2019-05-30 10:05:22 +02:00
\documentclass [aip,jcp,reprint,onecolumn,noshowkeys] { revtex4-1}
2019-05-30 10:54:12 +02:00
\usepackage { graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem,longtable,float}
2019-05-30 10:05:22 +02:00
\usepackage { natbib}
\bibliographystyle { achemso}
\AtBeginDocument { \nocite { achemso-control} }
\usepackage { mathpazo,libertine}
\usepackage { hyperref}
\hypersetup {
colorlinks=true,
linkcolor=blue,
filecolor=blue,
urlcolor=blue,
citecolor=blue
}
\newcommand { \alert } [1]{ \textcolor { red} { #1} }
\definecolor { darkgreen} { HTML} { 009900}
\usepackage [normalem] { ulem}
\newcommand { \titou } [1]{ \textcolor { black} { #1} }
\newcommand { \jt } [1]{ \textcolor { purple} { #1} }
\newcommand { \manu } [1]{ \textcolor { darkgreen} { #1} }
\newcommand { \toto } [1]{ \textcolor { brown} { #1} }
\newcommand { \trashPFL } [1]{ \textcolor { red} { \sout { #1} } }
\newcommand { \trashJT } [1]{ \textcolor { purple} { \sout { #1} } }
\newcommand { \trashMG } [1]{ \textcolor { darkgreen} { \sout { #1} } }
\newcommand { \trashAS } [1]{ \textcolor { brown} { \sout { #1} } }
\newcommand { \MG } [1]{ \manu { (\underline { \bf MG} : #1)} }
\newcommand { \JT } [1]{ \juju { (\underline { \bf JT} : #1)} }
\newcommand { \PFL } [1]{ \titou { (\underline { \bf PFL} : #1)} }
\newcommand { \AS } [1]{ \toto { (\underline { \bf TOTO} : #1)} }
\usepackage { hyperref}
\hypersetup {
colorlinks=true,
linkcolor=blue,
filecolor=blue,
urlcolor=blue,
citecolor=blue
}
\newcommand { \mc } { \multicolumn }
\newcommand { \fnm } { \footnotemark }
\newcommand { \fnt } { \footnotetext }
\newcommand { \tabc } [1]{ \multicolumn { 1} { c} { #1} }
\newcommand { \SI } { \textcolor { blue} { supporting information} }
\newcommand { \QP } { \textsc { quantum package} }
% second quantized operators
\newcommand { \ai } [1]{ \hat { a} _ { #1} }
\newcommand { \aic } [1]{ \hat { a} ^ { \dagger } _ { #1} }
% units
\newcommand { \IneV } [1]{ #1 eV}
\newcommand { \InAU } [1]{ #1 a.u.}
\newcommand { \InAA } [1]{ #1 \AA }
\newcommand { \kcal } { kcal/mol}
% methods
\newcommand { \D } { \text { D} }
\newcommand { \T } { \text { T} }
\newcommand { \Q } { \text { Q} }
\newcommand { \X } { \text { X} }
\newcommand { \UEG } { \text { UEG} }
\newcommand { \HF } { \text { HF} }
\newcommand { \ROHF } { \text { ROHF} }
\newcommand { \LDA } { \text { LDA} }
\newcommand { \PBE } { \text { PBE} }
\newcommand { \FCI } { \text { FCI} }
\newcommand { \CBS } { \text { CBS} }
\newcommand { \exFCI } { \text { exFCI} }
\newcommand { \CCSDT } { \text { CCSD(T)} }
\newcommand { \lr } { \text { lr} }
\newcommand { \sr } { \text { sr} }
\newcommand { \Ne } { N}
\newcommand { \NeUp } { \Ne ^ { \uparrow } }
\newcommand { \NeDw } { \Ne ^ { \downarrow } }
\newcommand { \Nb } { N_ { \Bas } }
\newcommand { \Ng } { N_ \text { grid} }
\newcommand { \nocca } { n_ { \text { occ} ^ { \alpha } } }
\newcommand { \noccb } { n_ { \text { occ} ^ { \beta } } }
\newcommand { \n } [2]{ n_ { #1} ^ { #2} }
\newcommand { \Ec } { E_ \text { c} }
\newcommand { \E } [2]{ E_ { #1} ^ { #2} }
\newcommand { \DE } [2]{ \Delta E_ { #1} ^ { #2} }
