stuff in ms
This commit is contained in:
parent
8fd60b7479
commit
856e2272c7
19488
Manuscript/Ex-srDFT.bib
19488
Manuscript/Ex-srDFT.bib
File diff suppressed because it is too large
Load Diff
@ -1,12 +1,10 @@
|
|||||||
\documentclass[aip,jcp,reprint,noshowkeys]{revtex4-1}
|
\documentclass[aip,jcp,reprint,noshowkeys]{revtex4-1}
|
||||||
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem,longtable}
|
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem,longtable}
|
||||||
|
|
||||||
|
\usepackage{natbib}
|
||||||
|
\bibliographystyle{achemso}
|
||||||
|
\AtBeginDocument{\nocite{achemso-control}}
|
||||||
\usepackage{mathpazo,libertine}
|
\usepackage{mathpazo,libertine}
|
||||||
\usepackage[normalem]{ulem}
|
|
||||||
\newcommand{\alert}[1]{\textcolor{red}{#1}}
|
|
||||||
\definecolor{darkgreen}{RGB}{0, 180, 0}
|
|
||||||
\newcommand{\beurk}[1]{\textcolor{darkgreen}{#1}}
|
|
||||||
\newcommand{\trash}[1]{\textcolor{red}{\sout{#1}}}
|
|
||||||
|
|
||||||
\usepackage{hyperref}
|
\usepackage{hyperref}
|
||||||
\hypersetup{
|
\hypersetup{
|
||||||
@ -16,19 +14,122 @@
|
|||||||
urlcolor=blue,
|
urlcolor=blue,
|
||||||
citecolor=blue
|
citecolor=blue
|
||||||
}
|
}
|
||||||
\newcommand{\cdash}{\multicolumn{1}{c}{---}}
|
\newcommand{\alert}[1]{\textcolor{red}{#1}}
|
||||||
|
\definecolor{darkgreen}{HTML}{009900}
|
||||||
|
\usepackage[normalem]{ulem}
|
||||||
|
\newcommand{\titou}[1]{\textcolor{black}{#1}}
|
||||||
|
\newcommand{\jt}[1]{\textcolor{purple}{#1}}
|
||||||
|
\newcommand{\manu}[1]{\textcolor{darkgreen}{#1}}
|
||||||
|
\newcommand{\toto}[1]{\textcolor{brown}{#1}}
|
||||||
|
\newcommand{\trashPFL}[1]{\textcolor{red}{\sout{#1}}}
|
||||||
|
\newcommand{\trashJT}[1]{\textcolor{purple}{\sout{#1}}}
|
||||||
|
\newcommand{\trashMG}[1]{\textcolor{darkgreen}{\sout{#1}}}
|
||||||
|
\newcommand{\trashAS}[1]{\textcolor{brown}{\sout{#1}}}
|
||||||
|
\newcommand{\MG}[1]{\manu{(\underline{\bf MG}: #1)}}
|
||||||
|
\newcommand{\JT}[1]{\juju{(\underline{\bf JT}: #1)}}
|
||||||
|
\newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}}
|
||||||
|
\newcommand{\AS}[1]{\toto{(\underline{\bf TOTO}: #1)}}
|
||||||
|
|
||||||
|
\usepackage{hyperref}
|
||||||
|
\hypersetup{
|
||||||
|
colorlinks=true,
|
||||||
|
linkcolor=blue,
|
||||||
|
filecolor=blue,
|
||||||
|
urlcolor=blue,
|
||||||
|
citecolor=blue
|
||||||
|
}
|
||||||
\newcommand{\mc}{\multicolumn}
|
\newcommand{\mc}{\multicolumn}
|
||||||
\newcommand{\fnm}{\footnotemark}
|
\newcommand{\fnm}{\footnotemark}
|
||||||
\newcommand{\fnt}{\footnotetext}
|
\newcommand{\fnt}{\footnotetext}
|
||||||
\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}}
|
\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}}
|
||||||
\newcommand{\mr}{\multirow}
|
|
||||||
\newcommand{\SI}{\textcolor{blue}{supporting information}}
|
\newcommand{\SI}{\textcolor{blue}{supporting information}}
