have been conducted
using linear R12 correlation factors11,12 and the approximate
coupled-cluster singles and doubles model CC2.13

The initial results for excitation energies, however, were
disappointing. It turned out that the R12 ansatz is strongly
biased toward the ground state, as the correlation factor acts
by construction on the reference determinant only.11 The
analysis given in Ref. 11 showed that only the ground state
contribution is improved, leading to much too large excita-
tion energies which with increasing basis set size more
slowly converge to the limit than the conventional results do.
An improvement was somewhat later suggested by Neiss et

al.,12 who extended the ansatz such that the correlation factor
acts on selected virtual orbitals as well �R12+ ansatz�. A
much better convergence of the excitation energy was ob-
served now, but for some cases numerical problems occurred
�lack of positive definiteness of the B-matrix�. The same au-
thors also used the approach for the calculation of higher
order optical response properties for the CCSD�R12�
model.14

In this work, we will introduce an alternative explicitly
correlated coupled-cluster singles and doubles �CCSD�
model which is suited for response theory. In order to reduce
numerical problems associated with the unitary invariant for-
mulation for optimized pair coefficients,15 we will make use
of Ten-no’s SP approach,4,16 which is unitary invariant as
well, but circumvents the troublesome pair rotation ampli-
tudes; instead it chooses the geminal function such that the
first order s- and p-wave conditions for electron coalescence
are fulfilled. We will avoid the selection of orbitals, and in-
clude all singly excited configurations by an extension of the
geminal operator.

The ansatz will be presented in Sec. II A and motivated
by considering a generalized geminal operator. Thereafter,
we will discuss the application to the coupled-cluster singles
and doubles model and the equations for the ground state
correlation energy and for excitation energies, Secs. II B and
II C. An extension to correct for the one-electron basis set
error is presented in Sec. II D. The equations have been
implemented using an automated approach, as outlined in
Sec. III. Numerical examples are finally presented in Sec. IV.

II. THEORY

A. Ansatz

Throughout this work, we will consider a Slater-type
correlation factor with the interelectronic distance r12 and a
length scale parameter �,
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f�r12� =
1

�
e−�r12. �1�

The integrals over this factor will be scaled and antisymme-
trized in order to fulfill the coalescence conditions for both
singlet and triplet pairs.16 In a spin-orbital formalism, we
have

R��
pq = Spq����Q12f�r12��pq� , �2�

where the symmetrization operator is defined as

Spq =
1 − Ppq

4
if �p = �q, �3�

Spq =
3 + Ppq

8
if �p � �q, �4�

and where Ppq is an operator that permutes spin-orbital indi-
ces p and q, and �p is the ms value of the spin orbital with
index p. The index conventions are given in Table I. Q12 is
the strong-orthogonality projector.

Using these integrals, we can introduce the geminal op-
erator

R = 1
4R��

ij aij
�� + 1

2R��
ia aia

�� + 1
4R��

ab aab
��

= R�hh� + R�ph� + R�pp�, �5�

which falls into three blocks, depending on the type of or-
bital pair on which it acts. The symbols aqs

pr=aparasaq denote
strings of creation operators ap, and annihilation operators
ap.

The usual parameterization of the wave operator in ex-
plicitly correlated coupled-cluster calculations is eS with S
=T+T�, where T is the conventional cluster operator, which
in the case of CCSD reads

T = T1 + T2 = ta
i ai

a + 1
4 tab

ij aij
ab, �6�

and T� incorporates explicitly correlated electron pairs,

T� = 1
8R��

kl ckl
ijaij

��. �7�

The coefficients ckl
ij are either optimized or—in the SP

ansatz—chosen equal to unity �note that we have appropri-
ately normalized and symmetrized the integrals in order to
satisfy the singlet and triplet coalescence conditions�.

In order to motivate possible extensions of this ansatz,
we consider the action of the exponential of the general
geminal operator �5� on the wave operator eT,

eReT = eTe−TeReT = eT exp�R + �R,T� + 1
2 ��R,T�,T�� .

�8�

Analysis of the right-hand side of this equations suggests the
following: First of all, one might prefer those terms which
are pure excitation operators with respect to the reference
function, e.g., R�hh�, as only these give a contribution in lin-
ear order, and discard the remainder �thereby avoiding other
unfortunate properties of noncommuting operators in the ex-
ponential�. As these pure excitation operators commute with
T, we can again join the arguments of the two exponentials
and arrive at the following cluster operator

T + R�hh� + �R�ph�,T� + ��R�pp�,T��c.b. + 1
2 ��R�pp�,T�,T� ,

�9�

where � �c.b. indicates “closed from below,” i.e., only those
terms of �R�pp� ,T� should be considered which are pure ex-
citation operators with respect to the reference determinant.
The terms that contribute to the CCSD cluster operator are
given in diagrammatic form in Fig. 1.

Obviously, we arrive at the usual parameterization if we
truncate after T+R�hh�, and the expansion in Eq. �9� suggests
�R�ph� ,T� as the natural next term to be considered. For
CCSD, only the term �R�ph� ,T1� remains, as �R�ph� ,T2�
would be a triple excitation. In fact, �R�ph� ,T1� is the term of
which we can expect significant improvement for explicitly
correlated response calculations, as it includes the action of
an r12-dependent correlation factor on occupied-virtual or-
bital pairs. As the response of T1 will generate the principal
configurations of single-excitation dominated states, this
term will include the action of f�r12� on singly excited deter-
minants. Of course, for double-excitation dominated states,
we will by construction miss important explicit correlation
contributions, but we note that CCSD does not properly re-

TABLE I. Index conventions used in this work.

p, q, r,… Orbitals in finite basis
i, j, k,… Occupied �hole� orbitals
a, b, c,… Virtual �particle� orbitals in finite basis
�, �, �,… Virtual orbitals in complete basis
p�, q�, r�,… Virtual orbitals in complementary space spanned by

auxiliary basis functions
�1 Single excitations into virtual orbitals in finite basis
�1� Single excitations into virtual orbitals in the

complementary space
� Generic n-fold excitations into virtual orbitals in finite

basis

a b c d

e f

FIG. 1. Diagrammatic representation of the terms in Eq. �9� for the case of
CCSD. Terms a and b represent the usual excitation operators, term c is the
SP excitation operator, where double arrows denote excitations into the for-
mally complete virtual space �we implicitly assume the presence of the
strong-orthogonality projector Q12�. Diagram d is the new term included for
the XSP approach, diagrams e and f are not considered in the present work.
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cover these states anyway. Therefore, it seems justified to
restrict the present study to the �R�ph� ,T1� term.

