CH2
This commit is contained in:
parent
bf9f7e0121
commit
f58715d53c
Binary file not shown.
@ -1,7 +1,7 @@
|
||||
%% This BibTeX bibliography file was created using BibDesk.
|
||||
%% http://bibdesk.sourceforge.net/
|
||||
|
||||
%% Created for Pierre-Francois Loos at 2019-05-29 23:30:47 +0200
|
||||
%% Created for Pierre-Francois Loos at 2019-05-30 11:26:43 +0200
|
||||
|
||||
|
||||
%% Saved with string encoding Unicode (UTF-8)
|
||||
@ -12712,9 +12712,9 @@
|
||||
Year = {2018},
|
||||
Bdsk-Url-1 = {https://doi.org/10.1021/acs.jctc.8b00591}}
|
||||
|
||||
@article{LooBogSceCafJAc-JCTC-19,
|
||||
@article{LooBogSceCafJac-JCTC-19,
|
||||
Author = {Loos, Pierre-Fran{\c c}ois and Boggio-Pasqua, Martial and Scemama, Anthony and Caffarel, Michel and Jacquemin, Denis},
|
||||
Date-Modified = {2019-04-07 14:02:34 +0200},
|
||||
Date-Modified = {2019-05-30 11:26:43 +0200},
|
||||
Doi = {10.1021/acs.jctc.8b01205},
|
||||
Journal = {J. Chem. Theory Comput.},
|
||||
Number = {3},
|
||||
|
@ -333,11 +333,13 @@ This computationally-lighter functional will be refered to as PBE.
|
||||
In the present study, we compute the ground- and excited-state energies, one-electron and on-top densities with a selected CI method known as CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively). \cite{HurMalRan-JCP-73, GinSceCaf-CJC-13, GinSceCaf-JCP-15}
|
||||
The total energy of each state is obtained via an efficient extrapolation procedure of the sCI energies designed to reach near-FCI accuracy. \cite{QP2}
|
||||
These energies will be labeled exFCI in the following.
|
||||
Using near-FCI excitation energies (within a given basis set) has the indisputable advantage to remove the error inherent to the WFT method.
|
||||
Indeed, in the present case, the only source of error on the excitation energies is due to basis set incompleteness.
|
||||
We refer the interested reader to Refs.~\onlinecite{HolUmrSha-JCP-17, SceGarCafLoo-JCTC-18, LooSceBloGarCafJac-JCTC-18, SceBenJacCafLoo-JCP-18, LooBogSceCafJac-JCTC-19, QP2} for more details.
|
||||
The one-electron and on-top densities are computed from a very large CIPSI expansion containing several million determinants.
|
||||
All the RS-DFT and exFCI calculations have been performed with {\QP}. \cite{QP2}
|
||||
For the numerical quadratures, we employ the SG-2 grid. \cite{DasHer-JCC-17}
|
||||
Except for methylene for which FCI/TZVP geometries have been taken from Ref.~\onlinecite{SheLeiVanSch-JCP-98}, the other geometries have been extracted from Refs.~\onlinecite{LooSceBloGarCafJac-JCTC-18, LooBogSceCafJAc-JCTC-19} and have been obtained at the CC3/aug-cc-pVTZ level of theory.
|
||||
Except for methylene for which FCI/TZVP geometries have been taken from Ref.~\onlinecite{SheLeiVanSch-JCP-98}, the other geometries have been extracted from Refs.~\onlinecite{LooSceBloGarCafJac-JCTC-18, LooBogSceCafJac-JCTC-19} and have been obtained at the CC3/aug-cc-pVTZ level of theory.
|
||||
For the sake of completeness, they are also reported in the {\SI}.
|
||||
Frozen-core calculations are systematically performed and defined as such: a \ce{He} core is frozen from \ce{Li} to \ce{Ne}, while a \ce{Ne} core is frozen from \ce{Na} to \ce{Ar}.
|
||||
The frozen-core density-based correction is used consistently with the frozen-core approximation in WFT methods.