|
||||||
|
\newcommand{\QP}{\textsc{quantum package}}
|
||||||
|
|
||||||
|
% second quantized operators
|
||||||
|
\newcommand{\ai}[1]{\hat{a}_{#1}}
|
||||||
|
\newcommand{\aic}[1]{\hat{a}^{\dagger}_{#1}}
|
||||||
|
|
||||||
|
% units
|
||||||
|
\newcommand{\IneV}[1]{#1 eV}
|
||||||
|
\newcommand{\InAU}[1]{#1 a.u.}
|
||||||
|
\newcommand{\InAA}[1]{#1 \AA}
|
||||||
|
\newcommand{\kcal}{kcal/mol}
|
||||||
|
|
||||||
|
% methods
|
||||||
|
\newcommand{\D}{\text{D}}
|
||||||
|
\newcommand{\T}{\text{T}}
|
||||||
|
\newcommand{\Q}{\text{Q}}
|
||||||
|
\newcommand{\X}{\text{X}}
|
||||||
|
\newcommand{\UEG}{\text{UEG}}
|
||||||
|
\newcommand{\HF}{\text{HF}}
|
||||||
|
\newcommand{\ROHF}{\text{ROHF}}
|
||||||
|
\newcommand{\LDA}{\text{LDA}}
|
||||||
|
\newcommand{\PBE}{\text{PBE}}
|
||||||
|
\newcommand{\FCI}{\text{FCI}}
|
||||||
|
\newcommand{\CBS}{\text{CBS}}
|
||||||
|
\newcommand{\exFCI}{\text{exFCI}}
|
||||||
|
\newcommand{\CCSDT}{\text{CCSD(T)}}
|
||||||
|
\newcommand{\lr}{\text{lr}}
|
||||||
|
\newcommand{\sr}{\text{sr}}
|
||||||
|
|
||||||
|
\newcommand{\Ne}{N}
|
||||||
|
\newcommand{\NeUp}{\Ne^{\uparrow}}
|
||||||
|
\newcommand{\NeDw}{\Ne^{\downarrow}}
|
||||||
|
\newcommand{\Nb}{N_{\Bas}}
|
||||||
|
\newcommand{\Ng}{N_\text{grid}}
|
||||||
|
\newcommand{\nocca}{n_{\text{occ}^{\alpha}}}
|
||||||
|
\newcommand{\noccb}{n_{\text{occ}^{\beta}}}
|
||||||
|
|
||||||
|
\newcommand{\n}[2]{n_{#1}^{#2}}
|
||||||
|
\newcommand{\Ec}{E_\text{c}}
|
||||||
|
\newcommand{\E}[2]{E_{#1}^{#2}}
|
||||||
|
\newcommand{\bE}[2]{\Bar{E}_{#1}^{#2}}
|
||||||
|
\newcommand{\bEc}[1]{\Bar{E}_\text{c,md}^{#1}}
|
||||||
|
\newcommand{\e}[2]{\varepsilon_{#1}^{#2}}
|
||||||
|
\newcommand{\be}[2]{\Bar{\varepsilon}_{#1}^{#2}}
|
||||||
|
\newcommand{\bec}[1]{\Bar{e}^{#1}}
|
||||||
|
\newcommand{\wf}[2]{\Psi_{#1}^{#2}}
|
||||||
|
\newcommand{\W}[2]{W_{#1}^{#2}}
|
||||||
|
\newcommand{\w}[2]{w_{#1}^{#2}}
|
||||||
|
\newcommand{\hn}[2]{\Hat{n}_{#1}^{#2}}
|
||||||
|
\newcommand{\rsmu}[2]{\mu_{#1}^{#2}}
|
||||||
|
\newcommand{\V}[2]{V_{#1}^{#2}}
|
||||||
|
\newcommand{\SO}[2]{\phi_{#1}(\br{#2})}
|
||||||
|
|
||||||
|
\newcommand{\modY}{Y}
|
||||||
|
\newcommand{\modZ}{Z}
|
||||||
|
|
||||||
|
% basis sets
|
||||||
|
\newcommand{\Bas}{\mathcal{B}}
|
||||||
|
\newcommand{\BasFC}{\mathcal{A}}
|
||||||
|
\newcommand{\FC}{\text{FC}}
|
||||||
|
\newcommand{\occ}{\text{occ}}
|
||||||
|
\newcommand{\virt}{\text{virt}}
|
||||||
|
\newcommand{\val}{\text{val}}
|
||||||
|
\newcommand{\Cor}{\mathcal{C}}
|
||||||
|
|
||||||
|
% operators
|
||||||
|
\newcommand{\hT}{\Hat{T}}
|
||||||
|
\newcommand{\hWee}[1]{\Hat{W}_\text{ee}^{#1}}
|
||||||
|
\newcommand{\updw}{\uparrow\downarrow}
|
||||||
|
\newcommand{\f}[2]{f_{#1}^{#2}}
|
||||||
|
\newcommand{\Gam}[2]{\Gamma_{#1}^{#2}}
|
||||||
|
|
||||||
|
% coordinates
|
||||||
|
\newcommand{\br}[1]{\mathbf{r}_{#1}}
|