For consistency, R�hh� and R�ph� should employ the same
correlation factor, in this work a Slater function determined
by the � parameter �vide supra�. Additional flexibility can be
gained by replacing the T1 operator entering into the addi-

tional term by a new single-excitation operator T̃1 which can
be optimized separately.

We will in the following denote approaches which use
the cluster operator:

SSP = T1 + T2 + R�hh� �10�

as SP ansatz, those using

SXSP = T1 + T2 + R�hh� + �R�ph�,T1� �11�

as extended SP �XSP� ansatz and if the latter term is chosen

to contain new amplitudes T̃1

SXSPopt
= T1 + T2 + R�hh� + �R�ph�,T̃1� , �12�

we will call that approach the optimized extended SP
�XSPopt� ansatz.

B. Explicitly correlated coupled cluster

In this work, we will use the truncated CCSD-F12 model
CCSD�F12�,17–19 which recently was confirmed to be a very
good approximation to the full model.20,21 Applying the SP
approach, we obtain the following Lagrange function:

LSP = E0 + �0�H�T2 + 1
2T1

2��0� + �0�HR�0�

+ �0�R†e−THeT�0� + �0�R†FR�0� + �
�

����,

�13�

where �0� is the reference state, E0 is the reference energy,
and F is the Fock operator. For the index conventions cf.
Table I. The Lagrange multipliers �� are associated with the
residuals

�� = �0���
† e−THeT�0� + �0���

† �e−THeT,R��0� �14�

that result from projection onto the excited determinants
���0�, and from which the optimal amplitudes in the T op-
erator are obtained. Here and in the following we have
dropped the �hh� and �hp� superscripts of R, and it is under-
stood that in the present context R�hh� is meant; R�ph� will
always appear in the context of a commutator with a single-
excitation operator �vide infra�.

Next, we turn to the XSPopt approach, noting that the
XSP approach is just a special case of the former. We aug-

ment the cluster operator with �R�ph� , T̃1� and arrive at the
following Lagrange functional:

LXSPopt
= LSP + �0�H�R,T̃1��0� + �0�R†F�R,T̃1��0�

+ �
�

����� + �
�1

�̃�1
�̃�1

. �15�

The residual function for the T operators is extended with the
coupling term

��� = �0���
† �e−THeT,�R,T̃1���0� �16�

and amplitudes defining the new T̃1 operator are obtained by
requiring the following residual expression to vanish:

�̃�1
= �0����1

† ,R†���F,R + �R,T̃1�� + e−THeT��0� . �17�

In the XSP approach we do not optimize these new ampli-

tudes but rather require them to be T̃1=T1. In this case the
F12 projection �17� is added to the conventional �0��1

† pro-
jection of Eq. �14�, thus using ��1

as common Lagrange
multiplier.

The computer generated explicit expressions for the re-
sulting Lagrangians are given in the Appendix. As for the
usual F12 ansatz, the geminal factors give rise to three and
four-electron integrals which can be approximated by the
usual techniques.3 The relevant intermediates are listed in
Table II. Note that the SP ansatz and the special symmetri-
zation convention used for the geminal, Eqs. �2�–�4�, allow
the formulation of contracted rank zero and rank one inter-
mediates, as outlined in Table II.

C. Coupled-cluster excitation energies

In the coupled-cluster response framework, we obtain
excitation energies as poles of response functions, or—more
explicitly—as eigenvalues of the Jacobian,8,10

A�	 =
�L

��� � t	

. �18�

In case of XSPopt, additional blocks arise due to derivatives

with respect to T̃1 and �̃1 �vide infra�.
Also, one has to consider the derivatives of the overlap


�	 =
�

��� � t	

�0��S�0� , �19�

which arises from the time derivative in the quasienergy
Lagrangian.10 Unlike for conventional coupled cluster, we
have to take care of a nonunit metric due to the nonorthogo-
nality of the geminal functions.11

The secular equations arising for the XSPopt ansatz thus
assume the form

TABLE II. Definition of the integrals and intermediates used in this work.

E0= �0�H�0�
Fq

p= �p�F�1��q� Grs
pq= �pq�r12

−1�rs�

Rrs
pq=Srs�pq�Q12f�r12��rs�

Brs
pq=SpqSrs�pq�f�r12�Q12�F�1�+F�2��Q12f�r12��rs�

Xrs
pq=SpqSrs�pq�f�r12�Q12f�r12��rs�

Vrs
pq=Srs�pq�r12

−1Q12f�r12��rs�
Crs

pq=Srs�pq��F�1�+F�2��Q12f�r12��rs�

B0=�ijBij
ij Br

p=� jBrj
pj

B̃0=�iklXil
ikFk

l B̃r
p=�klXql

pkFk
l

Xr
p=� jXrj

pj

V0=�ijVij
ij Vq

p=� jVqj
pj

104104-3 Explicitly correlated response theory J. Chem. Phys. 130, 104104 �2009�
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	 �0��1
†�e−SHeS,�1��0� �0��1

†e−SHeS,�R,�1��0� �0��1
†�e−SHeS,�2��0�

�0���1
†,R†��e−SHeS,�1��0� �0���1

†,R†��e−SHeS,�R,�1���0� �0���1
†,R†��e−SHeS,�2��0�

�0��2
†�e−SHeS,�1��0� �0��2

†�e−SHeS,�R,�1���0� �0��2
†�e−SHeS,�2��0�



�	E1

Ẽ1

E2

 = �	1 0 0

0 �0���1
†,R†��R,�1��0� 0

0 0 1

	E1

Ẽ1

E2

 . �20�

The eigenvalue problem is nonsymmetric which gives rise to
an equivalent set of “left-hand” equations, leading to the
same eigenvalues but a different set of left-hand eigenvec-

tors, Ē1, Ē̃1, and Ē2. These may be normalized to fulfill

Ē1
†E1 + Ē̃1

†
Ẽ1 + Ē2
†E2 = 1. �21�

In the XSP approach, we have only one set of single-
excitation amplitudes. The corresponding eigenvalue equa-
tions are obtained from Eq. �20� by summing the first two
lines and columns.

