
Fundamental gaps with approximate density functionals: The derivative discontinuity
revealed from ensemble considerations
Eli Kraisler and Leeor Kronik 
 
Citation: The Journal of Chemical Physics 140, 18A540 (2014); doi: 10.1063/1.4871462 
View online: http://dx.doi.org/10.1063/1.4871462 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/140/18?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Derivative discontinuity and exchange-correlation potential of meta-GGAs in density-functional theory 
J. Chem. Phys. 141, 224107 (2014); 10.1063/1.4903273 
 
Derivative discontinuity, bandgap and lowest unoccupied molecular orbital in density functional theory 
J. Chem. Phys. 136, 204111 (2012); 10.1063/1.3702391 
 
A fresh look at ensembles: Derivative discontinuities in density functional theory 
J. Chem. Phys. 110, 4710 (1999); 10.1063/1.478357 
 
A discontinuous energy–density functional 
J. Chem. Phys. 77, 3140 (1982); 10.1063/1.444237 
 
Applicability of Approximate Quantum‐Mechanical Wave Functions Having Discontinuities in Their First
Derivatives 
J. Chem. Phys. 34, 1666 (1961); 10.1063/1.1701062 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

155.33.148.196 On: Sat, 14 Feb 2015 21:22:31

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1576713568/x01/AIP-PT/JCP_ArticleDL_0115/AIP-2394_JCP_1640x440_Deputy_editors.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=Eli+Kraisler&option1=author
http://scitation.aip.org/search?value1=Leeor+Kronik&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4871462
http://scitation.aip.org/content/aip/journal/jcp/140/18?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/141/22/10.1063/1.4903273?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/136/20/10.1063/1.3702391?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/110/10/10.1063/1.478357?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/77/6/10.1063/1.444237?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/34/5/10.1063/1.1701062?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/34/5/10.1063/1.1701062?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 140, 18A540 (2014)

Fundamental gaps with approximate density functionals: The derivative
discontinuity revealed from ensemble considerations

Eli Kraisler and Leeor Kronik
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel

(Received 5 December 2013; accepted 3 April 2014; published online 29 April 2014)

The fundamental gap is a central quantity in the electronic structure of matter. Unfortunately, the
fundamental gap is not generally equal to the Kohn-Sham gap of density functional theory (DFT),
even in principle. The two gaps differ precisely by the derivative discontinuity, namely, an abrupt
change in slope of the exchange-correlation energy as a function of electron number, expected across
an integer-electron point. Popular approximate functionals are thought to be devoid of a derivative
discontinuity, strongly compromising their performance for prediction of spectroscopic properties.
Here we show that, in fact, all exchange-correlation functionals possess a derivative discontinuity,
which arises naturally from the application of ensemble considerations within DFT, without any em-
piricism. This derivative discontinuity can be expressed in closed form using only quantities obtained
in the course of a standard DFT calculation of the neutral system. For small, finite systems, addition
of this derivative discontinuity indeed results in a greatly improved prediction for the fundamental
gap, even when based on the most simple approximate exchange-correlation density functional – the
local density approximation (LDA). For solids, the same scheme is exact in principle, but when ap-
plied to LDA it results in a vanishing derivative discontinuity correction. This failure is shown to be
directly related to the failure of LDA in predicting fundamental gaps from total energy differences in
extended systems. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4871462]

I. INTRODUCTION

Density-functional theory (DFT)1–9 is the leading theo-
retical framework for studying the electronic properties of
matter. It is based on mapping the interacting-electron sys-
tem into the Kohn-Sham (KS) system of non-interacting elec-
trons, which are subject to a common effective potential. DFT
is a first principles approach, i.e., the only necessary input
for the theory is the external potential, vext (�r), and the total
number of electrons, N; no experimental data are required. In
principle, the KS mapping is exact. In practice, it involves
an exchange-correlation (xc) density functional, Exc[n(�r)],
whose exact form is unknown and is always approximated.

Present-day approximations within DFT already make it
widely applicable to a variety of many-electron systems in
physics, chemistry, and materials science.10–14 Specifically,
quantities that can be derived from the total energy of the sys-
tem, notably structural and vibrational properties, can often
be obtained with a satisfactory accuracy of a few percent or
better. However, extraction of quantities such as the ioniza-
tion potential (IP) or the fundamental gap directly from the
KS eigenvalues often results in serious discrepancies with ex-
periment (see, e.g., Refs. 15–21).

It is by now well-known22–25 that for the exact (but gen-
erally unknown) xc functional the highest occupied (ho) KS
eigenvalue would equal the negative of the ionization poten-
tial of the interacting-electron system. This result is known
as the ionization potential theorem. However, the KS gap,
EKS

g , namely, the energy difference between the lowest un-
occupied (lu) and ho KS eigenvalues, would still not equal
the fundamental gap of the interacting system, Eg. This dif-

ference is due to a finite, spatially uniform “jump” in the
KS potential, experienced as the electron number, N, crosses
an integer value. This “jump” is called the derivative dis-
continuity, �, for reasons discussed in detail below. Exten-
sive numerical investigations have shown16, 17, 19, 26, 27 that the
value of � associated with the exact KS potential for vari-
ous systems of interest is not at all negligible in comparison
to EKS

g . It is commonly understood that standard semi-local
xc potentials, like the local density approximation (LDA)28–30

or generalized-gradient approximations (GGAs),31–36 do not
possess a derivative discontinuity by construction. As a re-
sult, such approximations effectively “average over” it in the
vicinity of the integer point.37, 38 Consequently, the ionization
potential theorem is grossly disobeyed and in addition the fun-
damental gap is greatly underestimated.