||||||
|
\newcommand{\dbr}[1]{d\br{#1}}
|
||||||
|
|
||||||
|
\newcommand{\ra}{\rightarrow}
|
||||||
|
|
||||||
|
% frozen core
|
||||||
|
\newcommand{\WFC}[2]{\widetilde{W}_{#1}^{#2}}
|
||||||
|
\newcommand{\fFC}[2]{\widetilde{f}_{#1}^{#2}}
|
||||||
|
\newcommand{\rsmuFC}[2]{\widetilde{\mu}_{#1}^{#2}}
|
||||||
|
\newcommand{\nFC}[2]{\widetilde{n}_{#1}^{#2}}
|
||||||
|
|
||||||
\newcommand{\br}{\mathbf{r}}
|
|
||||||
|
|
||||||
% energies
|
% energies
|
||||||
\newcommand{\EHF}{E_\text{HF}}
|
\newcommand{\EHF}{E_\text{HF}}
|
||||||
\newcommand{\Ec}{E_\text{c}}
|
|
||||||
\newcommand{\EPT}{E_\text{PT2}}
|
\newcommand{\EPT}{E_\text{PT2}}
|
||||||
\newcommand{\EFCI}{E_\text{FCI}}
|
\newcommand{\EFCI}{E_\text{FCI}}
|
||||||
\newcommand{\EsCI}{E_\text{sCI}}
|
\newcommand{\EsCI}{E_\text{sCI}}
|
||||||
@ -39,19 +140,12 @@
|
|||||||
\newcommand{\Eabs}{\Delta E_\text{abs}}
|
\newcommand{\Eabs}{\Delta E_\text{abs}}
|
||||||
|
|
||||||
\newcommand{\ex}[4]{$^{#1}#2_{#3}^{#4}$}
|
\newcommand{\ex}[4]{$^{#1}#2_{#3}^{#4}$}
|
||||||
\newcommand{\ra}{\rightarrow}
|
|
||||||
|
|
||||||
% units
|
|
||||||
\newcommand{\IneV}[1]{#1 eV}
|
|
||||||
\newcommand{\InAU}[1]{#1 a.u.}
|
|
||||||
\newcommand{\InAA}[1]{#1 \AA}
|
|
||||||
|
|
||||||
\newcommand{\pis}{\pi^\star}
|
\newcommand{\pis}{\pi^\star}
|
||||||
\newcommand{\si}{\sigma}
|
\newcommand{\si}{\sigma}
|
||||||
\newcommand{\sis}{\sigma^\star}
|
\newcommand{\sis}{\sigma^\star}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
|
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
|
||||||
\newcommand{\LCT}{Laboratoire de Chimie Th\'eorique, Universit\'e Pierre et Marie Curie, Sorbonne Universit\'e, CNRS, Paris, France}
|
\newcommand{\LCT}{Laboratoire de Chimie Th\'eorique, Universit\'e Pierre et Marie Curie, Sorbonne Universit\'e, CNRS, Paris, France}
|
||||||
|
|
||||||
@ -70,7 +164,7 @@
|
|||||||
\affiliation{\LCPQ}
|
\affiliation{\LCPQ}
|
||||||
|
|
||||||
\begin{abstract}
|
\begin{abstract}
|
||||||
By combining extrapolated selected configuration interaction (sCI) calculations performed with the CIPSI algorithm with the recently proposed short-range density-functional functional correction for basis set incompleteness [\href{https://doi.org/10.1063/1.5052714}{Giner et al., J.~Chem.~Phys.~149, 194301 (2018)}], we show that one can obtain vertical and adiabatic excitation energies with chemical accuracy with a small basis set.
|
By combining extrapolated selected configuration interaction (sCI) calculations performed with the CIPSI algorithm with the recently proposed short-range density-functional functional correction for basis set incompleteness [\href{https://doi.org/10.1063/1.5052714}{Giner et al., \textit{J.~Chem.~Phys.}~\textbf{149}, 194301 (2018)}], we show that one can obtain vertical and adiabatic excitation energies with chemical accuracy with a small basis set.