D. Correction for basis set error in one-electron
terms

One problem in basis set extrapolations for excited states
is that we cannot properly separate out correlation effects,
unlike for the ground state. F12 calculations, however, im-
prove the correlation part only. As the main intent of the F12
approach is the use of comparatively small orbital basis sets
in correlated calculations, we are left with the problem that
now the one-electron error may dominate the basis set error.
One route to go is the development of new basis sets for
explicitly correlated calculations, which make use of the fact
that part of the basis set flexibility that was formerly neces-
sary for the orbital expansion of the correlation energy can
be invested for improving the one-electron error.22 Another,
complementary, idea is to employ the additional basis func-
tions of the complementary auxiliary basis set �CABS� for
which the relevant matrix elements are available, as these are
needed in the evaluation of the special F12 intermediates.
This approach was suggested by Adler et al.23 who used an
MP2-type expression to get a correction term.

In this work, we will take up the latter idea. As we want
to define an energy functional that is suitable for response
theory, we propose to include all terms linear in T1�, and to
approximate the coupling between these single excitations
and the coupling to T2� by the Fock operator, analogous to
the definition of the �F12� truncation.17 This leads to the
following extension of the Lagrange expression:

LXSPopt+T1�
= LXSPopt

+ �0�FT1��0� + �0�HT1T1��0�

+ �0�R†�F,T1���0� + �
�

�����

+ �
�1

�̃�1
�̃�1

� + �
�1�

��1�
��1�

�22�

with the additional coupling terms for the T and T̃ residual,

��� = �0���i

† �e−THeT,T1���0� , �23�

�̃�1
� = �0���1

†,R†��F,T1���0� , �24�

and the T1� residual

��1�
= �0��1�

† e−THeT�0� + �0��1�
† �F,R + �R,T̃1� + T1���0� .

�25�

The explicit expression for the Lagrangian can be found in
the Appendix. In the excited state equations, we get addi-
tional equations for the response amplitudes E1�.

III. REMARKS ON THE IMPLEMENTATION

The generation of the explicit expressions and their nu-
merical evaluation was achieved by automated techniques as
implemented in the GECCO program. Starting from the defi-
nition of the cluster operator and the coupled-cluster
Lagrange functional �including the rules for the �F12�-
truncation�, the code expands the explicit expressions for the
Lagrangian and obtains all necessary equations by differen-
tiation. After optimal factorization of the terms and the elimi-
nation of common intermediates, the expressions for the en-
ergy, residual or for matrix-vector products are evaluated
using a string based approach, comparable to that of Kállay
and Surján.24 The code has previously been applied to the
implementation of the full CCSD-F12 model,20 further de-
tails will be published elsewhere. The basic integrals have
been imported from a special version of the DALTON code.25

As mentioned above, we employ the truncated
CCSD�F12� model in the present work. The present version
of GECCO supports ansatz 3 �modified ansatz 2� �Ref. 26� and
approximations B and C. Auxiliary basis sets are used to
better represent the resolution of the identity, employing the
CABS approach.26

104104-4 Andreas Köhn J. Chem. Phys. 130, 104104 �2009�
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The correctness of the implementation has been checked
by comparison to the DALTON implementation of
CCSD�F12� for both optimized occupied-occupied pair rota-
tions cij

kl and the SP ansatz. Likewise we could check the
correctness of our implementation for the excitation energies
by solving both the right-hand and left-hand eigenvalue
equations, which lead to identical eigenvalues.

The overall scaling of all the XSP methods is N6, with N
being a measure for system size. More specific, the compu-
tationally most expensive noniterative terms scale with
O2V2X2 and OV5, where O is the number of occupied, V is
the number of virtual orbitals, and X is the number of auxil-
iary functions in the CABS. The most expensive terms which
are evaluated in each iteration scale O2V4 and O3V2X1. Thus,
the iterative effort of the XSP approaches has the same scal-
ing as the SP ansatz. The noniterative terms scale somewhat
worse �SP, for comparison: O2X2 and O3V1X1� due to the
presence of geminals with virtual-occupied pairs in the XSP
approach. For the XSP+T1� approach, the additional single
excitations into the CABS add terms scaling with at most N5

to the iterative effort. The most worrisome term is probably
one that scales like O1V1X2, as this is a quadratic scaling
with auxiliary basis set size, however, with a low prefactor
�only N4 overall scaling�.

IV. NUMERICAL EXAMPLES

A. Calculation details

The presented examples comprise of boron hydride, BH,
at a distance of R=2.328 898 31 a0, singlet carbene, CH2,
with nuclei at the Cartesian coordinates �in a0�: C �0.0, 0.0,
0.189 234 24� and H �0.0, 1.625 690 44, 
1.126 589 82�; the
second H is at the appropriate position for C2v point group
symmetry. For lithium fluoride, LiF, an artificially stretched
bond �4.0a0� was employed, as explained below. We have
used the augmented series of Dunning’s correlation consis-
tent basis sets,27,28 aug-cc-pVXZ, as this has become a kind
of standard in F12 calculations. We note, however, that at-
tempts exist to create new basis sets which are specially
suited for explicitly correlated basis sets.22 It is not clear,
however, in how far these are suited for excited states, or
response properties and a test of this is not the scope of the
present work. As auxiliary basis, to better represent the res-
olution of the identity in orbital space, we used an uncon-
tracted aug-cc-pV6Z basis. In case of lithium fluoride, a spe-
cial 21s14p7d6f5g4h3i basis was constructed for both
lithium and fluorine, starting from the well-tempered basis
sets29 and adding one further diffuse function. The exponents
�l for higher angular momentum functions were generated by
the formula �l=�0�l+3� /3, and always the largest exponents
were discarded.

The Slater correlation factor is fitted by a linear combi-
nation of six Gaussian geminals, with the exponents and co-
efficients given in Ref. 5. For all examples, we used the
modified ansatz 2 �=ansatz 3� for the strong-orthogonality
projector and approximation C for the evaluation of the B
and C intermediates; no extended or generalized Brillouin

condition was enforced. Likewise, no hybrid scheme was
applied, i.e., the exchange contributions to the B intermediate
were fully evaluated.

As mentioned before, a special version of the DALTON

code25 was employed in order to generate the reference wave
function and the basic integrals. Conventional coupled-
cluster calculations were performed using the CFOUR

package.30 For all calculations the frozen-core approximation
was used.