For finite systems, a correct positioning of the ho and the
lu KS eigenvalues is highly advantageous when describing
processes like ionization, photoemission, charge transport, or
transfer, etc.39–45 But at least the ionization potential and elec-
tron affinity, and ergo the fundamental gap, which equals the
difference between the two, can be calculated based on to-
tal energy differences between neutral, cation, and anion (see,
e.g., Refs. 45–51).

For periodic systems, e.g., crystalline solids, this is no
longer the case. Because such systems are represented by a
unit cell with periodic boundary conditions, varying the num-
ber of electrons per unit cell means adding or subtracting
charge from each replica of the unit cell and therefore an
infinitely large charge from the system as a whole. The en-
suing divergence is usually avoided by introducing a com-
pensating uniform background to the unit cell, keeping the

0021-9606/2014/140(18)/18A540/10/$30.00 © 2014 AIP Publishing LLC140, 18A540-1
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overall system neutral. However, this hinders the straightfor-
ward use of total energy differences for deducing fundamental
gaps, as discussed, e.g., in Refs. 52 and 53. Thus, there is a
clear advantage in extracting the fundamental gap based on
KS eigenvalues and other quantities arising in the calculation
of the neutral system itself, without alteration of the number
of electrons.

Many novel approaches have been developed within DFT
for improving the accuracy of fundamental gap prediction
beyond that afforded by conventional semi-local functionals,
with an emphasis on applications to crystalline solids. These
can be broadly divided into several categories.

Within the KS framework, significant attention has been
devoted to the employment of functionals that do possess an
inherent derivative discontinuity. Much of the effort involved
the exact-exchange (EXX) functional, using the optimized ef-
fective potential (OEP)6, 18, 54 approach.55–62 More recently,
novel semi-local functionals were constructed so as to mimic
EXX-OEP properties.63–68

Alternatively, it is possible to step outside the KS frame-
work and use the generalized KS (GKS) scheme,18, 39, 69, 70

where mapping to a partially interacting electron system re-
sults in a KS-like equation that includes a non-multiplicative
potential operator. This operator can reduce the magnitude
of the derivative discontinuity, potentially driving it down to
negligible values. Practical GKS schemes often rely on the
Fock operator, or variants thereof. Such GKS calculations
were performed, e.g., by employing the screened exchange
approach,69, 71–75 by using global hybrid functionals,76–86

range-separated hybrid functionals,80, 81, 87–96 and by ap-
plying a scaling correction to the Hartree and exchange
functionals.97, 98 Alternatively, one can step outside the KS
scheme by introducing orbital-specific corrections, where
different electrons of the KS system are subject to different
potentials. This is achieved, e.g., using self-interaction
correction methods,29, 99–101 DFT+U and Koopmans’ com-
pliant functionals,102–111 the LDA-1/2 method,112 Fritsche’s
generalized approach,113, 114 or a scissors-like operator to the
KS system that affects only the unoccupied states.115

A different possibility altogether is to sidestep the full
charging problem by considering total energy differences aris-
ing from appropriately constructed partial charging schemes,
e.g., by employing dielectric screening properties,53 by av-
eraging the KS transition energies around the direct band-
gap transition,116 or by employing perturbative curvature
considerations.117

But must conventional semi-local functionals really be
abandoned as far as band gap prediction is concerned? Re-
cently, this question has received some attention. For finite
systems, Andrade and Aspuru-Guzik118 and Gidopoulos and
Lathiotakis119 have suggested derivative-discontinuity cor-
rection schemes based on an electrostatic correction of the
asymptotic potential.120 Chai and Chen121 derived a perturba-
tive approach for the evaluation of the missing derivative dis-
continuity. In the first order, this perturbative treatment leads
to the “frozen orbital approximation” result, discussed lately
by Baerends and co-workers.122 We have shown that, con-
trary to conventional wisdom, in fact the KS potential derived
from any xc functional possesses a derivative discontinuity,123

whose value emerges naturally and non-empirically from
the ensemble generalization of DFT.22, 124–128 These ap-
proaches have, so far, been applied to atoms and
molecules and their potential for the solid-state remains
unexplored.

Here, we derive an explicit, closed-form expression for
the derivative discontinuity, �, of an arbitrary many-electron
system studied with an arbitrary xc functional. This deriva-
tion is based on the ensemble generalization of the Hartree
and xc energy terms suggested in Ref. 123. Furthermore, �

is expressed using only quantities associated with the neu-
tral system, thereby avoiding alteration of the electron num-
ber. Therefore, the formalism is, in principle, applicable to
both finite and periodic systems. Focusing on the latter, we
explore analytically the scaling of � with system size. We
find that while for the exact xc functional � must be inde-
pendent of system size, for standard xc approximations like
the LDA the derivative discontinuity vanishes. This failure is
shown to be directly related to the failure of LDA in predicting
fundamental gaps from total energy differences in extended
systems. These findings are demonstrated by illustrative
calculations.