|
||||
@ -365,12 +367,18 @@ We have also computed these adiabatic energies at the exFCI/AV5Z level and used
|
||||
\end{equation}
|
||||
|
||||
These results are illustrated in Fig.~\ref{fig:CH2} and reported in Table \ref{tab:CH2} alongside reference values from the literature obtained with various approaches. \cite{ChiHolAdaOttUmrShaZim-JPCA-18, SheLeiVanSch-JCP-98, JenBun-JCP-88, SheLeiVanSch-JCP-98, ZimTouZhaMusUmr-JCP-09}
|
||||
Figure \ref{fig:CH2} clearly shows that, for the double-$\zeta$ basis, the exFCI adiabatic energies are far from being chemically accurate with errors as high as 0.015 eV.
|
||||
From triplet-$\zeta$ onward, the exFCI excitation energies are chemically-accurate though.
|
||||
|
||||
|
||||
%%% TABLE 1 %%%
|
||||
\begin{turnpage}
|
||||
\begin{squeezetable}
|
||||
\begin{table*}
|
||||
\caption{
|
||||
Total energies $E$ (in hartree) and adiabatic transition energies $\Ead$ (in eV) of excited states of methylene for various methods and basis sets.}
|
||||
Total energies $E$ (in hartree) and adiabatic transition energies $\Ead$ (in eV) of excited states of methylene for various methods and basis sets.
|
||||
The value in parenthesis is an estimate on the last digit of the extrapolation error.
|
||||
The relative difference with respect to the exFCI/CBS result is reported in square brackets.}
|
||||
\label{tab:CH2}
|
||||
\begin{ruledtabular}
|
||||
\begin{tabular}{llddddddd}
|
||||
@ -386,64 +394,64 @@ These results are illustrated in Fig.~\ref{fig:CH2} and reported in Table \ref{t
|
||||
& \tabc{$E$ (a.u.)} & \tabc{$\Ead$ (eV)} \\
|
||||
\hline
|
||||
exFCI & AVDZ & -39.04846(1)
|
||||
& -39.03225(1) & 0.441
|
||||
& -38.99203(1) & 1.536
|
||||
& -38.95076(1) & 2.659 \\
|
||||
& -39.03225(1) & 0.441 [+0.053]
|
||||
& -38.99203(1) & 1.536 [+0.146]
|
||||
& -38.95076(1) & 2.659 [+0.154] \\
|
||||
& AVTZ & -39.08064(3)
|
||||
& -39.06565(2) & 0.408
|
||||
& -39.02833(1) & 1.423
|
||||
& -38.98709(1) & 2.546 \\
|
||||
& -39.06565(2) & 0.408 [+0.020]
|
||||
& -39.02833(1) & 1.423 [+0.034]
|
||||
& -38.98709(1) & 2.546 [+0.042] \\
|
||||
& AVQZ & -39.08854(1)
|
||||
& -39.07402(2) & 0.395
|
||||
& -39.03711(1) & 1.399
|
||||
& -38.99607(1) & 2.516 \\
|
||||
& -39.07402(2) & 0.395 [+0.007]
|
||||
& -39.03711(1) & 1.399 [+0.010]
|
||||
& -38.99607(1) & 2.516 [+0.012] \\
|
||||
& AV5Z & -39.09079(1)
|
||||
& -39.07647(1) & 0.390
|
||||
& -39.03964(3) & 1.392
|
||||
& -38.99867(1) & 2.507 \\
|
||||
& CBS & -39.09111
|
||||
& -39.07682 & 0.388
|
||||
& -39.04000 & 1.390
|
||||
& -38.99904 & 2.504 \\
|
||||
\\
|
||||
exFCI+LDA & AVDZ & -39.07450(1)
|
||||
& -39.06213(1) & 0.337
|
||||
& -39.02233(1) & 1.420
|
||||
& -38.97946(1) & 2.586 \\
|
||||
& AVTZ & -39.09099(3)
|
||||
& -39.07779(2) & 0.359
|
||||
& -39.04051(1) & 1.374
|
||||
& -38.99859(1) & 2.514 \\
|
||||
& AVQZ & -39.09319(1)
|
||||
& -39.07959(2) & 0.370
|
||||
& -39.04267(1) & 1.375
