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A crucial theorem in Reduced Density Matrix Functional Theory (RDMFT) suggests that the uni-
versal pure and ensemble functionals coincide on their common domain of pure N-representable
one-matrices. We refute this by a comprehensive analysis of the geometric picture underlying Levy’s
constrained search. Moreover, we then show that the ensemble functional follows instead as the lower
convex envelop of the pure functional. It is particularly remarkable that the pure functional determines
the ensemble functional even outside its own domain of pure N-representable one-matrices. From a
general perspective, this demonstrates that relaxing pure RDMFT to ensemble RDMFT does not nec-
essarily circumvent the complexity of the one-body pure N-representability conditions (generalized
Pauli constraints). Instead, the complexity may simply be transferred from the underlying space of
pure N-representable one-matrices to the structure of the universal one-matrix functional. Published
by AIP Publishing. https://doi.org/10.1063/1.5080088

I. INTRODUCTION

Reduced density matrix functional theory (RDMFT)1–5

extends the widely used density functional theory (DFT)6–9 by
involving the full one-particle reduced density matrix (1RDM)
γ rather than just the spatial density. This therefore facilitates
the exact description of the energy of any one-particle Hamil-
tonian h (including, e.g., the kinetic energy or a non-local
external potential). Furthermore, RDMFT allows explicitly
for fractional occupation numbers as it is required in the
description of strongly correlated systems4 and thus offers
promising prospects of overcoming the fundamental limita-
tions of DFT.10,11 At the same time, involving the full 1RDM
leads also to drawbacks relative to DFT: The complexity of
the N-representability problem, e.g., is not only hidden in the
structure of the universal functional as in DFT12 but also the
space of underlying 1RDMs is already non-trivial. To explain
this aspect crucial to our work, we consider Hamiltonians of the
form H = h + V on the N-fermion Hilbert spaceHN ≡ ∧

N [H1],
where h is a one-particle Hamiltonian and V is some interaction
(e.g., Coulomb pair interaction) which is fixed for the follow-
ing. Moreover, we assume a finite-dimensional one-particle
Hilbert space H1 and denote the convex set of N-fermion den-
sity operators Γ by EN and the subset of pure states by PN . A
general expression for the universal functional13 then follows
immediately by determining the ground state energy of H

E(h) = min
Γ∈PN

TrN [(h + V )Γ]

= min
γ∈P1

N

[
Tr1[hγ] + min

PN 3Γ 7→γ
TrN [VΓ]

]

≡ min
γ∈P1

N

[
Tr1[hγ] + Fp(γ)

]
. (1)

a)Electronic mail: christian.schilling@physics.ox.ac.uk

In the second line, we have introduced the set P1
N of pure

N-representable 1RDMs γ and the last line gives rise to the
universal pure functional Fp defined on P1

N . The crucial point
is now that P1

N is not only constrained by the simple Pauli
exclusion principle, 0 ≤ γ ≤ 1 but also there are rather involved
additional one-body pure N-representability conditions (gen-
eralized Pauli constraints), linear conditions on the eigenvalues
of the 1RDM.14–16 To circumvent at first sight the complexity
of those generalized Pauli constraints, Valone proposed17 to
relax in (1) the set PN to EN by skipping the purity, leading
to

E(h) = min
γ∈E1

N

[
Tr1[hγ] + Fe(γ)

]
(2)

with the ensemble functional Fe(γ) ≡ minEN 3Γ 7→γ TrN [VΓ]

defined on the convex set E1
N of ensemble N-representable

1RDMs. One may now expect that the complexity of the one-
body pure N-representability conditions is simply transferred
within ensemble RDMFT from the underlying set of 1RDMs
to the structure of the exact functional Fe. This, however,
seems not to happen according to Ref. 18, suggesting and
proving that Fe and Fp coincide on their common domain P1

N
of pure N-representable 1RDMs, Fp ≡ Fe |P1

N
. In our work,

we refute this fundamental theorem in RDMFT and show
that the ensemble functional follows instead as the lower con-
vex envelop of the pure functional. For this, we first need to
develop a better understanding for the space of N-fermion den-
sity matrices exploited in Levy’s constrained search,13 i.e., the
sets

PN (γ) ≡ {Γ ∈ PN |Γ 7→ γ},

EN (γ) ≡ {Γ ∈ EN |Γ 7→ γ}
(3)

of N-fermion density operators Γ mapping to a given
1RDM γ.
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FIG. 1. Fp(γ) (in units of U) as a func-
tion of γ11 and γ12.