II. THE ENSEMBLE APPROACH

The central quantity we discuss below is the fundamental
gap, Eg. It is defined as

Eg = I − A, (1)

i.e., it is the difference between the ionization energy, I, and
the electron affinity, A. As I and A involve removal and addi-
tion of an electron, respectively, in the following we analyse
in detail the properties of a many-electron system with a vary-
ing number of electrons.

At zero temperature, the ground state of a many-electron
system with a (possibly) fractional number of electrons N =
N0 + α (N0 ∈ N and α ∈ [0, 1]) is described by an ensemble
state22

�̂ = (1 − α)|�N0〉〈�N0 | + α|�N0+1〉〈�N0+1|, (2)

where |�N0+p〉 is a pure many-electron ground state with N0

+ p electrons and p is 0 or 1.155, 156 As a result, the ground-
state energy E(N) at a fractional N is a linear combination of
the ground-state energies at the closest integer points

E(N ) = (1 − α)E(N0) + αE(N0 + 1). (3)

Therefore, the function E(N) is piecewise-linear (see Fig. 1(a)
for an illustration).

The energy obtained in DFT using the KS system with
the exact xc functional has to reproduce the piecewise-linear
behavior. Janak’s theorem129 states that the ith KS eigenen-
ergy, εi, equals ∂E/∂fi – the derivative of the total energy of
the interacting system, E, with respect to the occupation of the
ith level, fi. Applying this theorem, we find that with the exact
xc functional the ho eigenenergy, εho, is a stair-step function
of the number of electrons, N (see Fig. 1(b)).

A non-vanishing fundamental gap in a many-electron
system indicates a discontinuity in the chemical potential,
namely, the cost of electron insertion and removal is different.
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FIG. 1. A schematic plot of the total energy E (a) and the highest occupied
KS energy level εho (b) depending on the number of particles N for the exact
xc-functional.

This physical discontinuity is manifested as a mathematical
discontinuity exhibited in Fig. 1. From the perspective of total
energies, I = E(N0 − 1) − E(N0) and A = E(N0) − E(N0 + 1)
are the slopes of E(N) to the left and right of N0, respectively,
which are generally different from each other. The gap Eg

is then the difference in these two slopes. From the perspec-
tive of KS eigenvalues, I = −εho(N0) and A = −εho(N0 + 1)
(owing to the IP-theorem), and then Eg is the magnitude of the
step in εho(N) at N0.22–25 In other words, Eg is the discontinu-
ity of the derivative of the E(N) curve, or the discontinuity of
the εho(N) curve itself, at N0.

Clearly, in order to obtain the fundamental gap from total
energy differences one has to calculate not only the system
of interest (with N = N0), but also its anion (N = N0 + 1)
and its cation (N = N0 − 1). Figure 1(b) suggests, however,
an alternative route: Eg can, at least in principle, be derived
by analyzing the left and the right limits, N → N−

0 and N →
N+

0 , of the neutral many-electron system.
Consider now the celebrated KS equation,2 given in

Hartree units by(
−1

2
∇2 + vKS(�r)

)
ϕi(�r) = εiϕi(�r), (4)

where vKS(�r) is the KS potential and ϕi(�r) are the KS orbitals.
What elements of the KS equation may cause the “jump”
of εho(N) at integer N, shown in Fig. 1(b)? One obvious
source is simply the fact that the state named ho for N → N+

0
is not the same state as the one named ho for N → N−

0 ,
due to the infinitesimal occupation of the next available en-

ergy level, whose eigenvalue is different. However, there is
a more subtle second source: There is nothing to prevent the
KS potential itself from exhibiting an abrupt “jump” across
the integer point.18, 22, 37, 130 Because an infinitesimal change
in N across the integer point can only change the density
n(�r) infinitesimally,37 the potential vKS(�r) cannot “jump” by
more than a spatial constant. Otherwise, in the limit of N0

the same density would be achieved from two potentials dif-
fering by more than a constant, in direct contradiction of
the Hohenberg-Kohn theorem.1 In the complementary energy
picture, the first source mentioned above – change in leading
orbital – results in an abrupt slope change of the KS kinetic
energy, TKS = ∑

i fi〈ϕi | − 1
2∇2|ϕi〉. The second source – the

“jump” in the KS potential – creates an abrupt slope change
in the Hartree-exchange-correlation energy, EHxc.

We denote the aforementioned spatial constant by � and
write

vR
KS(�r) = vL

KS(�r) + �. (5)

Here and below, we use the superscripts L and R to denote
quantities immediately to the left or to the right of the integer
point N0.

Equation (5) has two immediate consequences. Upon in-
finitesimal crossing of the integer point, N0, from N−

0 to N+
0 ,

all the KS eigenvalues “jump” by the same quantity, i.e.,
εR
i = εL

i + �. However, the KS orbitals do not exhibit any
change: ϕR

i (�r) = ϕL
i (�r). As a special case of these statements,

ϕR
ho(�r) = ϕL

lu(�r) and εR
ho = εL

lu + �. These simple statements
are key to the following derivation. For the gap we then
obtain

Eg = εho(N0 + 1) − εho(N0) = εR
ho − εL

ho = εL
lu − εL

ho + �.