|
||||
& -39.00135(1) & 2.499 \\
|
||||
\\
|
||||
exFCI+PBE & AVDZ & -39.07282(1)
|
||||
& -39.06150(1) & 0.308
|
||||
& -39.02181(1) & 1.388
|
||||
& -38.97873(1) & 2.560 \\
|
||||
& AVTZ & -39.08948(3)
|
||||
& -39.07639(2) & 0.356
|
||||
& -39.03911(1) & 1.371
|
||||
& -38.99724(1) & 2.510 \\
|
||||
& AVQZ & -39.09247(1)
|
||||
& -39.07885(2) & 0.371
|
||||
& -39.04193(1) & 1.375
|
||||
& -39.00066(1) & 2.498 \\
|
||||
& -39.07647(1) & 0.390 [+0.001]
|
||||
& -39.03964(3) & 1.392 [+0.002]
|
||||
& -38.99867(1) & 2.507 [+0.003] \\
|
||||
& CBS & -39.09141
|
||||
& -39.07715 & 0.388
|
||||
& -39.04034 & 1.390
|
||||
& -38.99939 & 2.504 \\
|
||||
\\
|
||||
exFCI+PBEot & AVDZ & -39.06924(1)
|
||||
& -39.05651(1) & 0.347
|
||||
& -39.01777(1) & 1.401
|
||||
& -38.97698(1) & 2.511 \\
|
||||
& -39.05651(1) & 0.347 [-0.042]
|
||||
& -39.01777(1) & 1.401 [+0.011]
|
||||
& -38.97698(1) & 2.511 [+0.007] \\
|
||||
& AVTZ & -39.08805(3)
|
||||
& -39.07430(2) & 0.374
|
||||
& -39.03742(1) & 1.378
|
||||
& -38.99652(1) & 2.491 \\
|
||||
& -39.07430(2) & 0.374 [-0.014]
|
||||
& -39.03742(1) & 1.378 [-0.012]
|
||||
& -38.99652(1) & 2.491 [-0.013] \\
|
||||
& AVQZ & -39.09189(1)
|
||||
& -39.07795(2) & 0.379
|
||||
& -39.04124(1) & 1.378
|
||||
& -39.00044(1) & 2.489 \\
|
||||
& -39.07795(2) & 0.379 [-0.009]
|
||||
& -39.04124(1) & 1.378 [-0.011]
|
||||
& -39.00044(1) & 2.489 [-0.016] \\
|
||||
\\
|
||||
exFCI+PBE & AVDZ & -39.07282(1)
|
||||
& -39.06150(1) & 0.308 [-0.080]
|
||||
& -39.02181(1) & 1.388 [-0.002]
|
||||
& -38.97873(1) & 2.560 [+0.056] \\
|
||||
& AVTZ & -39.08948(3)
|
||||
& -39.07639(2) & 0.356 [-0.032]
|
||||
& -39.03911(1) & 1.371 [-0.019]
|
||||
& -38.99724(1) & 2.510 [+0.006] \\
|
||||
& AVQZ & -39.09247(1)
|
||||
& -39.07885(2) & 0.371 [-0.017]
|
||||
& -39.04193(1) & 1.375 [-0.015]
|
||||
& -39.00066(1) & 2.498 [-0.006] \\
|
||||
\\
|
||||
exFCI+LDA & AVDZ & -39.07450(1)
|
||||
& -39.06213(1) & 0.337 [-0.051]
|
||||
& -39.02233(1) & 1.420 [+0.030]
|
||||
& -38.97946(1) & 2.586 [+0.082] \\
|
||||
& AVTZ & -39.09099(3)
|
||||
& -39.07779(2) & 0.359 [-0.029]
|
||||
& -39.04051(1) & 1.374 [-0.016]
|
||||
& -38.99859(1) & 2.514 [+0.010] \\
|
||||
& AVQZ & -39.09319(1)
|
||||
& -39.07959(2) & 0.370 [-0.018]
|
||||
& -39.04267(1) & 1.375 [-0.015]
|
||||
& -39.00135(1) & 2.499 [-0.005] \\
|
||||
\\
|
||||
SHCI\fnm[1] & AVQZ & -39.08849(1)
|
||||
& -39.07404(1) & 0.393
|
||||
@ -473,13 +481,14 @@ These results are illustrated in Fig.~\ref{fig:CH2} and reported in Table \ref{t
|
||||
\fnt[5]{References \onlinecite{SheLeiVanSch-JCP-98, JenBun-JCP-88}.}
|
||||
\end{table*}
|
||||
\end{squeezetable}
|
||||
\end{turnpage}
|
||||
%%% %%% %%%
|
||||
|
||||
%%% FIG 1 %%%
|
||||
\begin{figure}
|
||||
\includegraphics[width=\linewidth]{CH2}
|
||||
\caption{Error in adiabatic excitation energies $\Ead$ (in eV) of methylene for various basis sets and methods.