\newcommand { \bE } [2]{ \Bar { E} _ { #1} ^ { #2} }
\newcommand { \DbE } [2]{ \Delta \Bar { E} _ { #1} ^ { #2} }
\newcommand { \bEc } [1]{ \Bar { E} _ \text { c,md} ^ { #1} }
\newcommand { \e } [2]{ \varepsilon _ { #1} ^ { #2} }
\newcommand { \be } [2]{ \Bar { \varepsilon } _ { #1} ^ { #2} }
\newcommand { \bec } [1]{ \Bar { e} ^ { #1} }
\newcommand { \wf } [2]{ \Psi _ { #1} ^ { #2} }
\newcommand { \W } [2]{ W_ { #1} ^ { #2} }
\newcommand { \w } [2]{ w_ { #1} ^ { #2} }
\newcommand { \hn } [2]{ \Hat { n} _ { #1} ^ { #2} }
\newcommand { \rsmu } [2]{ \mu _ { #1} ^ { #2} }
\newcommand { \V } [2]{ V_ { #1} ^ { #2} }
\newcommand { \SO } [2]{ \phi _ { #1} (\br { #2} )}
\newcommand { \tX } { \text { X} }
% basis sets
\newcommand { \Bas } { \mathcal { B} }
\newcommand { \BasFC } { \mathcal { A} }
\newcommand { \FC } { \text { FC} }
\newcommand { \occ } { \text { occ} }
\newcommand { \virt } { \text { virt} }
\newcommand { \val } { \text { val} }
\newcommand { \Cor } { \mathcal { C} }
% operators
\newcommand { \hT } { \Hat { T} }
\newcommand { \hWee } [1]{ \Hat { W} _ \text { ee} ^ { #1} }
\newcommand { \updw } { \uparrow \downarrow }
\newcommand { \f } [2]{ f_ { #1} ^ { #2} }
\newcommand { \Gam } [2]{ \Gamma _ { #1} ^ { #2} }
% coordinates
\newcommand { \br } [1]{ \mathbf { r} _ { #1} }
\newcommand { \dbr } [1]{ d\br { #1} }
\newcommand { \ra } { \rightarrow }
% frozen core
\newcommand { \WFC } [2]{ \widetilde { W} _ { #1} ^ { #2} }
\newcommand { \fFC } [2]{ \widetilde { f} _ { #1} ^ { #2} }
\newcommand { \rsmuFC } [2]{ \widetilde { \mu } _ { #1} ^ { #2} }
\newcommand { \nFC } [2]{ \widetilde { n} _ { #1} ^ { #2} }
% energies
\newcommand { \EHF } { E_ \text { HF} }
\newcommand { \EPT } { E_ \text { PT2} }
\newcommand { \EFCI } { E_ \text { FCI} }
\newcommand { \EsCI } { E_ \text { sCI} }
\newcommand { \EDMC } { E_ \text { DMC} }
\newcommand { \EexFCI } { E_ \text { exFCI} }
\newcommand { \EexDMC } { E_ \text { exDMC} }
\newcommand { \Ead } { \Delta E_ \text { ad} }
\newcommand { \Eabs } { \Delta E_ \text { abs} }
\newcommand { \ex } [4]{ $ ^ { # 1 } # 2 _ { # 3 } ^ { # 4 } $ }
\newcommand { \pis } { \pi ^ \star }
\newcommand { \si } { \sigma }
\newcommand { \sis } { \sigma ^ \star }
\newcommand { \LCPQ } { Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\' e de Toulouse, CNRS, UPS, France}
\newcommand { \LCT } { Laboratoire de Chimie Th\' eorique (UMR 7616), Universit\' e Pierre et Marie Curie, Sorbonne Universit\' e, CNRS, Paris, France}
\begin { document}
\title { Supporting Information for ``Chemically-Accurate Excitation Energies With Small Basis Sets''}
\author { Emmanuel Giner}
\affiliation { \LCT }
\author { Anthony Scemama}
\affiliation { \LCPQ }
\author { Julien Toulouse}
\affiliation { \LCT }
\author { Pierre-Fran\c { c} ois Loos}
\email [Corresponding author: ] { loos@irsamc.ups-tlse.fr}
\affiliation { \LCPQ }
\begin { abstract}
\end { abstract}
\maketitle
%\tableofcontents
%%%%%%%%%%%%%%%%%%%%%%%%
\section { Geometries}
\label { sec:intro}
%%%%%%%%%%%%%%%%%%%%%%%%
Below are given the cartesian coordinates of the compounds investigated in this study.