(6)
Using the definition of the KS gap, EKS

g = εL
lu − εL

ho, we ar-
rive at19, 25, 37, 130

Eg = EKS
g + �. (7)

The above expression is an exact result and therefore must be
obeyed by results obtained from the exact KS potential. For
any given approximate xc potential, however, the degree to
which Eq. (6) is obeyed may vary, depending on the deviation
of εho(N) from flatness, or equivalently, on the deviation of
E(N) from piecewise-linearity.117, 131–139

As already mentioned, the density is continuous across
the integer point, i.e., nR(�r) = nL(�r). Because in conventional
(semi-)local approximate xc functionals such as the LDA and
GGAs, the xc potential is a continuous function of the density
(and its gradient), it is commonly believed that there is no
mathematical possibility for the KS potential to “jump” and
therefore � = 0. It is this last statement that we challenge in
this work.

If the interacting-electron system has a fractional electron
number, its corresponding KS system must also have a frac-
tional electron number. Therefore, not only the ground state
of the interacting system, but also the ground state of the KS
system must unavoidably be described in terms of an ensem-
ble, while still being fully described by a single KS potential.
In analogy to Eq. (2), the KS ensemble state must be written
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in the form

�̂KS = (1 − α)
∣∣	(α)

N0

〉〈
	

(α)
N0

∣∣ + α
∣∣	(α)

N0+1

〉〈
	

(α)
N0+1

∣∣, (8)

where |	(α)
N0

〉 and |	(α)
N0+1〉 are pure KS ground states, with

N0 and N0 + 1 electrons, respectively. These pure states are
Slater determinants formed from the N0 or N0 + 1 occu-
pied KS orbitals, obtained from the same KS potential, i.e.,
the two Slater determinants differ only in that the N0 + 1
one contains one more orbital. The KS potential generating
them is, generally, neither that of the pure N0 system nor
that of the pure N0 + 1 system. Therefore, in contrast to
the quantities |�N0+p〉 used to describe the ensemble state
of the interacting system, all quantities of the KS ensemble
in Eq. (2) may generally change with the electron fraction,
i.e., are α-dependent. We emphasize this by using the super-
script (α). Ensemble-averaging the many-electron Coulomb
operator Ŵ = 1

2

∑
i

∑
j �=i |�ri − �rj |−1 in the KS system, the

Hartree-exchange-correlation energy functional generalizes
to ensembles in the following form:123

Ee−Hxc[n] = (1 − α)EHxc

[
ρ

(α)
0

] + αEHxc

[
ρ

(α)
1

]
. (9)

Here, the index e − signifies that the functional is ensemble-
generalized, EHxc[ρ] is the pure-state Hartree-exchange-
correlation energy functional, and ρ(α)

p (�r) is defined as

ρ(α)
p (�r) = ∑N0+p

i=1 |ϕ(α)
i (�r)|2, namely, the sum of the squares of

the first N0 + p KS orbitals. We stress that ρ(α)
p (�r) are auxil-

iary quantities that are not associated with any physical den-
sity, except when N is an integer. We further emphasize that
the ensemble-generalized form of Eq. (9) is not an ansatz, but
rather an inevitable consequence of employing the ensemble
approach to describe a KS system of fractional number of par-
ticles. If the exact pure-state xc functional Exc[n] were to be
inserted into Eq. (9), the ensemble-generalized total energy
would have been exactly piecewise linear. Even then the aux-
iliary densities ρ

(α)
0 and ρ

(α)
1 need not equal the pure-state den-

sities of N0- and N0 + 1-systems).
The density n(�r) of the ensemble state is expressed in

terms of ρ(α)
p (�r) as

n(�r) = (1 − α)ρ(α)
0 (�r) + αρ

(α)
1 (�r). (10)

To obtain Ee − Hxc[n], we construct ρ
(α)
0 (�r) and ρ

(α)
1 (�r) from

the KS orbitals as mentioned above, substitute them into the
functional EHxc to obtain EHxc[ρ(α)

0 ] and EHxc[ρ(α)
1 ], and take

the linear combination of the latter according to Eq. (9). Note
that this procedure is not equivalent to constructing the en-
semble density n(�r) from a linear combination of ρ

(α)
0 (�r) and

ρ
(α)
1 (�r) (cf. Eq. (10)) and substituting it into EHxc, as the latter

functional is not linear with respect to the density.
The generalization in Eq. (9) is applicable to any xc func-

tional and makes the Hartree and the xc energy components
explicitly dependent on the KS orbitals and on α. However,
there may still remain an implicit nonlinear dependence of
Ee − Hxc[n] on α because the KS orbitals, ϕ

(α)
i (�r), may them-

selves change with α. Finally, note that for pure states, i.e.,
for α = 0 or 1, the ensemble generalized Ee − Hxc[n] reduces
to the pure-state form EHxc[n], as expected.

Because the KS potential, and specifically its behavior
around an integer electron number, is central to this work, we

address it here in detail. Due to the ensemble generalization
of the Hartree-exchange-correlation energy functional, the
KS potential is expressed as vKS(�r) = vext (�r) + ve−Hxc[n](�r),
where vext (�r) is the external potential and ve−Hxc[n](�r) :
= δEe−Hxc/δn is the ensemble-generalized Hartree-
exchange-correlation potential. While deriving the latter from
Eq. (9) we emphasize an unusual property of Ee − Hxc[n]: it
explicitly depends on α. Therefore, the ensemble-generalized
Hartree-exchange-correlation potential reads

ve−Hxc[n](�r) =
(

∂Ee−Hxc

∂α

)
n

δα

δn
+

(
δEe−Hxc

δn(�r)

)
α

. (11)

Since α[n] = N − floor(N) and N = ∫
nd3r, we find δα/δn

= 1. Therefore, ve−Hxc[n](�r) is a sum of two terms: v0[n]
= (∂Ee−Hxc/∂α)n and v1[n](�r) = (δEe−Hxc/δn(�r))α . Be-
cause for fractional N the functional Ee − Hxc is orbital-
dependent, via the quantities ρ(α)

p (�r), irrespective of the un-
derlying xc functional, the potential v1[n](�r) has to be treated
with the OEP approach.6, 18, 54 The somewhat unusual term v0

is spatially uniform but α-dependent, and it arises from the
aforementioned explicit dependence of Ee − Hxc[n] on α.