|
||||
The green region corresponds to chemical accuracy (i.e., error below 1 {\kcal}).
|
||||
The green region corresponds to chemical accuracy (i.e., error below 1 {\kcal} or 0.043 eV).
|
||||
See Table \ref{tab:CH2} for raw data.}
|
||||
\label{fig:CH2}
|
||||
\end{figure}
|
||||
@ -497,7 +506,7 @@ Water \cite{CaiTozRei-JCP-00, RubSerMer-JCP-08, LiPal-JCP-11, LooSceBloGarCafJac
|
||||
\begin{table*}
|
||||
\caption{
|
||||
Vertical absorption energies $\Eabs$ (in eV) of excited states of ammonia, carbon dimer, water and ethylene for various methods and basis sets.
|
||||
The TBEs have been extracted from Refs.~\onlinecite{LooSceBloGarCafJac-JCTC-18, LooBogSceCafJAc-JCTC-19} on the same geometries.
|
||||
The TBEs have been extracted from Refs.~\onlinecite{LooSceBloGarCafJac-JCTC-18, LooBogSceCafJac-JCTC-19} on the same geometries.
|
||||
See the {\SI} for raw data.}
|
||||
\begin{ruledtabular}{}
|
||||
\begin{tabular}{lllddddddddddddd}
|
||||
@ -553,33 +562,6 @@ Water \cite{CaiTozRei-JCP-00, RubSerMer-JCP-08, LiPal-JCP-11, LooSceBloGarCafJac
|
||||
& 0.11 & 0.02 & 0.00
|
||||
\\
|
||||
\\
|
||||
% Hydrogen chloride& ${}^1\Sigma \ra {}^1\Pi$ & CT\fnm[2] & 7.86 & -0.04 & -0.02 & 0.02
|
||||
% & 0.13 & 0.06 & 0.06
|
||||
% & 0.11 & 0.04 & 0.05
|
||||
% & 0.10 & 0.05 & 0.06
|
||||
% \\
|
||||
% \\
|
||||
% Hydrogen sulfide & $1\,^{1}A_1 \ra 1\,^{1}A_2$ & Ryd. & 6.10 & 0.00 & 0.08 & 0.05
|
||||
% & 0.15 & 0.12 & 0.07
|
||||
% & 0.14 & 0.11 & 0.07
|
||||
% & 0.14 & 0.11 & 0.07
|
||||
% \\
|
||||
% & $1\,^{1}A_1 \ra 1\,^{1}B_1$ & Ryd. & 6.29 & 0.00 & -0.05 & 0.00
|
||||
% & -0.12 & 0.01 & 0.03
|
||||
% & -0.14 & 0.00 & 0.03
|
||||
% & -0.14 & 0.01 & 0.03
|
||||
% \\
|
||||
% & $1\,^{1}A_1 \ra 1\,^{3}A_2$ & Ryd. & 5.74 & 0.01 & 0.07 & 0.05
|
||||
% & 0.18 & 0.12 & 0.08
|
||||
% & 0.20 & 0.13 & 0.08
|
||||
% & 0.19 & 0.13 & 0.08
|
||||
% \\
|
||||
% & $1\,^{1}A_1 \ra 1\,^{3}B_1$ & Ryd. & 5.94 & -0.04 & -0.05 & -0.01
|
||||
% & 0.07 & 0.02 & 0.03
|
||||
% & 0.09 & 0.03 & 0.03
|
||||
% & 0.07 & 0.04 & 0.04
|
||||
% \\
|
||||
% \\
|
||||