These are provided in Angstroms (\AA ) and they have been obtained at the CC3(full)/aug-cc-pVTZ level of theory, \cite { LooSceBloGarCafJac-JCTC-18, LooBogSceCafJAc-JCTC-19} except for methylene where the FCI/TZVP geometries have been extracted from Ref.~\onlinecite { SheLeiVanSch-JCP-98} .
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection { Ammonia}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin { verbatim}
N 0.067759 0.000000 0.000000
H -0.313823 0.468746 -0.811891
H -0.313823 -0.937491 0.000000
H -0.313823 0.468746 0.811891
\end { verbatim}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection { Carbon dimer}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin { verbatim}
C 0.000000 0.000000 0.624021
C 0.000000 0.000000 -0.624021
\end { verbatim}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection { Ethylene}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin { verbatim}
C 0.000000 0.666904 0.000000
C 0.000000 -0.666904 0.000000
H 0.000000 1.229522 0.922291
H 0.000000 -1.229522 0.922291
H 0.000000 1.229522 -0.922291
H 0.000000 -1.229522 -0.922291
\end { verbatim}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection { Methylene}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%==============================
\subsubsection { $ 1 \, { } ^ 3 B _ 1 $ state}
%==============================
\begin { verbatim}
C 0.000000 0.000000 0.000000
H 0.000000 0.000000 1.077500
H -0.784304 0.000000 -0.738832
\end { verbatim}
%==============================
\subsubsection { $ 1 \, { } ^ 1 A _ 1 $ state}
%==============================
\begin { verbatim}
C 0.000000 0.000000 0.000000
H 0.000000 0.000000 1.108900
H -1.085109 0.000000 -0.228470
\end { verbatim}
%==============================
\subsubsection { $ 1 \, { } ^ 1 B _ 1 $ state}
%==============================
\begin { verbatim}
C 0.000000 0.000000 0.000000
H 0.000000 0.000000 1.074800
H -0.668198 0.000000 -0.841847
\end { verbatim}
%==============================
\subsubsection { $ 2 \, { } ^ 1 A _ 1 $ state}
%==============================
\begin { verbatim}
C 0.000000 0.000000 0.000000
H 0.000000 0.000000 1.067800
H -0.183953 0.000000 -1.051836
\end { verbatim}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection { Water}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin { verbatim}
O 0.000000 0.000000 -0.069903
H 0.000000 0.757532 0.518435
H 0.000000 -0.757532 0.518435
\end { verbatim}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section { Total energies}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2019-05-30 10:54:12 +02:00
exFCI total energies can be found in the { \SI } of Refs.~\onlinecite { LooSceBloGarCafJac-JCTC-18, LooBogSceCafJAc-JCTC-19} .
Here, we report the absolute energetic corrections for each state of each molecule obtained with the three short-range correlation functionals considered in the present study (i.e., LDA, PBE and PBEot).