B. Ground state energies

In this section, we have chosen singlet CH2 to discuss
the behavior of the various CCSD�F12� schemes for ground
state energy calculations. In Fig. 2, the convergence of the
CCSD correlation energy with increasing basis set size is
plotted. For orientation, we extrapolated to the limit using
the two-point X−3 formula of Helgaker et al.31 The conven-
tional calculation shows the expected slowly convergent be-
havior, even for an aug-cc-pV6Z basis set an error of more
than 1 mEh remains. All explicitly correlated models im-
prove the results significantly. For an aug-cc-pVTZ basis
both the SP and XSP approaches recover a larger fraction of
the correlation energy than the conventional aug-cc-pV5Z
result does. For an aug-cc-pVQZ basis, the deviation from
the �conventionally estimated� basis set limit is below
1 mEh. The increased flexibility, either by the usual intro-
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duction of occupied-occupied pair rotations or by including
optimized virtual-occupied pairs �XSPopt approach�, seems to
further improve the results.32

A crucial question in all explicitly correlated approaches
using a single Slater-type geminal is the dependence of the
result on the Slater exponent �, cf. Eq. �1�. In Fig. 3 we have
plotted the � dependence of the two new approaches XSP
and XSPopt and compare to the � dependence of the usual ckl

ij

and SP ansätze. Obviously, the XSP approach performs
nearly equivalent to the original SP method, as the two
curves run nearly parallel to each other, the energies obtained
for the XSP ansatz are only slightly shifted up. As observed
before,4,19 the optimum � for the latter methods is consider-
ably larger than for the ckl

ij ansatz. Compared to that, the
optimum � for XSPopt is slightly shifted to lower values, but
still the length scale is shorter than for the ckl

ij ansatz.
As observed in previous publications,4,18,19 the

�-dependence diminishes for larger basis set, as shown for
the XSP approaches in Fig. 4. The double-zeta basis sets are
obviously too inflexible, but starting from triple zeta, we
obtain satisfactory results for a broad range of � values. As a
general trend, the minimum shifts to larger � for increasing
basis set level, less pronounced, however, for the XSPopt ap-
proach. It should be noted, that the optimum � is dependent
on the molecular system. However, it must be chosen glo-
bally, like a basis set parameter, in order to obtain consistent
results. In so far, there is no point in choosing an optimum �
based on Fig. 4, and we will �somewhat arbitrarily� use �
=1.4 in all further examples, unless stated otherwise.

As discussed in Sec. II D, the F12 approaches only give
a correction to the correlation energy. In Fig. 5, we have
plotted the convergence of the total ground state energy of
CH2. In fact, we observe for both XSP and XSPopt that the
basis set incompleteness error for the reference energy di-
minishes the overall improvement of the results. E.g. for the
aug-cc-pVTZ basis set, the total XSPopt energy is �in terms of
deviation from the limit� only as good as the conventional
aug-cc-pVQZ result. Including single excitations into the
CABS basis, significantly enhances the values. As for corre-
lation energies, an improvement by two zeta levels is now

observed for the total energy. In the following sections, we
will investigate whether this result carries over to excitation
energies and equilibrium geometries.

C. Vertical excitation energies

We start with the vertical A 1�←X 1
+ transition of
BH. In Fig. 6 the basis set dependence of the various models
is compared. The convergence of the conventional calcula-
tion is rather rapid, as ground state and excited state corre-
lation effects largely cancel �vide infra�. For the calculation
of excitation energies with the SP approach, a tremendous
basis set error occurs, in accordance with similar findings in
Ref. 11. The XSP ansatz significantly improves on SP, but
seemingly it does not straightly converge to the limit which
obviously is reached for the conventional calculations. For
the given Slater exponent of �=1.4, the three values for
XSP /aug-cc-pVXZ �X=D,T,Q� cluster about 0.01 eV above
the apparent basis set limit. Including single excitations into
the CABS does not seem to help in this case. If we optimize

the additional singles parameters T̃1, however, we obtain a
nice and—as compared to the conventional calculations—
even improved convergence to the basis set limit.

To gain more insight into the properties of the discussed
methods, we will now examine three issues: �a� the � depen-
dence of the excitation energies, �b� a break-down of the
excitation energies into several contributions and the conver-
gence of the latter, and �c� the convergence of energy differ-
ences between excited states.

In Fig. 7 the �-dependence of XSP and XSPopt excitation
energies is shown for different basis sets. We notice that in
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all cases the dependence decreases for larger basis sets and

that—for 0.8���1.4—the optimization of T̃1 significantly
reduces the dependence, as well. Apparently, the XSP ap-
proach prefers rather large values of � for improved excita-
tion energies which, however, runs counter the observations
for the ground state correlation energy. There, values of 1.4–
1.6 seem optimal, although for larger basis sets a somewhat

larger � would do no harm, see Fig. 4. We have not pursued
that issue further, noting that first, the XSPopt approach has a
much less problematic behavior �in fact, Fig. 7 suggests that
with �=1.4 we have obtained the best results�, and that sec-
ond, the remaining error for XSP is rather small ��0.01 eV
in this case�. Rather, we have the “unfortunate” situation that
the convergence of excitation energies in BH seems not be
dominated by correlation effects such that the benefits of the
XSP approach are smaller than its deficiencies. We will be-
low give a different example, LiF, where correlation effects
are much stronger and where both XSP and XSPopt signifi-
cantly improve the convergence.

Next, we will analyze the BH excitation energies by
splitting them into the following three contributions:

�ES = �0�Ē1�eT1HeT1,E1��0� , �26�

�ED,GS = �0�Ē1�eSHeS,E1��0� − �ES, �27�

�ED,XS = �E − �ES − �ED,GS. �28�

The first one is the pure one-electron contribution, the sec-
ond is interpreted as ground state correlation contribution,
and the remainder will be addressed as excited state correla-
tion contribution. The analysis is similar to that presented in
Refs. 11 and 12.

In analogy to the mentioned work, we consider two
states of BH, which illustrate the two situations: convergence
of the excitation energy of a rather compact valence state
�A 1� state� and a semidiffuse state �B 1
+�. The first state is
analyzed in Table III. The one-electron contribution is very
fast convergent, beyond the triple-zeta level it changes by
less than 0.005 eV. The ground and excited state correlation
contributions to the excitation energy converge slower, but
they always have different signs and thus cancel to a large
extent. As already mentioned in the discussion of Fig. 6, this
leads to a much diminished basis set dependence of the ex-
citation energy.