Water & $1\,^{1}A_1 \ra 1\,^{1}B_1$ & Ryd. & 7.70 & -0.17 & -0.07 & -0.02
|
||||
& 0.01 & 0.00 & 0.02
|
||||
& -0.02 & -0.01 & 0.00
|
||||
@ -611,32 +593,6 @@ Water \cite{CaiTozRei-JCP-00, RubSerMer-JCP-08, LiPal-JCP-11, LooSceBloGarCafJac
|
||||
& 0.06 & 0.03 & 0.04
|
||||
\\
|
||||
\\
|
||||
% Acetylene & $1\,^{1}\Sigma_{g}^{+} \ra 1\,^{1}\Sigma_{u}^{-}$ & Val. & 7.10 & 0.10 & 0.00
|
||||
% & 0.07 & 0.00
|
||||
% & 0.11 & 0.00
|
||||
% & 0.11 & 0.00
|
||||
% \\
|
||||
% & $1\,^{1}\Sigma_{g}^{+} \ra 1\,^{1}\Delta_{u}$ & Val. & 7.44 & 0.07 & 0.00
|
||||
% & 0.04 & -0.01
|
||||
% & 0.12 & 0.02
|
||||
% & 0.11 & 0.02
|
||||
% \\
|
||||
% & $1\,^{1}\Sigma_{g}^{+} \ra 1\,^{3}\Sigma_{u}^{+}$ & Val. & 5.56 & -0.06 & -0.03
|
||||
% & 0.07 & 0.02
|
||||
% & 0.04 & 0.00
|
||||
% & 0.02 & 0.00
|
||||
% \\
|
||||
% & $1\,^{1}\Sigma_{g}^{+} \ra 1\,^{3}\Delta_{u}$ & Val. & 6.40 & 0.06 & 0.00
|
||||
% & 0.10 & 0.02
|
||||
% & 0.14 & 0.03
|
||||
% & 0.12 & 0.03
|
||||
% \\
|
||||
% & $1\,^{1}\Sigma_{g}^{+} \ra 1\,^{3}\Sigma_{u}^{-}$ & Val. & 7.09 & 0.05 & -0.01
|
||||
% & 0.08 & 0.00
|
||||
% & 0.16 & 0.04
|
||||
% & 0.14 & 0.04
|
||||
% \\
|
||||
% \\
|
||||
Ethylene & $1\,^{1}A_{1g} \ra 1\,^{1}B_{3u}$ & Ryd. & 7.43 & -0.12 & -0.04 &
|
||||
& -0.05 & -0.01 &
|
||||
& -0.04 & -0.01 &
|
||||
@ -668,55 +624,9 @@ Water \cite{CaiTozRei-JCP-00, RubSerMer-JCP-08, LiPal-JCP-11, LooSceBloGarCafJac
|
||||
& 0.05 & 0.04 &
|
||||
\\
|
||||
\\
|
||||
% Formaldehyde& $1\,^{1}A_{1} \ra 1\,^{1}A_{2}$ & Val. & 3.97 & 0.02 & 0.01 &
|
||||
% & 0.05 & 0.02 &
|
||||
% & 0.03 & 0.02 &
|
||||
% & 0.02 & 0.01 &
|
||||
% \\
|
||||
% & $1\,^{1}A_{1} \ra 1\,^{1}B_{2}$ & Ryd. & 7.30 & -0.19 & -0.07 &
|
||||
% & 0.00 & 0.00 &
|
||||
% & -0.02 & 0.00 &
|
||||
% & -0.04 & 0.00 &
|
||||
% \\
|
||||
% & $1\,^{1}A_{1} \ra 2\,^{1}B_{2}$ & Ryd. & 8.14 & -0.10 & -0.01 &
|
||||
% & 0.09 & 0.07 &
|
||||
% & 0.08 & 0.06 &
|
||||
% & 0.05 & 0.06 &
|
||||
% \\
|
||||
% & $1\,^{1}A_{1} \ra 2\,^{1}A_{1}$ & Ryd. & 8.27 & -0.15 & -0.04 &
|
||||
% & 0.03 & 0.04 &
|
||||
% & 0.02 & 0.03 &
|
||||
% & 0.00 & 0.03 &
|