We focus now on v0, which can be written as

v0 =
(

∂Ee−Hxc

∂α

)
n

=
(

∂Ee−Hxc

∂α

)
{ϕi }

−
∫

d3r

(
δEe−Hxc

δn(�r)

)
α

(
∂n(�r)

∂α

)
{ϕi }

.

(12)

This result is obtained by taking the partial derivative
(∂Ee−Hxc/∂α){ϕi }, followed by isolation of v0. Using Eqs. (9)
and (10) to evaluate the first and the second terms on the right-
hand side of Eq. (12), respectively, we obtain

v0 = EHxc[ρ(α)
1 ] − EHxc[ρ(α)

0 ] −
∫

d3r|ϕho(�r)|2v1[n](�r),

(13)
for N ∈ (N0, N0 + 1]. For N ∈ (N0 − 1, N0], one has to
substitute ρ

(α)
0 with ρ

(α)
−1 and ρ

(α)
1 with ρ

(α)
0 . We stress that

v0 is a well-defined, rather than an arbitrary, potential shift.
It must be taken into account for the ensemble-generalized
functional, if εho is to equal ∂E/∂N, i.e., if Janak’s theorem129

is to be obeyed. The existence of a spatially uniform potential
shift v0 is in agreement with earlier studies,37, 140 which found
that whereas for fractional N the KS potential is well-defined,
for integer N it is defined up to a constant. The latter ambi-
guity in the definition of the KS potential can be removed by
reaching the integer number of electrons N0 from below (for
a discussion, see Refs. 23 and 25).

Note that v0 and v1(�r) are obtained via different quanti-
ties when N ∈ (N0 − 1, N0] and N ∈ (N0, N0 + 1]. Therefore,
when approaching N0 from the left and from the right, we gen-
erally expect to obtain different KS potentials. In other words,
we expect vKS(�r) to change discontinuously when crossing an
integer number of electrons. As mentioned above, this discon-
tinuity must be a spatially uniform constant, � (cf. Eq. (5)).

The consequences of the generalization presented above
are schematically depicted in Fig. 2, based on numerical re-
sults for finite systems presented in Ref. 123. The ensemble
generalization brings εho(N) closer to the desired stair-step
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FIG. 2. A schematic plot of the total energy E (top) and the highest occu-
pied KS energy level εho (bottom) as a function of the number of electrons,
N, obtained with the exact functional (solid line), with an approximate func-
tional (e.g., the LDA; squares) and with the ensemble generalization of the
approximate functional (rhombi). The KS gap, EKS

g , the ensemble-corrected

gap, EKS
g + � (Eq. (7)), and the exact gap, I − A (Eq. (1)), are denoted on

the figure.

form: it becomes more flat for fractional N and the “jump” ex-
perienced at integer N is increased by �. As observed by Stein
et al.,117 the derivative discontinuity and piecewise-linearity
of the total energy are two sides of the same coin: A miss-
ing derivative discontinuity must be accompanied by devia-
tion from piecewise linearity, and vice versa. Therefore, im-
provement in the description of εho(N) inevitably reflects on
the total energy curve: the spurious convexity of E(N) is sig-
nificantly reduced, bringing it closer to the desired piecewise-
linear behavior, and the abrupt change of slope near the
integer points is better reproduced. Importantly, the numer-
ical results given in Ref. 123 show that for ions of atoms
and small molecules ensemble-generalization of the local
spin-density approximation (LSDA) does indeed yield funda-
mental gaps in much better agreement with experiment than
standard LSDA calculations. For example, for H+

2 , a gap of
5.80 eV predicted with LSDA is increased to 17.96 eV with
ensemble-LSDA, reducing the discrepancy with respect to ex-
periment from 70% to 8%. For C+, LSDA predicts a gap
of 0.26 eV, which is increased to 15.31 eV with ensemble-
LSDA, reducing the discrepancy with experiment from 98%
to 17%.

Nonetheless, for an approximate xc functional the
ensemble-corrected gap, Eg = EKS

g + �, still does not ex-
actly equal I − A. The difference that remains is due to a
deviation of εho(N) from flatness, which is attributed to the

implicit nonlinear dependence of an approximate Ee − Hxc[n]
on α.