Comparing the conventional result and the result from
the SP approach, we directly find the reason for the failure of
the latter. The SP ansatz only improves the ground state cor-
relation, whereas the excited state correlation is nearly the
same as in the orbital expansion case. As a consequence, an
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imbalance between of ground and excited state contributions
occurs. This is the same finding as described for the response
of the ckl

ij ansatz in Ref. 11, although for the latter approach
one could have expected that the response of the ckl

ij remedies
the problem. However, this was found to be not the case, in
the particular example of the 1� state of BH for the obvious
reason that no response amplitudes with appropriate symme-
try exist, as all occupied orbitals have 
 symmetry.11

Turning to the XSP ansatz, we find that the balanced
description of ground and excited state correlation is largely
restored: not only the ground state contribution is improved
�the values are comparable to that of the SP approach�, also
the excited state values lie—for all three basis sets—much
closer to the apparent basis set limit. The one-electron part
remains nearly unaffected for XSP. Inclusion of the single
excitations into the CABS slightly improves the convergence
of the one-electron contribution, most noticeably for the aug-
cc-pVDZ basis, although the total excitation energy seems to
become worse in this case. In fact, the result without T1� was
only fortuitously better due to error cancellation, as one-
electron and correlation contributions approach the limit
from different sides.

The introduction of optimized singles amplitudes for the

explicit correlation part, T̃1 �XSPopt ansatz�, leads to nearly
no changes in the one-electron contribution. The major ef-

fects are a slight increase of the ground state correlation con-
tribution and a slight decrease of the excited state correlation
contribution, which finally results in an improved balance
and a faster convergence. Comparison to the XSP result sug-
gests that the latter model slightly overestimates the differ-
ential correlation effect.

The excitation into the �B 1
+� state is analyzed in Table
IV. With the singly augmented basis set series, we observe
slow convergence even for the one-electron contribution.
Obviously, the introduction of correlation factors cannot
amend this shortcoming of the basis, as the results for XSP
and XSPopt show. The introduction of the extended singles
T1� does not significantly improve the results, either. This
does not arise from a deficiency in the CABS, as including
further diffuse functions in the auxiliary basis does not
change results. Rather, the reason is that the T1� enter pertur-
batively only. In the present case, however, the principal con-
figuration needs to be described by a basis function that is
not included in the orbital basis set, which cannot be
amended by a perturbative correction. If we move to the
doubly augmented basis sets, the problems in the one-
electron terms vanish, and the convergence properties of the
approaches are similar to the A 1� case, see Tables III and
IV.

So far, we have reached the conclusion that the major

TABLE III. Analysis of the contributions to the CCSD A 1�←X 1
+ vertical transition energy of BH. The
contributions are defined by Eqs. �26�–�28�.

Basis �E �ES �ED,GS �ED,XS �ED,GS+�ED,XS

Conventional
apVDZ 2.9712 2.7224 1.4886 
1.2399 0.2487
apVTZ 2.9294 2.7299 1.6104 
1.4109 0.1995
apVQZ 2.9195 2.7316 1.6404 
1.4524 0.1880
apV5Z 2.9170 2.7320 1.6493 
1.4644 0.1849

SP
apVDZ 3.0886 2.7194 1.5926 
1.2234 0.3691
apVTZ 2.9790 2.7287 1.6542 
1.4039 0.2503
apVQZ 2.9424 2.7309 1.6606 
1.4490 0.2116

XSP
apVDZ 2.9252 2.7258 1.5986 
1.3992 0.1994
apVTZ 2.9257 2.7325 1.6568 
1.4636 0.1932
apVQZ 2.9234 2.7329 1.6616 
1.4711 0.1906

XSP+T1�
apVDZ 2.9283 2.7303 1.5970 
1.3990 0.1979
apVTZ 2.9249 2.7316 1.6566 
1.4633 0.1933
apVQZ 2.9231 2.7326 1.6616 
1.4711 0.1905

XSPopt

apVDZ 2.9256 2.7262 1.6127 
1.4133 0.1994
apVTZ 2.9187 2.7323 1.6518 
1.4654 0.1864
apVQZ 2.9162 2.7326 1.6571 
1.4734 0.1836

XSPopt+T1�
apVDZ 2.9286 2.7307 1.6111 
1.4132 0.1979
apVTZ 2.9179 2.7314 1.6516 
1.4651 0.1865
apVQZ 2.9159 2.7324 1.6570 
1.4734 0.1836
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problem of explicitly correlated calculations for excitation
energies lies in the balance between ground and excited state.
For coupled-cluster response theory the problem is even
more evident, than, e.g., for configuration interaction-type
calculations, as ground and excited state are not treated
equally by construction. In fact, if we look at energy differ-
ences between excited states, most of the above problems �in
particular for XSP� seem to cancel. In Fig. 8 we have plotted

the energy difference between the A 1� state and the corre-
sponding 3� state. Now, both XSP and XSPopt behave nearly
identically, and quickly converge to the limit. For the SP
approach, on the other hand the same behavior as for a con-
ventional calculation is observed, as the improvements for
the ground state wave function completely cancel.

These effects are seen in other examples as well. In Fig.
9 we have plotted the excitation energy of the 1 1B1

TABLE IV. Analysis of the contributions to the CCSD B 1
+←X 1
+ vertical transition energy of BH. The
contributions are defined by Eqs. �26�–�28�.

Basis �E �ES �ED,GS �ED,XS �ED,GS+�ED,XS

Conventional
apVDZ 6.5021 6.0041 1.2740 
0.7760 0.4980
apVTZ 6.5463 5.9472 1.3911 
0.7920 0.5991
apVQZ 6.5537 5.9313 1.4198 
0.7973 0.6225
apV5Z 6.5516 5.9196 1.4284 
0.7964 0.6320
dapVTZ 6.5186 5.9139 1.3914 
0.7866 0.6047
dapVQZ 6.5383 5.9122 1.4199 
0.7938 0.6261
dapV5Z 6.5452 5.9112 1.4284 
0.7944 0.6340

XSP
apVDZ 6.5856 6.0050 1.3846 
0.8039 0.5806
apVTZ 6.5861 5.9486 1.4387 
0.8012 0.6375
apVQZ 6.5754 5.9327 1.4418 
0.7991 0.6427
dapVTZ 6.5584 5.9146 1.4384 
0.7945 0.6438
dapVQZ 6.5599 5.9134 1.4416 
0.7952 0.6464

XSPopt

apVDZ 6.5991 6.0022 1.3967 
0.7999 0.5968
apVTZ 6.5779 5.9449 1.4326 
0.7996 0.6330
apVQZ 6.5677 5.9302 1.4366 
0.7992 0.6374
dapVTZ 6.5493 5.9110 1.4315 
0.7931 0.6384
dapVQZ 6.5514 5.9109 1.4358 
0.7952 0.6405

XSPopt+T1�
apVDZ 6.5839 5.9834 1.3870 
0.7865 0.6005
apVTZ 6.5662 5.9318 1.4290 
0.7945 0.6344
apVQZ 6.5622 5.9183 1.4337 
0.7810 0.6526
dapVTZ 6.5525 5.9141 1.4314 
0.7931 0.6383
dapVQZ 6.5521 5.9117 1.4357 
0.7953 0.6404
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←1 1A1 transition of CH2, where 1 1A1 is treated as ground
state in the coupled-cluster calculation. We obtain the same
picture as in the case of the transition to the 1� state of BH:
at the aug-cc-pVQZ level an error of �0.01 eV remains for
the XSP approach, whereas XSPopt nicely converges to the
limit. If we instead consider the difference between, e.g.,
1 1B1 and 1 3A1, all XSP approaches nicely converge to the
limit and clearly improve upon the conventional calculation,
see Fig. 10.