|
||||||
\end{abstract}
|
\end{abstract}
|
||||||
|
|
||||||
\maketitle
|
\maketitle
|
||||||
@ -80,18 +174,54 @@ By combining extrapolated selected configuration interaction (sCI) calculations
|
|||||||
\label{sec:intro}
|
\label{sec:intro}
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
One of the most fundamental problem of conventional electronic structure methods is their slow energy convergence with respect to the size of the one-electron basis set.
|
One of the most fundamental problem of conventional electronic structure methods is their slow energy convergence with respect to the size of the one-electron basis set.
|
||||||
This problem was already noticed thirty years ago by Kutzelnigg \cite{Kutzelnigg_1985} who proposed to introduce explicitly the correlation between electrons via the introduction of the interelectronic distance $r_{12} = \abs{\br_1 - \br_2}$ as a basis function. \cite{Kutzelnigg_1991, Termath_1991, Klopper_1991a, Klopper_1991b, Noga_1994}
|
|
||||||
This yields a prominent improvement of the energy convergence from $O(L^{-3})$ to $O(L^{-7})$ (where $L$ is the maximum angular momentum of the one-electron basis).
|
|
||||||
This idea was later generalised to more accurate correlation factors $f_{12} \equiv f(r_{12})$. \cite{Persson_1996, Persson_1997, May_2004, Tenno_2004b, Tew_2005, May_2005}
|
|
||||||
The resulting F12 methods achieve chemical accuracy for small organic molecules with relatively small Gaussian basis sets. \cite{Tenno_2012a, Tenno_2012b, Hattig_2012, Kong_2012}
|
|
||||||
For example, as illustrated by Tew and coworkers, one can obtain, at the CCSD(T) level, quintuple-zeta quality correlation energies with a triple-zeta basis. \cite{Tew_2007b}
|
|
||||||
|
|
||||||
In the present study, we rely on the recently proposed short-range density-functional functional correction for basis set incompleteness. \cite{Giner_2018}
|
In the present study, we rely on the recently proposed short-range density-functional functional correction for basis set incompleteness. \cite{GinPraFerAssSavTou-JCP-18}
|
||||||
|
|
||||||
|
%Contemporary quantum chemistry has developed in two directions --- wave function theory (WFT) \cite{Pop-RMP-99} and density-functional theory (DFT). \cite{Koh-RMP-99}
|
||||||
|
%Although both spring from the same Schr\"odinger equation, each of these philosophies has its own \textit{pros} and \textit{cons}.
|
||||||
|
%
|
||||||
|
%WFT is attractive as it exists a well-defined path for systematic improvement as well as powerful tools, such as perturbation theory, to guide the development of new WFT \textit{ans\"atze}.
|
||||||
|
%The coupled cluster (CC) family of methods is a typical example of the WFT philosophy and is well regarded as the gold standard of quantum chemistry for weakly correlated systems.
|
||||||
|
%By increasing the excitation degree of the CC expansion, one can systematically converge, for a given basis set, to the exact, full configuration interaction (FCI) limit, although the computational cost associated with such improvement is usually high.
|
||||||
|
%One of the most fundamental drawbacks of conventional WFT methods is the slow convergence of energies and properties with respect to the size of the one-electron basis set.
|
||||||
|
%This undesirable feature was put into light by Kutzelnigg more than thirty years ago. \cite{Kut-TCA-85}
|
||||||
|
%To palliate this, following Hylleraas' footsteps, \cite{Hyl-ZP-29} Kutzelnigg proposed to introduce explicitly the interelectronic distance $r_{12} = \abs{\br{1} - \br{2}}$ to properly describe the electronic wave function around the coalescence of two electrons. \cite{Kut-TCA-85, KutKlo-JCP-91, NogKut-JCP-94}
|
||||||
|
%The resulting F12 methods yield a prominent improvement of the energy convergence, and achieve chemical accuracy for small organic molecules with relatively small Gaussian basis sets. \cite{Ten-TCA-12, TenNog-WIREs-12, HatKloKohTew-CR-12, KonBisVal-CR-12, GruHirOhnTen-JCP-17, MaWer-WIREs-18}
|
||||||
|
%For example, at the CCSD(T) level, one can obtain quintuple-$\zeta$ quality correlation energies with a triple-$\zeta$ basis, \cite{TewKloNeiHat-PCCP-07} although computational overheads are introduced by the large auxiliary basis used to resolve three- and four-electron integrals. \cite{BarLoo-JCP-17}
|
||||||
|
%To reduce further the computational cost and/or ease the transferability of the F12 correction, approximated and/or universal schemes have recently emerged. \cite{TorVal-JCP-09, KonVal-JCP-10, KonVal-JCP-11, BooCleAlaTew-JCP-2012, IrmHumGru-arXiv-2019, IrmGru-arXiv-2019}
|
||||||
|
%
|
||||||
|
%Present-day DFT calculations are almost exclusively done within the so-called Kohn-Sham (KS) formalism, which corresponds to an exact dressed one-electron theory. \cite{KohSha-PR-65}
|
||||||
|
%The attractiveness of DFT originates from its very favorable accuracy/cost ratio as it often provides reasonably accurate energies and properties at a relatively low computational cost.