II. AN INSTRUCTIVE EXAMPLE: HUBBARD DIMER

The simplest way to refute the suggested equality Fp

≡ Fe |P1
N

is to find one counterexample. A simple one is given
by the asymmetric Hubbard dimer

H = −t
∑
σ

[
c†1σc2σ + c†2σc1σ

]
+

∑
σ

[
ε1n1σ + ε2n2σ

]
+ U

[
n1↑n1↓ + n2↑n2↓

]
, (4)

a system of two electrons on two sites. Here, c†iσ(ciσ) denotes
the creation(annihilation) operator of an electron at site i with
spin σ and niσ = c†iσciσ is the corresponding occupation
number operator. The first two terms in Eq. (4) represent
the kinetic and external potential energy, while the last one
describes the interaction (V ) between the electrons. We restrict
H to the three-dimensional singlet space which contains the
ground state. It is an elementary exercise19,20 to determine the
respective pure functional Fp

Fp(γ) = U

1
2γ

2
12

[
1 −

√
1 − 4γ2

12 − 4(γ11 −
1
2 )2] + (γ11 −

1
2 )2

γ2
12 + (γ11 −

1
2 )2

,

(5)

with γij ≡ 〈i ↑ | γ | j ↑〉 = 〈i ↓ | γ | j ↓〉, i, j = 1, 2. Fp(γ) is
invariant under γ11 → (1 − γ11) (particle-hole duality21) and
γ12 → −γ12.

On the one hand, result (5) and its graphical illustration
in Fig. 1 reveal that the pure functional Fp for the Hubbard
dimer (4) is not convex on the set P1

2 = E1
2 [described by the

condition19,20 (γ11 −
1
2 )2 + (γ2

12 ≤
1
4 )]. On the other hand,

it is well-known4,22 and rather elementary to verify that the
ensemble functional Fe is always convex. As a consequence,
the Hubbard dimer already refutes the suggested equality Fe

≡ Fp on P1
2.

III. GEOMETRIC PICTURE OF LEVY’S
CONSTRAINED SEARCH

It is instructive to understand the geometric picture of
density matrices Γ underlying Levy’s constrained search (1)
and (2). This will, in particular, reveal the loophole in the
derivation in Ref. 18. Let us first recall that the set EN of
N-fermion density matrices is convex and also compact as
a subset of the space of hermitian matrices with fixed trace

(i.e., it is bounded and closed). Its extremal points are given
by the pure states, forming the compact but non-convex set
PN . These are the idempotent matrices, Γ = Γ2 (i.e., their
eigenvalues all vanish except one). It is worth noticing that
a “point” Γ in EN lies on the boundary if and only if Γ is not
strictly positive, i.e., at least one of its eigenvalues vanishes.
As a consequence, most boundary points are not extremal
points. It is one of the crucial insights of our work that this
changes considerably if we restrict this consideration to the
subsets EN (γ) and PN (γ) with respect to which the minimiza-
tion (3) is carried out: While both sets EN (γ) and PN (γ) are
also compact and EN (γ) is convex for all γ, extremal states Γ
of EN (γ) are not necessarily pure anymore. The general reason
for this is that a convex decompositions of Γ (e.g., the spectral
decomposition into pure states) involves states whose 1RDMs
typically differ from γ. Thus, a mixed (i.e., non-pure) Γ might
be extremal within EN (γ) despite the fact that it is not extremal
within EN .