As a last example for vertical excitation energies, we
want to discuss the LiF molecule. The choice was motivated
by the fact that the above examples lack strong differential
correlation effects. The low-lying excited states of LiF, how-
ever, are charge-transfer excitations which feature a strong
change in the electron density upon excitation, and conse-
quently significant differential correlation energies can be ex-
pected. We artificially enhanced the charge-transfer character
by choosing a somewhat enlarged bond distance of 4.0a0.

Indeed, the results presented Fig. 11 indicate a strong
basis set effect for the conventional calculations. We have
extrapolated the excitation energy to the complete basis set
limit from the aug-cc-pVQZ and aug-cc-pV5Z results using
the two-point X−3 formula.31 With respect to this procedure, a
word of caution is appropriate, as we did not separate out the
one-electron contribution; rather, we assume that the change
in the one-electron contribution is negligible for the two ba-
sis sets. In fact, the fast convergence of the F12 results con-
firms the assumption that the major part of the basis set ef-
fect is due to correlation. The XSPopt results nicely converge
to the same limit as estimated from the conventional calcu-
lations, whereas the XSP ansatz deviates for the aug-cc-
pVQZ basis by �0.02 eV from the limit. Compared to the
conventional calculation, this still is a significant improve-
ment and we will show in the following section that for other
properties XSP and XSPopt work equally well.

D. Spectroscopic parameters

In this section, we want to examine the possible benefits
for the calculation of potential energy surfaces, in particular,
for excited state structures and harmonic frequencies. We

will investigate the improvements due to the new XSP ap-
proaches for the 1� states of two diatomics—BH and CO—
and compare these to the improvements gained for the elec-
tronic ground state.

The potential energy curves were calculated around the
presumed minima, with increments of 0.01a0. The actual
minima �total energy and re� and the harmonic frequencies
were obtained by interpolation with fourth-order polynomi-
als. The accuracy of the obtained values was checked by
comparison to analytical results using CFOUR,30 which also
was used to calculate the grid points for conventional CCSD.
The extrapolated results were obtained by a two-point X−3

extrapolation scheme for each single point energy,31 either
for the ground state correlation energy, or for the ground
state correlation plus excitation energy. The Hartree–Fock
contribution was taken from the aug-cc-pV6Z calculations.

The results for BH are presented in Table V. As bench-
mark we use the conventionally obtained basis set limit, as
described above. However, it should be pointed out that the
extrapolation scheme is purely empirical, and in case of ex-
citation energies it is not well established. Thus, the extrapo-
lated results should rather be regarded as orientation, a more
reliable basis set limit may be available from F12 calcula-
tions with large basis sets, once the properties of the latter
are better understood.

Comparison of the entries of Table V for aug-cc-pVTZ
with and without correction of the Hartree–Fock contribution
illustrates the importance of that correction: Particularly the
errors in the equilibrium distance and the harmonic fre-
quency are significantly reduced for both the electronic
ground and excited states. Thus, the XSP and XSPopt results
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�which do not include the single excitations into the CABS�
are only meaningful, if the Hartree–Fock energy is corrected
for the aug-cc-pV6Z result.

Including this correction, rather encouraging results are
obtained: For both states, X 1
+ and A 1�, the XSP models
using the triple-zeta basis sets are as close to the estimated
basis set limit as the conventional aug-cc-pV5Z calculation.
Only the outcome for the XSP excitation energy is somewhat

too high which is improved by optimized T̃1 amplitudes.
Apart from the slight shift in the energetics, however, both
XSP and XSPopt yield nearly the same results.

The results for the T1�-augmented models demonstrate
that the Hartree–Fock contributions are rather well corrected
by that approach. This means that the XSP+T1� and XSPopt

+T1� approaches allow to obtain results close to the basis set
limit from a single calculation.

A very similar picture emerges for CO, see Table VI.
Again the Hartree–Fock correction turns out to be highly
important. The correlation corrections due to the geminals
incorporated through the XSP approach seem to work ex-
tremely well, in this case we even surpass the aug-cc-pV6Z
result for re and �e. Only for the adiabatic excitation energy,
a slight deviation occurs, the value obtained with the
XSPopt+T1� approach is 0.012 eV above the conventionally
estimated limit. As noted above, however, the extrapolation
needs not necessarily be optimal for excitation energies.

V. CONCLUSIONS

We have presented a modification of the cluster operator
that enables explicitly correlated coupled-cluster calculations
of electronically excited states. The new term in the cluster
operator comprises of a geminal function acting on a virtual-
occupied orbital pair. The present approach can be viewed as
an extension of the SP approach pioneered by Ten-no,16,4 and
we term it XSP approach. Two models are discussed in the
scope of the coupled-cluster singles and doubles model, in
one of them the virtual-occupied orbital pair is associated

with the usual T1 operator, in the other an additional T̃1 op-
erator is introduced �XSPopt approach�. Both models have
been implemented using the GECCO program, which auto-
matically expands the explicit expressions and evaluates
them using a string based approach.

The numerical examples suggest that both XSP ansätze
improve on the standard F12 approaches, which fail for ex-
citation energies.11 The first XSP approach, in which the ex-
cited pair geminal operator is contracted with the usual T1

operator is slightly too inflexible and gives an apparent limit
for excitation energies that is incorrect by 0.01–0.02 eV in
the present examples. We note that this error is guaranteed to
vanish if the orbital basis approaches completeness due to
the strong-orthogonality projector. The source of the error
seems to be a slight bias between the ground and excited
state correlation contributions, as differences between ex-
cited states do not show this problem.

TABLE V. BH: CCSD spectroscopic parameters using conventional orbital expansions and the XSP approach
�Slater exponent �=1.4�.