||||
% \\
|
||||
% & $1\,^{1}A_{1} \ra 1\,^{3}A_{2}$ & Val. & 3.58 & 0.00 & 0.00 &
|
||||
% & 0.09 & 0.05 &
|
||||
% & 0.11 & 0.06 &
|
||||
% & 0.07 & 0.04 &
|
||||
% \\
|
||||
% & $1\,^{1}A_{1} \ra 1\,^{3}A_{1}$ & Val. & 6.07 & 0.03 & 0.01 &
|
||||
% & 0.13 & 0.04 &
|
||||
% & 0.15 & 0.05 &
|
||||
% & 0.11 & 0.04 &
|
||||
% \\
|
||||
% & $1\,^{1}A_{1} \ra 1\,^{3}B_{2}$ & Ryd. & 7.14 & -0.19 & -0.08 &
|
||||
% & 0.01 & 0.01 &
|
||||
% & 0.02 & 0.01 &
|
||||
% & -0.01 & 0.00 &
|
||||
% \\
|
||||
% & $1\,^{1}A_{1} \ra 2\,^{3}B_{2}$ & Ryd. & 7.96 & -0.09 & -0.02 &
|
||||
% & 0.13 & 0.08 &
|
||||
% & 0.14 & 0.08 &
|
||||
% & 0.10 & 0.07 &
|
||||
% \\
|
||||
% & $1\,^{1}A_{1} \ra 1\,^{3}A_{1}$ & Ryd. & 8.15 & -0.14 & -0.05 &
|
||||
% & 0.07 & 0.05 &
|
||||
% & 0.07 & 0.04 &
|
||||
% & 0.04 & 0.04 &
|
||||
% \\
|
||||
\end{tabular}
|
||||
\end{ruledtabular}
|
||||
\fnt[1]{Doubly-excited states of $(\pi,\pi) \ra (\si,\si)$ character.}
|
||||
% \fnt[2]{CT stands for charge transfer.}
|
||||
\end{table*}
|
||||
\end{squeezetable}
|
||||
%%% %%% %%%
|
||||
@ -725,7 +635,7 @@ Water \cite{CaiTozRei-JCP-00, RubSerMer-JCP-08, LiPal-JCP-11, LooSceBloGarCafJac
|
||||
\begin{figure}
|
||||
\includegraphics[width=\linewidth]{H2O}
|
||||
\caption{Error in vertical excitation energies (in eV) of water for various basis sets and methods.
|
||||
The green region corresponds to chemical accuracy (i.e., error below 1 {\kcal}).
|
||||
The green region corresponds to chemical accuracy (i.e., error below 1 {\kcal} or 0.043 eV).
|
||||
See the {\SI} for raw data.}
|
||||
\label{fig:H2O}
|
||||
\end{figure}
|
||||
@ -735,7 +645,7 @@ Water \cite{CaiTozRei-JCP-00, RubSerMer-JCP-08, LiPal-JCP-11, LooSceBloGarCafJac
|
||||
\begin{figure}
|
||||
\includegraphics[width=\linewidth]{NH3}
|
||||
\caption{Error in vertical excitation energies (in eV) of ammonia for various basis sets and methods.
|
||||
The green region corresponds to chemical accuracy (i.e., error below 1 {\kcal}).
|
||||
The green region corresponds to chemical accuracy (i.e., error below 1 {\kcal} or 0.043 eV).