As already stated above, the ensemble functional Fe(γ)
follows for each γ ∈ E1

N by minimizing TrN [V Γ] over EN (γ).
Since TrN [V (·)] is linear and EN (γ) is convex and compact, the
minimum (i.e., Fe(γ)) is attained on the boundary of EN (γ).
This is a general (and rather obvious) fact from linear opti-
mization: First, we observe that TrN [V Γ] is nothing else than
the standard inner product on the Hilbert space of hermitian
matrices, TrN [V Γ] ≡ 〈V,Γ〉N . In that sense, there is given a
notion of geometry on the space of density operators23–34 and
thus V defines a direction in EN (γ). The set of Γ ∈ EN (γ)
with a specific interaction energy v = 〈V,Γ〉N gives rise to
a hyperplane, orthogonal to V. The minimum of TrN [V (·)]
≡ 〈V,·〉N on EN (γ) then follows by shifting the hyperplane
along the direction −V (i.e., by reducing v) until an extremal
point of EN (γ) is reached. This final hyperplane is a so-called
supporting hyperplane.35 By definition, this means that EN (γ)
is entirely contained in one of the two closed half-spaces
bounded by that hyperplane and EN (γ) has at least one bound-
ary point on the hyperplane. This geometric picture underlying
Levy’s constrained search is illustrated in Fig. 2 for different
interactions (“directions”) V. There are three conceptually dif-
ferent boundary points which can be characterized by referring
to two distinctive features: On the one hand, points ΓA and
ΓB have a unique supporting hyperplane (unique “normal”
vector V ), in contrast to ΓC supported by infinitely many hyper-
planes. On the other hand, points ΓA and ΓC are exposed35 in
contrast to ΓB, i.e., they are supported by hyperplanes which
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FIG. 2. Schematic illustration of the geometric picture underlying Levy’s
constrained search for determining the ensemble functional Fe(γ): For each
1RDM γ, the linear functional TrN [V (·)] attains it minimum [i.e., Fe(γ)] on
the boundary of EN (γ) (see also the text).

do not contain any further boundary points. In other words, ΓA

and ΓC can be obtained as unique minimizers of TrN [V Γ] for
some V.

After having explained the geometric picture underlying
Levy’s constrained search, we can now identify the loophole
of the proof in Ref. 18 which we briefly recap: For γ ∈ P1

N ,
the minimizer of TrN [V Γ] on EN (γ) is denoted by Γ. Since
EN (γ) is convex and compact, Γ can be expressed accord-
ing to the Krein-Milman theorem36 as a convex combination
of the extreme points of EN (γ). This convex combination
can be grouped into two parts, one (wpΓp) arising from pure
extremal states and one ((1−wp)Γe) arising from mixed states,
i.e., Fe(γ) = TrN [VΓ] = wpTrN [VΓp] + (1 − wp)TrN [VΓe]
(with Γp/e normalized to unity). In a straightforward man-
ner,18 this yields Fe(γ) ≥ wpFp(γ) + (1 − wp)Fe(γ), imply-
ing that (if wp > 0) Fe(γ) ≥ Fp(γ). In combination with
Fe(γ) ≤ Fp(γ) [following from the definition of Fp/e and
PN (γ) ⊂ EN (γ)], this eventually yields the suggested equality
Fe(γ) = Fp(γ) on P1

N . It is exactly the hidden assumption wp

> 0 which is not justified: As explained above, the minimizer
Γ already lies on the boundary of EN (γ). Even more impor-
tantly, according to a theorem from convex optimization,37 Γ

is with probability one (i.e., for generic V ) already extremal
and even exposed. The application of Krein-Milman’s theo-
rem is therefore rather meaningless, and the assumption wp

> 0 is violated as long as the minimizer Γ is not inciden-
tally a pure state and thus Fe(γ) , Fp(γ). To illustrate all
those general aspects, we revisit in the following the Hubbard
dimer.

As an orthonormal reference basis for the singlet spin sec-
tor underlying the Hubbard dimer, we choose |1

〉
= c†1↑c

†

1↓ |0
〉
,

|2
〉
= c†2↑c

†

2↓ |0
〉
, and |3

〉
= [c†1↑c

†

2↓ |0
〉
− c†1↓c

†

1↑ |0
〉
]/
√

2,
where |0〉 denotes the vacuum. Expressing any singlet state Γ
=

∑3
i,j=1 Γij |i

〉〈
j | with respect to that basis and restricting it

(as usually in quantum chemistry) to real values, the 1RDM
in spatial representation follows as (recall γij ≡ 〈i ↑ | γ | j ↑〉
= 〈i ↓ | γ | j ↓〉, i, j = 1, 2)

γ11 = 1 − γ22 = Γ11 +
1
2
Γ33,

γ12 = γ21 =
1
√

2
(Γ13 + Γ23) .

(6)

The set E2(γ) can thus be parameterized by three indepen-
dent real variables. We choose (Γ11, Γ12, Γ13) and find for
the expectation value of the Hubbard interaction Tr2[VΓ]
= U(Γ11 + Γ22) = 1

2 U
(
1 + Γ11 − 2γ11

)
where Eq. (6) and

the normalization of Γ have been used. For two exemplary
γ ∈ P1

2 ≡ E1
2, we illustrate in Fig. 3 the respective sets E2(γ).