Method Basis

Te

�eV�
re

�pm�
�e

�cm−1�

Value �5/6
a Value �5/6

a Value �5/6
a

X 1
+

Conventional 5/6 extr 123.13 2371
apVTZ 123.42 +0.29 2359 
12
apVTZ+HF /apV6Z b 123.27 +0.14 2363 
8
apVQZ+HF /apV6Z b 123.19 +0.06 2369 
2
apV5Z+HF /apV6Z b 123.15 +0.02 2370 
1
apV6Z 123.14 +0.01 2371 +0

XSP apVTZ+HF /apV6Z 123.11 
0.02 2372 +1
XSPopt apVTZ+HF /apV6Z 123.11 
0.02 2372 +1
XSP+T1� apVTZ 123.11 
0.02 2373 +2
XSPopt+T1� apVTZ 123.11 
0.02 2372 +1

A 1�

Conventional 5/6 extr. 2.914 122.11 2325
apVTZ 2.929 +0.015 122.44 +0.33 2303 
22
apVTZ+HF /apV6Z b 2.929 +0.015 122.27 +0.16 2309 
16
apVQZ+HF /apV6Z b 2.919 +0.005 122.18 +0.07 2321 
4
apV5Z+HF /apV6Z b 2.916 +0.002 122.13 +0.02 2323 
2
apV6Z 2.915 +0.001 122.12 +0.01 2324 
1

XSP apVTZ+HF /apV6Z b 2.925 +0.011 122.07 
0.04 2325 +0
XSPopt apVTZ+HF /apV6Z b 2.917 +0.004 122.07 
0.04 2326 +1
XSP+T1� apVTZ 2.924 +0.010 122.09 
0.02 2325 +0
XSPopt+T1� apVTZ 2.917 +0.003 122.09 
0.02 2325 +0

aDifference to 5/6 extrapolated value.
bHartree–Fock reference state energy from aug-cc-pV6Z basis was used.
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Introducing new amplitudes T̃1 �XSPopt ansatz� resolves
the problem, and highly accurate results are possible for
triple-zeta basis sets, already. As an aside, the improvement
comes at the cost of lower numerical stability due to near-
linear dependencies in the geminal basis which determines

the metric for the T̃1 amplitudes and their response. This
might pose a problem when going to larger molecules and
warrants further investigation.

As shown by a detailed analysis of the contributions to
the excited states, the improvement gained by the XSP mod-
els only affects the correlation. In order to improve the one-
electron description, additional single excitations into the
CABS space T1� are introduced, thereby extending the idea
of Adler et al.23 This correction was shown to work success-
fully for the total energy of CH2 and the ground and excited
state structure constants of BH and CO. However, the cor-
rection does not work, if the underlying orbital basis set does
not properly describe the primary configuration of a state.
This particularly may be the case for states with admixture of
Rydberg character if the orbital basis is not sufficiently
diffuse.

We conclude that the suggested approaches lead to very
promising results and open the perspective for evaluating
highly accurate excitation energies and response properties
from explicitly correlated coupled-cluster response calcula-
tions. Of course, the improvements come at the price of a
significantly increased complexity of the resulting equations
and a higher prefactor in their numerical evaluation, although
the scaling remains the same as for conventional CCSD. In
fact, it is a major challenge in F12 theory to reduce the

overhead due to the additional terms, such that the improved
basis set convergence directly maps to a reduced computa-
tional effort. Progress in this direction has been reported for
ground state methods,6,23 and equivalent approaches need to
be transferred to excited state and response calculations.
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APPENDIX: LAGRANGE FUNCTIONS
OF THE DISCUSSED CCSD MODELS

The formulae in this section are automatically generated
by GECCO. We use the Einstein summation convention over
repeated upper and lower indices. In addition, restricted sum-
mation over equivalent indices is implied, e.g., Gij

abtab
ij has

two pairs of equivalent indices �ij ,ab�; without assumption
of a restricted summation, an additional prefactor of � 1

2
�2

arises �for the present example�. For index conventions see
Table I; intermediates are defined in Table II.

The four Lagrangians presented in the following form a
series of subsets. We start with the conventional contribu-
tions, which equal the usual CCSD-Lagrange function,

TABLE VI. CO: CCSD spectroscopic parameters using conventional orbital expansions and the XSP approach
�Slater exponent �=1.4�.

Method Basis

Te

�eV�
re

�pm�
�e

�cm−1�

Value �5/6
a Value �5/6

a Value �5/6
a

X 1
+

Conventional 5/6 extr. 112.30 2238
apVTZ 112.88 +0.58 2215 
23
apVTZ+HF /apV6Z 112.63 +0.33 2221 
17
apVQZ+HF /apV6Z 112.44 +0.14 2232 
6
apV5Z+HF /apV6Z 112.37 +0.07 2235 
3
apV6Z 112.34 +0.04 2237 
1

XSP apVTZ+HF /apV6Z 112.31 +0.01 2239 +1
XSP+T1� apVTZ 112.32 +0.02 2239 +1
XSPopt+T1� apVTZ 112.33 +0.03 2238 0

A 1�

Conventional 5/6 extr. 8.258 122.28 1592
apVTZ 8.211 
0.047 123.16 +0.88 1560 
32
apVTZ+HF /apV6Z 8.236 
0.022 122.86 +0.58 1565 
27
apVQZ+HF /apV6Z 8.246 
0.011 122.51 +0.23 1581 
11
apV5Z+HF /apV6Z 8.252 
0.006 122.39 +0.11 1587 
5
apV6Z 8.254 
0.004 122.34 +0.06 1589 
3