III. THE DERIVATIVE DISCONTINUITY �

In this section, an analytical expression for the deriva-
tive discontinuity � is derived by taking the limits N → N−

0
and N → N+

0 . First, let us introduce some notation. When
N → N+

0 , i.e., α → 0+ (the R limit), the quantity ρ
(0)
0 is

termed n0, and the quantity ρ
(0)
1 is termed n1. Note that be-

cause ϕR
i (�r) = ϕL

i (�r), these quantities are continuous when
crossing N0; for this reason they do not receive the index R.
Also note that the energy Ee − Hxc[n] and the density n were
defined in Eqs. (9) and (10) for the case when N ∈ [N0, N0

+ 1], i.e., to the right of the point N0. In the region [N0 − 1,
N0], which is of interest here as well, these quantities are de-
fined similarly, substituting ρ

(α)
0 with ρ

(α)
−1 and ρ

(α)
1 with ρ

(α)
0 .

Furthermore, when N → N−
0 , i.e., α → 1− (the L limit), the

quantity ρ
(1)
−1 is denoted n−1.

We now focus on � = vR
e−Hxc(�r) − vL

e−Hxc(�r), which we
choose to express as � = �0 + �1. Here,

�0 = vR
0 − vL

0 (14)

and

�1 = vR
1 (�r) − vL

1 (�r). (15)

Reaching the point N = N0 from the left, we obtain from
Eq. (13)

vL
0 = EHxc[n0] − EHxc[n−1] −

∫
d3r

∣∣ϕL
ho(�r)

∣∣2
vL

1 [n0](�r).

(16)
Reaching N0 from the right, we obtain similarly

vR
0 = EHxc[n1] − EHxc[n0] −

∫
d3r

∣∣ϕR
ho(�r)

∣∣2
vR

1 [n0](�r).

(17)
Recalling that ϕR

ho(�r) = ϕL
lu(�r) and using Eqs. (15) and (17),

we rewrite vR
0 as

vR
0 =EHxc[n1]−EHxc[n0]−�1−

∫
d3r

∣∣ϕL
lu(�r)

∣∣2
vL

1 [n0](�r).

(18)
When reaching N0 from the left, vL

1 [n0](�r) = vHxc[n0](�r),
where vHxc = δEHxc/δn is the usual Hartree-exchange-
correlation potential defined for the pure ground state with
N0 electrons.

Finally, subtracting Eq. (16) from Eq. (18) and using
Eqs. (14) and (15), we can express the discontinuity � solely
in terms of the L quantities, i.e., using only quantities that cor-
respond to the system of interest, with exactly N0 electrons.
� is given below, suppressing now the index L for clarity

� = EHxc[n1] − 2EHxc[n0] + EHxc[n−1]

+
∫

d3r vHxc[n0]
(|ϕho(�r)|2 − |ϕlu(�r)|2) . (19)

Equation (19) is a key result of the current contribution. It is
achieved completely from first principles, meaning that no ap-
proximations were introduced during its derivation. Because
the derivation is valid for an arbitrary xc functional (exact or
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approximate), we conclude that all xc functionals possess a
generally non-zero derivative discontinuity �, which is re-
vealed by rigorous employment of the ensemble approach in
DFT. This also includes, of course, the simplest xc approxi-
mation – the LDA, used for the computations of Ref. 123 and
in calculations presented below.

Importantly, � as expressed in Eq. (19) is obtained us-
ing only quantities that belong to the original system of in-
terest with N0 electrons. Therefore, its calculation does not
require any alteration of the number of electrons in the sys-
tem. In particular, it is also applicable to periodic systems,
namely, “jellium” background charge corrections do not have
to be considered in Eq. (19) because it is derived from a limit
around the equilibrium point rather than from actual addition
of charges.

It is well-known (see, e.g., Ref. 141) that although the
band structure of the KS system cannot be rigorously related
to properties of the interacting system, it nevertheless can
serve as an approximation to the charged excitation spectrum
of the latter, apart from a rigid shift of the unoccupied bands
with respect to the occupied ones. The corresponding shift is
usually introduced empirically, or by relying on theories be-
yond DFT, e.g., many-body perturbation theory, and bears the
name “scissors shift.” Here, � provides a similar effect, with
the important difference that it is derived completely within
DFT.

The derivation above was performed within the OEP
framework. However, it is important to note that the calcu-
lation of � does not require any actual use of the OEP for-
malism, but requires only simple operations of negligible nu-
merical effort with quantities readily available from a routine
DFT calculation. Actual employment of the OEP scheme is
needed only for calculation of the E(N) curve for fractional N.

IV. THE LIMIT OF AN INFINITELY LARGE SYSTEM

As discussed in Sec. III, Eq. (19) is applicable in prin-
ciple to both finite and infinite systems. In this section, we
investigate the properties of � for a periodic system by con-
sidering how it scales with system size as the latter approaches
infinity. We obtain the analytical limiting expression and ad-
dress its properties for both the exact exchange-correlation
potential and the LDA.

Consider a many-electron system, whose external poten-
tial, vext (�r), is periodic in space, i.e., vext (�r + �R) = vext (�r),
where �R is a Bravais lattice vector. Neglecting surface effects,
all properties of this system, including its derivative disconti-
nuity �, can be obtained from the limit of a collection of M
unit cells as M → ∞. Let us define some terms that are useful
for taking such a limit. The total number of electrons the sys-
tem is MN0, where N0 is the (finite) number of electrons per
unit cell. The electron density is n0(�r) = ∑MN0

i=1 |ϕi(�r)|2. The
KS orbitals ϕi(�r) are, as usual, normalized to 1 when integrat-
ing over the whole system, i.e.,

∫
all

|ϕi(�r)|2d3r = 1, where the
subscript all denotes integration over the entire system. There-
fore,

∫
all

n0(�r)d3r = MN0 as appropriate. Integration over
one unit cell yields

∫
u.c.

n0(�r)d3r = N0 and
∫
u.c.

|ϕi(�r)|2d3r

= M−1 → 0, where the subscript u.c. denotes integration
over one unit cell. We therefore define a renormalized KS or-

bital, ϕ̄i(�r) = √
Mϕi(�r), such that

∫
u.c.

|ϕ̄i(�r)|2d3r = 1. Like
the electron density, |ϕ̄i(�r)|2 remains finite for large M.