|
||||||
|
%Thanks to this, KS-DFT \cite{HohKoh-PR-64, KohSha-PR-65} has become the workhorse of electronic structure calculations for atoms, molecules and solids. \cite{ParYan-BOOK-89}
|
||||||
|
%Although there is no clear way on how to systematically improve density-functional approximations, \cite{Bec-JCP-14} climbing Perdew's ladder of DFT is potentially the most satisfactory way forward. \cite{PerSch-AIPCP-01, PerRuzTaoStaScuCso-JCP-05}
|
||||||
|
%In the context of the present work, one of the interesting feature of density-based methods is their much faster convergence with respect to the size of the basis set. \cite{FraMusLupTou-JCP-15}
|
||||||
|
%
|
||||||
|
%Progress toward unifying WFT and DFT are on-going.
|
||||||
|
%In particular, range-separated DFT (RS-DFT) (see Ref.~\citenum{TouColSav-PRA-04} and references therein) rigorously combines these two approaches via a decomposition of the electron-electron (e-e) interaction into a non-divergent long-range part and a (complementary) short-range part treated with WFT and DFT, respectively.
|
||||||
|
%As the WFT method is relieved from describing the short-range part of the correlation hole around the e-e coalescence points, the convergence with respect to the one-electron basis set is greatly improved. \cite{FraMusLupTou-JCP-15}
|
||||||
|
%Therefore, a number of approximate RS-DFT schemes have been developed within single-reference \cite{AngGerSavTou-PRA-05, GolWerSto-PCCP-05, TouGerJanSavAng-PRL-09,JanHenScu-JCP-09, TouZhuSavJanAng-JCP-11, MusReiAngTou-JCP-15} or multi-reference \cite{LeiStoWerSav-CPL-97, FroTouJen-JCP-07, FroCimJen-PRA-10, HedKneKieJenRei-JCP-15, HedTouJen-JCP-18, FerGinTou-JCP-18} WFT approaches.
|
||||||
|
%Very recently, a major step forward has been taken by some of the present authors thanks to the development of a density-based basis-set correction for WFT methods. \cite{GinPraFerAssSavTou-JCP-18}
|
||||||
|
%The present work proposes an extension of this new methodological development alongside the first numerical tests on molecular systems.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\section{Computational details}
|
\section{Computational details}
|
||||||
\label{sec:compdetails}
|
\label{sec:compdetails}
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
The present basis-set correction relies on the RS-DFT formalism to capture the missing part of the short-range correlation effects, a consequence of the incompleteness of the one-electron basis set.
|
||||||
|
The present methodology is identical to the one described in Ref.~\onlinecite{LooPraSceTouGin-JPCL-19} where the main working equation are reported and discussed.
|
||||||
|
We refer the interested reader to Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18} for a more formal derivation.
|
||||||
|
|
||||||
|
exFCI stands for extrapolated FCI energies computed with the CIPSI algorithm. \cite{HurMalRan-JCP-73, GinSceCaf-CJC-13, GinSceCaf-JCP-15}
|
||||||
|
We refer the interested reader to Refs.~\citenum{HolUmrSha-JCP-17, SceGarCafLoo-JCTC-18, LooSceBloGarCafJac-JCTC-18, SceBenJacCafLoo-JCP-18, LooBogSceCafJAc-JCTC-19} for more details.
|
||||||
|
The one-electron density and on-top density is computed from a very large CIPSI expansion containing several million determinants.
|
||||||
|
All the RS-DFT and exFCI calculations have been performed with {\QP}. \cite{QP2}
|
||||||
|
For the numerical quadratures, we employ the SG-2 grid. \cite{DasHer-JCC-17}
|
||||||
|
The geometries have been extracted from Refs.~\citenum{LooSceBloGarCafJac-JCTC-18, LooBogSceCafJAc-JCTC-19} and have been obtained at the CC3/aug-cc-pVTZ level of theory.