XSP apVTZ+HF /apV6Z 8.294 +0.036 122.31 +0.03 1591 
1
XSP+T1� apVTZ 8.289 +0.031 122.31 +0.03 1592 0
XSPopt+T1� apVTZ 8.270 +0.012 122.33 +0.05 1591 
1

aDifference to 5/6 extrapolated value.
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LCCSD = E0 + Fi
ata

i + Gij
abtab

ij + 1
2Gij

abta
i tb

j + �i
aFa

i − �i
aFj

ita
j + �i

aFa
btb

i − �i
aGja

ibtb
j + Fi

a� j
btab

ij + �k
bGij

katab
ij + � j

cGic
abtab

ij − Fi
b� j

ata
i tb

j

+ � j
bGik

jatb
kta

i + � j
bGib

actc
j ta

i + Gij
abta

i �k
ctbc

jk − Gij
ab�k

ctb
ktac

ij − Gij
ab�k

ctc
j tab

ik − Gij
ac�k

btb
j tc

kta
i + �ij

abGab
ij + �ij

abGka
ij tb

k + �ij
abGab

ic tc
j

− �ij
abFk

j tab
ik + �ij

abFb
ctac

ij + �ij
abGkl

ij tab
kl − �ij

abGka
ic tbc

jk + �ij
abGab

cdtcd
ij + 1

2�ij
abGkl

ij ta
ktb

l + �ij
acGka

ib tb
j tc

k + 1
2�ij

abGab
cdtc

i td
j − Fk

c�ij
abtc

j tab
ik

− Fk
c�ij

abtb
ktac

ij + � jk
bcGil

kata
i tbc

jl + �kl
abGij

kctc
l tab

ij + �ik
acGjl

kbtc
l tab

ij + � jk
bcGic

adta
i tbd

jk + �ik
acGjc

bdtd
ktab

ij + �ij
cdGkc

abtd
ktab

ij − Gjk
cd�il

abtab
ik tcd

jl

+ Gij
cd�kl

abtab
ij tcd

kl − Gkl
bc�ij

adtac
ij tbd

kl + 1
2Gik

ac� jl
bdtab

ij tcd
kl + 1

2�ij
bcGkl

iata
j tb

ktc
l + 1

2�ij
adGka

bctb
i tc

j td
k − Gil

ad� jk
bctd

kta
i tbc

jl + 1
2Gij

cd�kl
abtc

ktd
l tab

ij

− Gik
ad� jl

bctc
ktd

l tab
ij − Gil

ad� jk
bctc

l ta
i tbd

jk + 1
2Gkl

ab�ij
cdtc

ktd
l tab

ij + 1
4Gij

cd�kl
abta

i tb
j tc

ktd
l .

For the explicitly correlated CCSD�F12� model in the SP approach, the CCSD Lagrangian is extended by the following terms:

LSP = LCCSD + 2V0 + B̃0 + B0 − �R†�ij
ap�Gkp�

ij ta
k + �V†�i

ata
i + �C†�ij

abtab
ij + �R†�ij

ap�Gkp�
ib tab

jk + �V†�ij
abtab

ij − �R†�ij
bp�Gkp�

ia ta
j tb

k

+ 1
2 �V†�ij

abta
i tb

j + �R†� jk
bp�Gip�

ac ta
i tbc

jk + �R†�ik
ap�Gjp�

bc tc
ktab

ij − �R†�ij
cp�Gkp�

ab tc
ktab

ij − 1
2 �R†�ij

cp�Gkp�
ab ta

i tb
j tc

k − Fi
p�� j

aRap�
ij − �k

aGij
kp�Rap�

ij

+ �i
aVa

i − �i
aVj

ita
j − Gij

ap��k
bta

kRbp�
ij − Gij

ap�ta
i �k

bRbp�
jk + �ij

abCab
ij − �ij

abGka
ip�Rbp�

jk + �ij
abVab

ij − Fk
p��ij

abtb
kRap�

ij + �ik
abGjl

kp�tb
l Rap�

ij

+ �ij
abVka

ij tb
k − �ik

abGjb
cp�tc

kRap�
ij + � jk

bcGic
ap�ta

i Rbp�
jk − �ij

abVk
j tab

ik + �ij
abVkl

ij tab
kl − Gkl

bp��ij
actab

ij Rcp�
kl − Gik

ap�� jl
bctab

ij Rcp�
kl

− Gij
ap��kl

bctac
ij Rbp�

kl + 1
2�ij

abVkl
ij ta

ktb
l − Gik

cp�� jl
abtb

ktc
l Rap�

ij − Gil
ap�� jk

bctc
l ta

i Rbp�
jk .

The additional terms for the CCSD�F12� extended SP approach read

LXSPopt
= LSP + Vi

at̃a
i + B̃i

at̃a
i − Xi

aFj
i t̃a

j + Bi
at̃a

i + Fj
p��i

aRap�
ib t̃a

j − Fi
p�� j

aRap�
ib t̃b

j − � j
aGik

jp�Rap�
ib t̃b

k + �i
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bt̃b
i − �i
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ibt̃b

j

+ � j
bVik
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kt̃a

i − � j
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bta
i t̃b

j − Gik
ap�� j

bta
j Rbp�

ic t̃c
k + Gik
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i � j

bRbp�
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i �k
bRbp�
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j + �ik
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k
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jp�tb

kRap�
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k

+ � jk
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j Rcp�

id t̃d
k − �ij
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jRap�
id t̃d

k + � jk
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i Rbp�

jd t̃d
k + �ik
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il t̃c
j − �ik
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ij t̃c
k + �kl

abVij
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ij t̃c
l

− Gkl
bp��ij
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ij Rcp�

kd t̃d
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ap�� jk
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ij Rcp�
kd t̃d

l − Gik
ap�� jl

bctab
ij Rcp�

kd t̃d
l − Gij

ap��kl
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ij Rbp�
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l + 1
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abVjk
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j tb
kt̃c

l

− Gjl
cp��ik

abtb
j tc

kRap�
id t̃d

l − Gij
bp��kl

acta
j tb

kRcp�
id t̃d

l − Gik
ap�� jl

bctc
kta

i Rbp�
jd t̃d

l + �̃i
a�V†�a

i + �̃i
aB̃a

i − �̃i
aFj

iXa
j + �̃i
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bt̃b

i

+ �̃ j
bFk
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j t̃b
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bt̃b
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bt̃b
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a�R†�ia

bp�Gkp�
ij tb

k + �̃i
a�V†�a

btb
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ibtb

j

+ �̃ j
c�C†�ic

abtab
ij + �̃k

b�R†�ib
cp�Gjp�

ia tac
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c�R†�ic
ap�Gjp�

kb tab
ij + �̃ j

c�V†�ic
abtab
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a�R†�ia

bp�Gjp�
ic tb

j tc
k + �̃i

a�R†� ja
cp�Gkp�

ib tb
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k

+ �̃ j
b�V†�ib
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j ta

i + �̃k
c�R†� jc

bp�Gip�
ad ta

i tbd
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b�R†� jb
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ac tc
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c�R†�ic
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bd td
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ab td
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k .

The additional terms for the inclusion of extended T1 amplitudes are as follows:

LXSPopt+T1�
= LXSPopt

+ Fi
p�tp�

i + Gij
ap�ta

i tp�
j + �i

aFa
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