Data for methylene can be found in the main text.
%%% TABLE 2 %%%
\begin { turnpage}
\begin { squeezetable}
\begin { table*} [h]
\caption {
Basis set energetic corrections (in hartree) on absorption energies for excited states of ammonia, carbon dimer, water and ethylene for various methods and basis sets.}
\begin { ruledtabular} { }
\begin { tabular} { llddddddddd}
& & \mc { 9} { c} { Deviation with respect to TBE}
\\
\cline { 3-11}
& & \mc { 3} { c} { exFCI+PBEot}
& \mc { 3} { c} { exFCI+PBE}
& \mc { 3} { c} { exFCI+LDA}
\\
\cline { 3-5} \cline { 6-8} \cline { 9-11}
Molecule & State
& \tabc { AVDZ} & \tabc { AVTZ} & \tabc { AVQZ}
& \tabc { AVDZ} & \tabc { AVTZ} & \tabc { AVQZ}
& \tabc { AVDZ} & \tabc { AVTZ} & \tabc { AVQZ}
\\
\hline
Ammonia & $ 1 \, ^ { 1 } A _ { 1 } $
& -0.044\, 635 & -0.016\, 982 & -0.008\, 134
& -0.051\, 254 & -0.019\, 468 & -0.008\, 997
& -0.048\, 544 & -0.020\, 906 & -0.010\, 081
\\
& $ 1 \, ^ { 1 } A _ { 2 } $
& -0.039\, 461 & -0.014\, 997 & -0.007\, 039
& -0.047\, 284 & -0.018\, 061 & -0.008\, 251
& -0.044\, 515 & -0.019\, 266 & -0.009\, 218
\\
& $ 1 \, ^ { 1 } E $
& -0.039\, 392 & -0.014\, 949 & -0.007\, 017
& -0.047\, 456 & -0.018\, 077 & -0.008\, 245
& -0.044\, 860 & -0.019\, 344 & -0.009\, 222
\\
& $ 2 \, ^ { 1 } A _ { 1 } $
& -0.040\, 071 & -0.014\, 995 & -0.006\, 988
& -0.047\, 916 & -0.018\, 163 & -0.008\, 241
& -0.045\, 561 & -0.019\, 651 & -0.009\, 258
\\
& $ 2 \, ^ { 1 } A _ { 2 } $
& -0.039\, 483 & -0.014\, 904 & -0.006\, 961
& -0.047\, 307 & -0.018\, 019 & -0.008\, 211
& -0.045\, 008 & -0.019\, 252 & -0.009\, 175
\\
& $ 1 \, ^ { 3 } A _ { 2 } $
& -0.038\, 969 & -0.014\, 725 & -0.006\, 828
& -0.047\, 144 & -0.018\, 010 & -0.008\, 221
& -0.044\, 361 & -0.019\, 216 & -0.009\, 181
\\
\\
Carbon dimer & $ 1 \, ^ { 1 } \Sigma _ g ^ + $
& -0.037\, 716 & -0.014\, 339 & -0.006\, 758
& -0.050\, 128 & -0.019\, 217 & -0.008\, 918
& -0.049\, 570 & -0.021\, 425 & -0.010\, 307
\\
& $ 1 \, ^ { 1 } \Delta _ g $
& -0.042\, 611 & -0.016\, 313 & -0.007\, 592
& -0.050\, 686 & -0.019\, 737 & -0.009\, 079
& -0.049\, 710 & -0.021\, 590 & -0.010\, 380
\\
& $ 2 \, ^ { 1 } \Sigma _ g ^ + $
& -0.042\, 167 & -0.016\, 136 & -0.00\, 7567
& -0.050\, 333 & -0.019\, 473 & -0.00\, 8978
& -0.049\, 208 & -0.021\, 292 & -0.01\, 0257