To assess the limiting form of Eq. (19), we first ad-
dress Eall

Hxc[n0 + |ϕlu|2], which can be written as Eall
Hxc[n0

+ 1
M

|ϕ̄lu|2] using the renormalized orbitals. The Hartree-
exchange-correlation energy can then be Taylor-expanded
around n0, with 1/M serving as the small parameter, in the
form

Eall
Hxc

[
n0 + 1

M
|ϕ̄lu|2

]

= Eall
Hxc[n0] + 1

M

∫
all

d3r
δEHxc

δn(�r)

∣∣∣∣
n0

|ϕ̄lu(�r)|2

+ 1

2M2

∫
all

d3r

∫
all

d3r ′ δ2EHxc

δn(�r)δn(�r ′)

∣∣∣∣
n0

|ϕ̄lu(�r)|2|ϕ̄lu(�r ′)|2

+ O

(
1

M3

)
. (20)

A similar expression can be easily written for Eall
Hxc[n0

− |ϕho|2]. Denoting the Hartree-exchange-correlation kernel
by fHxc[n](�r, �r ′) := δ2EHxc/δn(�r)δn(�r ′), recognizing that
δEHxc/δn(�r) = vHxc[n](�r), and using the renormalized or-
bitals ϕ̄i(�r) in Eq. (19), we obtain

� = 1

2M2

∫
all

d3r

∫
all

d3r ′fHxc[n0](�r, �r ′)[|ϕ̄lu(�r)|2|ϕ̄lu(�r ′)|2

+ |ϕ̄ho(�r)|2|ϕ̄ho(�r ′)|2] + O

(
1

M3

)
. (21)

The Hartree-exchange-correlation kernel fHxc[n](�r, �r ′)
can be written as a sum of the Hartree and xc compo-
nents: fHxc[n](�r, �r ′) = fH [n](�r, �r ′) + fxc[n](�r, �r ′), where
fH [n0](�r, �r ′) = δ2EH/δn(�r)δn(�r ′) = 1/|�r − �r ′|. Then, the
Hartree-related term of the derivative discontinuity can be ex-
pressed as

�H = 1

2M2

∑
j

∫
all

d3r|ϕ̄j (�r)|2VHj (�r), (22)

where j stands for ho or lu and VHj (�r) = ∫
all

d3r ′|ϕ̄j (�r ′)|2|�r
− �r ′|−1. In the limit of large M (and neglecting the diverg-
ing term because the “jellium” background is irrelevant, as
explained above), both |ϕ̄j (�r)|2 and VHj (�r) are periodic and
remain finite as M → ∞. Therefore, the integration can be
performed over a unit cell, yielding

�H = 1

2M

∑
j

∫
u.c.

d3r|ϕ̄j (�r)|2VHj (�r). (23)

Therefore, the Hartree-related terms decay as M−1 and vanish
for the periodic solid.

The scaling of the xc contribution, �xc, is obviously
much more interesting and it is here that the particular
choice of the xc functional is crucial. For the exact xc func-
tional, �xc is generally expected to be non-vanishing, because
fxc[n0](�r, �r ′) is known to exhibit divergence (see, e.g., the
discussion in Refs. 142 and 143, and references therein). The
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FIG. 3. The derivative discontinuity �, as well as its Hartree- and xc-
components (�H and �xc, respectively), as a function of 1/m, where m is
the number of primitive unit cells in the supercell, for GaAs.

nature of the singularity in the exact xc functional, there-
fore, must be such that for a periodic solid �xc obtained from
Eq. (21) is the exact one. Namely, the scaling for �xc with M
as M → ∞ should be ∼M0. In parallel, the xc potential vxc

must scale as ∼M0, and the xc energy Exc as ∼M1.
Unfortunately, this is not the case for simple function-

als such as the LDA. In the LDA, the xc kernel can be
expressed as fxc(�r, �r ′) = gxc(�r)δ(�r − �r ′), where gxc(�r) is a
function of the density (and therefore periodic in a periodic
system). As a result, the xc-related terms in Eq. (21) sim-
plify to 1

2M

∫
u.c.

d3r|ϕ̄j (�r)|4gxc(�r), i.e., they too decay as M−1.
Therefore, in the LDA approximation, for infinite systems
� ∼ M−1 → 0.

As a practical illustration of the above analysis, we
used Eq. (19) to evaluate �H and �xc in practice, fo-
cusing on GaAs as a prototypical example. Briefly, all
electronic structure calculations were performed using the
real-space PARSEC package,144–147 while employing pe-
riodic boundary conditions.148, 149 We used the Perdew-
Zunger parameterization29 of LDA with norm-conserving150

pseudopotentials.157

To investigate the dependence of �H, �xc, and � on
the system size, we calculated these three quantities for in-
creasingly large GaAs supercells of 1×1×1, 1×1×2, 1×1×3,
1×1×4, 1×2×2, and 2×2×2 primitive unit cells. Equation
(19) was then used under the assumption that ϕho and ϕlu can
be taken as the highest occupied and lowest unoccupied or-
bitals, respectively, of the supercell.158 In other words, the su-
percell is treated as a finite but topologically periodic system
and therefore approaches the bulk limit as the number of prim-
itive unit cells, m, approaches infinity.