|
||||
See the {\SI} for raw data.}
|
||||
\label{fig:NH3}
|
||||
\end{figure}
|
||||
@ -746,13 +656,13 @@ Water \cite{CaiTozRei-JCP-00, RubSerMer-JCP-08, LiPal-JCP-11, LooSceBloGarCafJac
|
||||
\label{sec:C2}
|
||||
%=======================
|
||||
It is also interesting to study doubly-excited states. \cite{AbrShe-JCP-04, AbrShe-CPL-05, Var-JCP-08, PurZhaKra-JCP-09, AngCimPas-MP-12, BooCleThoAla-JCP-11, Sha-JCP-15, SokCha-JCP-16, VarRoc-PTRSMPES-18}
|
||||
In the carbon dimer, these valence states are of $(\pi,\pi) \ra (\si,\si)$ character and they have been recently studied with state-of-the-art methods. \cite{LooBogSceCafJAc-JCTC-19}
|
||||
In the carbon dimer, these valence states are of $(\pi,\pi) \ra (\si,\si)$ character and they have been recently studied with state-of-the-art methods. \cite{LooBogSceCafJac-JCTC-19}
|
||||
|
||||
%%% FIG 4 %%%
|
||||
\begin{figure}
|
||||
\includegraphics[width=\linewidth]{C2}
|
||||
\caption{Error in vertical excitation energies $\Eabs$ (in eV) for two doubly-excited states of the carbon dimer for various basis sets and methods.
|
||||
The green region corresponds to chemical accuracy (i.e., error below 1 {\kcal}).
|
||||
The green region corresponds to chemical accuracy (i.e., error below 1 {\kcal} or 0.043 eV).
|
||||
See the {\SI} for raw data.}
|
||||
\label{fig:C2}
|
||||
\end{figure}
|
||||
@ -766,26 +676,14 @@ In the carbon dimer, these valence states are of $(\pi,\pi) \ra (\si,\si)$ chara
|
||||
|
||||
Ethylene is an interesting molecules as it contains both valence and Rydberg excited states. \cite{SerMarNebLinRoo-JCP-93, WatGwaBar-JCP-96, WibOliTru-JPCA-02, BarPaiLis-JCP-04, Ang-JCC-08, SchSilSauThi-JCP-08, SilSchSauThi-JCP-10, SilSauSchThi-MP-10, Ang-IJQC-10, DadSmaBooAlaFil-JCTC-12, FelPetDav-JCP-14, ChiHolAdaOttUmrShaZim-JPCA-18}
|
||||
|
||||
%\begin{figure}
|
||||
% \includegraphics[width=\linewidth]{C2H2}
|
||||
% \caption{Error in vertical excitation energies (in eV) of acetylene for various basis sets and methods.}
|
||||
% \label{fig:C2H2}
|
||||
%\end{figure}
|
||||
|
||||
\begin{figure}
|
||||
\includegraphics[width=\linewidth]{C2H4}
|
||||
\caption{Error in vertical excitation energies $\Eabs$ (in eV) of ethylene for various basis sets and methods.
|
||||
The green region corresponds to chemical accuracy (i.e., error below 1 {\kcal}).
|
||||
The green region corresponds to chemical accuracy (i.e., error below 1 {\kcal} or 0.043 eV).
|
||||
See the {\SI} for raw data.}
|
||||
\label{fig:C2H4}
|
||||
\end{figure}
|
||||
|
||||
%\begin{figure}
|
||||
% \includegraphics[width=\linewidth]{CH2O}
|
||||
% \caption{Error in vertical excitation energies $\Eabs$ (in eV) of formaldehyde for various basis sets and methods.}
|
||||
% \label{fig:CH2O}
|
||||
%\end{figure}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Conclusion}
|
||||
\label{sec:ccl}
|
||||
@ -796,7 +694,7 @@ We are currently investigating the performance of the present basis set correcti
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section*{Supporting Information Available}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
See {\SI} for geometries and additional information (including total energies).
|
||||
See {\SI} for geometries and additional information (including energetic correction of the various functionals).
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\begin{acknowledgements}
|
||||
|
Loading…
Reference in New Issue
Block a user