\\
\\
Water & $ 1 \, ^ { 1 } A _ 1 $
& -0.058\, 765 & -0.024\, 014 & -0.011\, 990
& -0.066\, 603 & -0.027\, 236 & -0.013\, 127
& -0.059\, 660 & -0.027\, 777 & -0.014\, 274
\\
& $ 1 \, ^ { 1 } B _ 1 $
& -0.052\, 137 & -0.021\, 369 & -0.010\, 611
& -0.061\, 033 & -0.025\, 180 & -0.012\, 076
& -0.054\, 803 & -0.025\, 596 & -0.013\, 154
\\
& $ 1 \, ^ { 1 } A _ 2 $
& -0.052\, 102 & -0.021\, 325 & -0.010\, 591
& -0.061\, 406 & -0.025\, 263 & -0.012\, 114
& -0.055\, 215 & -0.025\, 776 & -0.013\, 270
\\
& $ 2 \, ^ { 1 } A _ 1 $
& -0.052\, 995 & -0.021\, 690 & -0.010\, 852
& -0.061\, 959 & -0.025\, 457 & -0.012\, 258
& -0.055\, 301 & -0.025\, 786 & -0.013\, 304
\\
& $ 1 \, ^ { 3 } B _ 1 $
& -0.051\, 161 & -0.020\, 974 & -0.010\, 117
& -0.057\, 882 & -0.023\, 791 & -0.011\, 280
& -0.052\, 744 & -0.024\, 500 & -0.012\, 358
\\
& $ 1 \, ^ { 3 } A _ 2 $
& -0.051\, 244 & -0.020\, 982 & -0.010\, 115
& -0.058\, 090 & -0.023\, 847 & -0.011\, 302
& -0.052\, 729 & -0.024\, 611 & -0.012\, 398
\\
& $ 1 \, ^ { 3 } A _ 1 $
& -0.052\, 193 & -0.021\, 398 & -0.010\, 401
& -0.059\, 073 & -0.024\, 272 & -0.011\, 595
& -0.053\, 409 & -0.024\, 840 & -0.012\, 699
\\
\\
Ethylene & $ 1 \, ^ { 1 } A _ { 1 g } $
& -0.057\, 559 & -0.022\, 007 &
& -0.066\, 251 & -0.024\, 599 &
& -0.065\, 343 & -0.027\, 274 &
\\
& $ 1 \, ^ { 1 } B _ { 3 u } $
& -0.054\, 862 & -0.020\, 972 &
& -0.063\, 185 & -0.023\, 501 &
& -0.061\, 786 & -0.025\, 978 &
\\
& $ 1 \, ^ { 1 } B _ { 1 u } $
& -0.057\, 591 & -0.022\, 249 &
& -0.064\, 517 & -0.023\, 971 &
& -0.063\, 619 & -0.026\, 561 &
\\
& $ 1 \, ^ { 1 } B _ { 1 g } $
& -0.054\, 995 & -0.020\, 994 &
& -0.063\, 386 & -0.023\, 564 &
& -0.061\, 978 & -0.026\, 087 &
\\
& $ 1 \, ^ { 3 } B _ { 1 u } $
& -0.055\, 186 & -0.020\, 862 &
& -0.063\, 076 & -0.023\, 241 &
& -0.062\, 938 & -0.025\, 971 &
\\
& $ 1 \, ^ { 3 } B _ { 3 u } $
& -0.054\, 356 & -0.020\, 441 &
& -0.062\, 107 & -0.022\, 891 &
& -0.060\, 879 & -0.025\, 249 &
\\
& $ 1 \, ^ { 3 } B _ { 1 g } $
& -0.054\, 526 & -0.020\, 480 &
& -0.062\, 333 & -0.022\, 962 &
& -0.061\, 051 & -0.025\, 334 &
\\
\\
\end { tabular}
\end { ruledtabular}
\end { table*}
\end { squeezetable}
\end { turnpage}
%%% %%% %%%
2019-05-30 10:05:22 +02:00
\bibliography { ../Ex-srDFT,../Ex-srDFT-control}
\end { document}