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Electronic states with fractional spins arise in systems with large static correlation �strongly
correlated systems�. Such fractional-spin states are shown to be ensembles of degenerate ground
states with normal spins. It is proven here that the energy of the exact functional for fractional-spin
states is a constant, equal to the energy of the comprising degenerate pure-spin states. Dramatic
deviations from this exact constancy condition exist with all approximate functionals, leading to
large static correlation errors for strongly correlated systems, such as chemical bond dissociation
and band structure of Mott insulators. This is demonstrated with numerical calculations for several
molecular systems. Approximating the constancy behavior for fractional spins should be a major
aim in functional constructions and should open the frontier for density functional theory to describe
strongly correlated systems. The key results are also shown to apply in reduced density-matrix
functional theory. © 2008 American Institute of Physics. �DOI: 10.1063/1.2987202�

Density functional theory �DFT�1,2 is a rigorous ap-
proach for describing the ground state of any electronic sys-
tem. The success or failure of DFT is based on the quality of
the density functional approximation �DFA�. One of the dra-
matic failures3 is in strongly correlated systems, character-
ized by the presence of degeneracy or near degeneracy,4 hav-
ing large static correlation. The simplest example is the
dissociation of H2 molecule5–8 for which commonly used
DFAs overestimate the energy by more than 50 kcal/mol.
Closely related are the band structure of Mott insulators,9

which are described as metallic by known DFAs, and prob-
lems in describing superconducting cuprates.10

The improvement in the DFA is, therefore, a major goal
that critically depends on the underlying theoretical construc-
tion. One of the most useful developments is the extension of
DFT to fractional charges developed by Perdew et al.11 in a
grand canonical ensemble, which was also established later
in a pure state formulation.12 For a system with fractional
charges, the exact energy is a straight line interpolating the
energies of the integer electron systems. The violation of this
exact condition leads to two types of errors,13 the delocaliza-
tion error �DE� of most functionals such as local density
approximation �LDA�, generalized gradient approximation
�GGA�, and hybrids,14–17 and the localization error of the
Hartree–Fock �HF� functional. DE captures the tendency of
commonly used functionals to bias toward a delocalized de-
scription of electrons with widespread implications18,19 from
molecular reactions to the band gap of solids. Addressing
this error resulted in the construction of the MCY3 and
rCAMB3LYP functionals,20 which correct many of the errors
of previous functionals. In particular they correctly predict
the ionization energy and electron affinity from their single-
electron eigenvalues and, hence, the energy gaps in
molecules.21

In this Communication, we make an extension of DFT to
fractional-spin systems and prove that the exact energy func-
tional of a fractional-spin state is that of the comprising de-
generate normal spin states. We show that states with frac-
tional spins arise in systems with large static correlation
�strongly correlated systems� and that the dramatic deviation
from the proven exact condition accounts for large static cor-
relation errors �SCEs�. We also introduce a quantitative mea-
sure for SCE.

Our starting point is the exact result for an ensemble of
degenerate densities derived by Yang et al.12 For an
N-electron system in the external potential v�r� that has
g-fold degenerate orthogonal ground state wave functions
��i , i=1,2 , . . . ,g� with corresponding densities ��i , i
=1,2 , . . . ,g� and ground state energy Ev

0�N�, the ensemble
density is �=�i=1

g Ci�i, where 0�Ci�1 and �i=1
g Ci=1. The

exact energy functional satisfies the following equation:

Ev��
i=1

g

Ci�i� = Ev�� j� = Ev
0�N�, j = 1 . . . g , �1�

if Ev
0�N�� �Ev

0�N+1�+Ev
0�N−1�� /2. Note that in the deriva-

tion of Eq. �1� only pure states were used and the ensemble
densities appear in the limit of large separation of
fragments.12

We now examine the application of Eq. �1� to fractional-
spin systems. Consider an N-electron atom or molecule that
is a doublet, with total spin S= 1

2 , for example, the H atom
with N=1. It has two degenerate spin states labeled with the
z-component of the spin ms= 1

2 and ms=− 1
2 . Now we con-

struct �fs�S ,��, an ensemble density with fractional spins as

�fs� 1
2 ,�� = � 1

2 + ���� 1
2 , 1

2� + � 1
2 − ���� 1

2 ,− 1
2� , �2�

where ��S ,ms� is the ground state density with ms and
� �− 1

2 ���
1
2

� is the net z-component of the spin in the
fractional-spin state. �fs�S ,�� represents many fractional-spin
states. In particular, �=0 represents a state that has half a
spin-up electron and half a spin-down electron occupying thea�Electronic mail: yang@chem.duke.edu.
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same spatial orbital, its total spin density being equal to zero
everywhere. Applying Eq. �1� leads to

Ev��fs� 1
2 ,��� = Ev��� 1

2 , 1
2�� = Ev��� 1

2 ,− 1
2�� , �3�

which shows that for the exact density functional, all the
fractional-spin densities �fs� 1