|
||||||
|
They are also reported in the {\SI}.
|
||||||
|
Frozen-core calculations are systematically performed and defined as such: a \ce{He} core is frozen from \ce{Li} to \ce{Ne}, while a \ce{Ne} core is frozen from \ce{Na} to \ce{Ar}.
|
||||||
|
The FC density-based correction is used consistently with the FC approximation in WFT methods.
|
||||||
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
@ -353,9 +483,9 @@ In the present study, we rely on the recently proposed short-range density-funct
|
|||||||
\\
|
\\
|
||||||
\hline
|
\hline
|
||||||
Acetylene & $1\,^{1}\Sigma_{g}^{+} \ra 1\,^{1}\Sigma_{u}^{-}$ & Val. & 7.10 & 0.10 & 0.00
|
Acetylene & $1\,^{1}\Sigma_{g}^{+} \ra 1\,^{1}\Sigma_{u}^{-}$ & Val. & 7.10 & 0.10 & 0.00
|
||||||
& 0.07 &
|
& 0.07 & 0.00
|
||||||
& 0.11 &
|
& 0.11 & 0.00
|
||||||
& 0.11 &
|
& 0.11 & 0.00
|
||||||
\\
|
\\
|
||||||
& $1\,^{1}\Sigma_{g}^{+} \ra 1\,^{1}\Delta_{u}$ & Val. & 7.44 & 0.07 & 0.00
|
& $1\,^{1}\Sigma_{g}^{+} \ra 1\,^{1}\Delta_{u}$ & Val. & 7.44 & 0.07 & 0.00
|
||||||
& 0.04 &
|
& 0.04 &
|
||||||
@ -363,13 +493,13 @@ In the present study, we rely on the recently proposed short-range density-funct
|
|||||||
& 0.11 &
|
& 0.11 &
|
||||||
\\
|
\\
|
||||||
& $1\,^{1}\Sigma_{g}^{+} \ra 1\,^{3}\Sigma_{u}^{+}$ & Val. & 5.56 & -0.06 & -0.03
|
& $1\,^{1}\Sigma_{g}^{+} \ra 1\,^{3}\Sigma_{u}^{+}$ & Val. & 5.56 & -0.06 & -0.03
|
||||||
& 0.07 &
|
& 0.07 & 0.02
|
||||||
& 0.04 &
|
& 0.04 & 0.00
|
||||||
& 0.02 &
|
& 0.02 & 0.00
|
||||||
\\
|
\\
|
||||||
& $1\,^{1}\Sigma_{g}^{+} \ra 1\,^{3}\Delta_{u}$ & Val. & 6.40 & 0.06 & 0.00
|
& $1\,^{1}\Sigma_{g}^{+} \ra 1\,^{3}\Delta_{u}$ & Val. & 6.40 & 0.06 & 0.00
|
||||||
& &
|
& 0.1 &
|
||||||
& &
|
& 0.14 &
|
||||||
& &
|
& &
|
||||||
\\
|
\\
|
||||||
& $1\,^{1}\Sigma_{g}^{+} \ra 1\,^{3}\Sigma_{u}^{-}$ & Val. & 7.09 & 0.05 & -0.01
|
& $1\,^{1}\Sigma_{g}^{+} \ra 1\,^{3}\Sigma_{u}^{-}$ & Val. & 7.09 & 0.05 & -0.01
|
||||||
@ -457,20 +587,19 @@ In the present study, we rely on the recently proposed short-range density-funct
|
|||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\section*{Supporting Information}
|
\section*{Supporting Information Available}
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
See {\SI} for geometries and additional information (including total energies).
|
See {\SI} for geometries and additional information (including total energies).
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\begin{acknowledgements}
|
\begin{acknowledgements}
|
||||||
This work was performed using HPC resources from
|
The authors would like to thank the \textit{Centre National de la Recherche Scientifique} (CNRS) for funding.
|
||||||
i) GENCI-TGCC (Grant No. 2018-A0040801738),
|
This work was performed using HPC resources from GENCI-TGCC (Grant No.~2018-A0040801738) and CALMIP (Toulouse) under allocation 2019-18005.
|
||||||
ii) CALMIP (Toulouse) under allocations 2018-0510 and 2018-12158.
|
|
||||||
\end{acknowledgements}
|
\end{acknowledgements}
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\bibliography{Ex-srDFT}
|
\bibliography{Ex-srDFT,Ex-srDFT-control}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
Loading…
Reference in New Issue
Block a user