Levy’s minimization of the Hubbard interaction V is illustrated
as a set of black hyperplanes with the black normal vector cor-
responding to −V. For generic γ, there are only two pure states
on the boundary of E2(γ), shown as blue dots (in the right
figure, one of them is shown in black since it coincides with
the minimizer of Tr2[V (·)]). All other points on the boundary
turn out to be mixed states (see also the color scheme rep-
resenting the purity 1 − Tr[Γ2]). Since almost all boundary
points are exposed and describe mixed states (thus violating
the assumption wp > 0 in Ref. 18) one may now even wonder
why the functionals Fp and Fe do not differ almost every-
where on P1

2. The answer to this is the following: By choosing
an interaction V [i.e., a “direction” in E2(γ)] at random, pure
states appear with finite probability as minimizers of Tr2[V
(·)]. This is due to the fact (see Fig. 3) that each pure state
has a whole range of supporting hyperplanes (see also point
ΓC in Fig. 2), whose normal vectors cover a finite angular
range.

IV. RELATING PURE AND ENSEMBLE FUNCTIONAL

Strongly inspired by Lieb’s seminal work38 on DFT for
Coulomb systems, we resort to convex analysis, particularly
to the concept of convex conjugation, to relate pure (Fp) and
ensemble functionals (Fe) for arbitrary interaction V. The
conjugate f ∗ (also called Legendre-Fenchel transform) of a
function f : Rn → R ∪ {±∞} is defined as f ∗(y) = supx∈Rn[
〈y, x〉 − f (x)

]
. Allowing f to take infinite values “has the

FIG. 3. Illustration of Levy’s con-
strained search for the Hubbard dimer
on E2(γ) for (γ11, γ12) = (0.25, 0.15)
(left) and (γ11, γ12) = (0.25, 0.38)
(right); the blue dots represent extremal
pure Γ, one of which coincides (right
figure) with the minimizer (black dot)
of Tr2[V Γ].
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advantage that technical nuisances about effective domains
can be suppressed almost entirely”35 and we therefore extend
Fp and Fe to the respective Euclidean space of hermitian
matrices by defining Fp(γ) = ∞ and Fe(γ) = ∞ for γ
outside their original domains P1

N and E1
N , respectively. By

referring to those common definitions and identifying Tr1[hγ]
as the inner product 〈h, γ〉 on the Euclidean space of hermi-
tian matrices, we make the crucial observation that the energy
E(h) [recall Eqs. (1) and (2)] is nothing else than the con-
jugate of the universal functionals Fp and Fe, respectively
(up to an overall minus sign and a reflection h 7→ −h). The
conjugation and thus the minimizations in (1) and (2) have
a clear geometric meaning as it is illustrated in Fig. 4: For
any fixed “normal vector” h, one considers the respective
hyperplanes in the Euclidean space of vectors (γ, µ) (γ is
a hermitian matrix, µ ∈ R) defined by µ = 〈h, γ〉 + u and
determines the largest u such that the upper closed halfspace
of the respective hyperplane still contains the entire graph of
Fp/e. E(h) then follows as the intercept of that hyperplane
with the F-axis, i.e., the maximal u. This interpretation of the
conjugation, in particular, explains in a geometric way why
some 1RDMs γ (such as those on the line segment between γA

and γB in Fig. 4) are not pure v-representable.7,8,20,39 More-
over, it shows that replacing Fp in (1) by the lower convex
envelop,35 conv(F), would not change the outcome of the
minimization.

The second ingredient required for relating Fp and Fe

is a theorem from convex analysis stating35 that the bicon-
jugate f ∗∗ coincides with f whenever f is convex and lower
semicontinuous (a weaker form of continuity). Moreover, for
arbitrary f, f ∗∗ is (the closure of) the lower convex envelop of
f. It is straightforward to apply those mathematical results to
the functionals Fp, Fe, and E: First, since Fe is convex, it is
continuous in the interior of E1

N . This immediately implies35

lower semicontinuity (except for γ ∈ ∂E1
N ). We assume in the

following that Fe is also lower semicontinuous on the bound-
ary ∂E1

N of E1
N . The latter seems to be particularly difficult to

verify (also since the interaction V is arbitrary). In case this
assumption turns out to be wrong, our final result (7) will be
valid on the interior of E1

N only (which does not reduce at all
the significance and scope from any practical point of view).
According to the theorem mentioned above,Fe therefore coin-
cides with its biconjugation. Furthermore, the biconjugate of
Fp coincides with its lower convex envelop conv(Fp). Yet,
since both functionals Fe = F∗∗e and conv(Fp) = F∗∗p follow

FIG. 4. Schematic illustration of the energy minimization (1) in RDMFT,
emphasizing the role of convex conjugation (Legendre-Fenchel transform) in
particular (see also the text).