The results are given in detail in Fig. 3. Clearly, �H, �xc,
and their sum, �, are indeed all linear with 1/m and vanish
in the limit of a large enough supercell. As the LDA-KS gap
remains a constant ∼0.6 eV for all m, in the bulk limit the cor-
rected LDA gap simply approaches the uncorrected one. Sim-
ilar trends were obtained for several other prototypical semi-
conductors (e.g., Si, Ge, InP) and are not shown for brevity.

What is the physical origin for the apparent failure of
the ensemble-correction for LDA (and indeed for any semi-
local functional) in the limit of a periodic solid? To under-
stand it, consider again the results of Sec. II, in particular
Fig. 2. As shown there, the ensemble correction strongly re-
duces the curvature of the total energy versus particle number

curve. This greatly assists in bringing the fundamental gap de-
duced from eigenvalue differences closer to the one deduced
from total energy differences. That this would also help im-
prove agreement with experiment hinges on the assumption
that the fundamental gap deduced from total energy differ-
ences is close to the experimental one. As discussed in Sec. II,
for small and mid-size objects extensive numerical experience
shows that this is often the case (see, e.g., Refs. 45–51). But
for the infinite limit, it is in fact known that with the LDA,
whose xc kernel is not singular, the fundamental gap deduced
from total energy differences corresponds poorly to experi-
ment and simply approaches the KS gap.151 (For a similar
reason, gaps deduced from time-dependent LDA also reduce
to the LDA ones in the solid state limit – see Refs. 142 and
152, and references therein.)

Therefore, the correction corresponding to LDA should
indeed vanish. From that perspective, one could argue that
in the solid-state limit the ensemble correction scheme “fails
successfully” for LDA, as it yields precisely what it was
built to deliver – consistency between total energy differences
and eigenvalue differences (both of which are, alas, equally
wrong). Complementarily, several studies have shown that in
the bulk limit the LDA total energy versus particle number
curve is piecewise-linear even without ensemble corrections,
albeit with the wrong slope.136, 153 Also from this perspective,
� must vanish, as there is no curvature to reduce.

From yet a different perspective, mathematically the dif-
ficulty arises because the ho and lu orbitals are extremely de-
localized, whereas the LDA xc kernel is extremely localized.
This advocates the importance of ultra-non-local kernels. But
in lieu of developing new functionals, another possibility is
to localize the ho and lu orbitals. One such localization pro-
cedure is the above-mentioned dielectric screening based one
suggested by Chan and Ceder53 and others may be envisaged.
In fact, one could argue that use of a small supercell as in
Fig. 3 is, loosely speaking, a form of (uncontrolled) localiza-
tion. Indeed, if one were to take the results for the single unit
cell literally, one would obtain � = 0.78 eV which would sug-
gest a satisfying (but deceptive) agreement between the fun-
damental gap, EKS

g + � = 1.39 eV and the experimental fun-
damental gap value, 1.51 eV.154 A similar behavior is obtained
for other semiconductors as well. This suggests that con-
trolled, physically justified localization procedures may prove
to be key to systematic gap predictions even within LDA.

V. CONCLUSIONS

In this article, we have revisited the issue of the deriva-
tive discontinuity from an ensemble-DFT perspective. We
have shown much of the deviation of approximate function-
als from piecewise linearity is in fact due to the lack of
an ensemble treatment. We have used this to show that all
exchange-correlation functionals possess a derivative discon-
tinuity, which arises naturally from the application of en-
semble considerations within DFT, without any empiricism
or any further approximations beyond the choice of the xc
functional. We then expressed this derivative discontinuity
in closed form using only quantities obtained in the course
of a standard DFT calculation of the neutral system. We
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showed that for small, finite systems, addition of this deriva-
tive discontinuity indeed results in a greatly improved predic-
tion for the fundamental gap, even when based on the most
simple approximate exchange-correlation density functional
– the LDA. We then discussed the limit of an infinitely large
system, so as to approach the solid-state limit. We found that
the same scheme is exact in principle, but results in a vanish-
ing derivative discontinuity correction when applied to semi-
local functionals. This failure was shown to be directly related
to the failure of semi-local functionals in predicting funda-
mental gaps from total energy differences in extended sys-
tems. Finally, we discussed possible future remedies, espe-
cially usage of localization schemes.
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be trivially removed: Degeneracy between energy levels in the two spin
channels is removed by introducing an infinitesimal magnetic field; de-
generacy between symmetric k-points in a periodic crystal is removed by
an infinitesimal spatial distortion of the crystal structure. However, non-
trivial degeneracies, e.g., a simultaneous fractional occupation of d- and

s-bands, requires a non-infinitesimal perturbation for their removal. For
these cases, the ensemble approach should be generalized to include more
than two components in Eqs. (2) and (8), which may affect the expres-
sion obtained for �. Therefore, for cases of, e.g., metals and semi-metals
a more general treatment is needed.
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