FIG. 5. Schematic illustration of Fe given as the lower convex envelop
of Fp (left). This relation between Fp and Fe is remarkable since the
domain P1

N of Fp is a proper subset of E1
N (right), yet their extremal points

coincide.

as the conjugate of the same functional, namely, the energy
E (up to the minus signs), we eventually obtain (see also
Fig. 5)

Fe ≡ conv(Fp) . (7)

It is particularly remarkable that the pure functional Fp

determines the ensemble functional Fe on its whole domain
E1

N , despite the fact that Fp’s effective domain P1
N is a

proper subset of E1
N . To be more specific, (7), namely, states

that Fe(γ) follows as the minimisation of
∑

i wiFp(γi) with
respect to all possible convex decompositions γ =

∑
iwiγi

(0≤wi≤1,
∑

iwi = 1) involving only 1RDMs γi from P1
N ,

Fe(γ) = min
{ ∑

i wiFp(γi)��
∑

i wiγi = γ, γi ∈ P1
N
}
. This is

also illustrated on the right panel of Fig. 5 for a γ outside P1
N ,

also emphasizing the important fact that the extremal points
of P1

N and E1
N coincide.

V. SUMMARY AND CONCLUSION

A fundamental theorem in RDMFT suggested that the
pure (Fp) and ensemble functionals (Fe) would coincide on
their common domain P1

N of pure N-representable 1RDMs.
Based on a comprehensive study of the geometric picture of
density matrices underlying Levy’s constrained search, we
have refuted this crucial theorem. By exploiting concepts
from convex analysis, we have then shown that Fe follows
instead as the lower convex envelop of Fp. This relation [see
Eq. (7)] which holds for any interaction V is particularly
remarkable: The pure functional Fp together with P1

N deter-
mines the ensemble functional Fe on its whole domain E1

N ,
despite the fact that Fp’s domain P1

N is a proper subset of E1
N .

This latter point in conjunction with the refutation of the rela-
tion Fp ≡ Fe |P1

N
demonstrates that relaxing pure RDMFT to

ensemble RDMFT does not necessarily circumvent the com-
plexity of the one-body pure N-representability conditions.
Instead, it may simply be transferred from the underlying space
of pure N-representable one-matrices into the structure of the
universal one-matrix functional Fe. In that case, an additional
conceptual insight would follow: Approximating the universal
functional would have at least the same computational com-
plexity as the problem of determining all generalized Pauli
constraints. Moreover, taking the generalized Pauli constraints
into account may facilitate the development of more accurate
functionals.



231102-5 Christian Schilling J. Chem. Phys. 149, 231102 (2018)

ACKNOWLEDGMENTS

We are very grateful to E. J. Baerends, O. Gritsenko, D.
Kooi, N. N. Lathiotakis, M. Piris, and particularly also K. J. H.
Giesbertz for inspiring and helpful discussions. C.S. acknowl-
edges financial support from the UK Engineering and Physical
Sciences Research Council (Grant No. EP/P007155/1).

1T. L. Gilbert, Phys. Rev. B 12, 2111 (1975).
2J. Cioslowski, Many-Electron Densities and Reduced Density Matrices
(Springer Science & Business Media, 2000).

3M. Piris, “Natural orbital functional theory,” in Reduced-Density-Matrix
Mechanics: With Application to Many-Electron Atoms and Molecules,
edited by D. A. Mazziotti (Wiley-Blackwell, 2007), Chap. 14, p. 387.

4K. Pernal and K. J. H. Giesbertz, “Reduced density matrix functional the-
ory (RDMFT) and linear response time-dependent rdmft (TD-RDMFT),” in
Density-Functional Methods for Excited States, edited by N. Ferré, M. Fila-
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