2 ,�� have the same degenerate
energy. This may seem to be a trivial result for the exact
functional but it has very important consequences for the
application of DFT. All known DFAs fail dramatically and
give much too high an energy for Ev��fs� 1

2 ,���, as illustrated
in the right-hand side of Fig. 1. In the self-consistent spin-
unrestricted Kohn–Sham �KS� calculations, we use the spin
densities �fs

��S ,�� ��=� ,��, which are represented by a non-
interacting system with fractional occupation numbers,

�fs
��S,�� = �

i

HOMO

ni
���i

��2, �4�

where only the highest occupied molecular orbital �HOMO�
for each spin is fractionally occupied, with nHOMO

� = 1
2 +� and

nHOMO
� = 1

2 −�. At �=0, the ground state is spin unpolarized

with �fs
�� 1

2 ,0�=�fs
�� 1

2 ,0� everywhere, and the deviation of the
constancy requirement �Eq. �3�� reaches its maximum for
DFAs.

In carrying out KS calculations with Eq. �4�, we have
used the following variational principle:

Ev��fs� = lim
�̃fs

Ev��̃fs� , �5�

where the domain of variation for �̃fs is all the ensemble
densities constructed from Eq. �2� but with arbitrary spin
densities �� 1

2 , 1
2

� and �� 1
2 ,− 1

2
�. We have assumed that such

ensemble densities can be represented by an ensemble of
noninteracting densities that come from the same potential
and have the same set of orbitals. Then we can represent the
ensemble with a noninteracting system with fractional occu-
pations as in Eq. �4�. Details of the proof for Eq. �5� can be
found in Ref. 22.

This formalism is particularly interesting because the
fractional-spin density �fs

�� 1
2 ,0� describes the dissociation

limit of a single chemical bond. For example, at the disso-
ciation limit of the H2 molecule, a singlet system �S=0� is
obtained, which consists of two fractional-spin H atoms
separated by a large distance.23 This system can be properly
described by multiconfigurational wave function methods.
However in DFT, spin-restricted KS calculations, having the
correct spin state �S=0�, give much too high an energy, with
DFAs. The overestimation in the energy for the dissociation
of H2 matches exactly the overestimation for the H atom
with fractional-spin density �fs

�� 1
2 ,0�.

Figure 1 illustrates the performance of three commonly
used functionals: LDA, B3LYP, and HF. The left-hand side
shows the spin-restricted binding curve of the H2 molecule
from the ground state unrestricted atoms �with integer spins,
i.e., one � electron and zero � electrons or vice versa, cor-
responding to �fs

�� 1
2 , 	

1
2

�� and the right-hand side shows the
difference in energy of the H atom with fractional spins,
�fs

�� 1
2 ,��, from the energy of the same ground state unre-

stricted atom �multiplied by 2 for direct comparison with the
binding curve�. The energy should be constant with the
change in � but all the energy functionals have a very large
error, ranging from 30 to 170 kcal/mol for the midpoint, �
=0. HF has the largest error and LDA has the smallest error,
but both functionals overestimate the energy for fractional-
spin states. B3LYP, as expected, has a behavior in between
LDA and HF. Other functionals also suffer from large
errors,22 with GGA functionals performing roughly the same
as LDA and other hybrid functionals somewhere in between
LDA and HF �this also includes Coulomb attenuated func-
tionals with reduced DE�. This suggests that the calculation
of strongly correlated systems, where this error is important,
will qualitatively fail if any of the above functionals are
used. There are many attempts in literature to circumvent this
error, for example, breaking the spin symmetry, which gives
reasonable energies but wrong spin densities.

Our discussion for the single bond dissociation can be
extended to multiple bond dissociation. Using the notation in
Eq. �2�, for a system with total spin S, we can construct the
fractional-spin density �fs�S ,�� from the two degenerate spin
states with maximum �ms�=S,

�fs�S,�� = 	1

2
+

�

2S

��S,S� + 	1

2
−

�

2S

��S,− S� , �6�

where −S���S. Applying Eq. �1� leads to

Ev��fs�S,��� = Ev���S,S�� = Ev���S,− S�� . �7�

As in the case of S= 1
2 where the fractional-spin state �fs� 1

2 ,0�
describes the dissociation limit of a single chemical bond,
the fractional-spin state �fs�S ,0� describes the dissociation
limit of a multiple chemical bond. This is demonstrated in
Fig. 2 for the dissociation of a double bond, C2, a triple bond,
N2, and a sextuple bond, Cr2, into two S=1, S= 3

2 , and S=3
fractional-spin atoms, respectively. For the molecules we
perform spin-restricted KS calculations and show the binding
curve with respect to the spin-unrestricted ground state at-
oms calculated with no fractional spin �ms=S�. On the right-
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FIG. 1. �Color online� Binding curve of H2 calculated with spin-restricted
KS and fractional spins of H atom calculated with spin-unrestricted KS
�multiplied by 2�. �=0 is a H atom with half an � electron and half a �
electron, which is the dissociation limit of H2. All calculations are self-
consistent using a cc-pVQZ basis set.

121104-2 Cohen, Mori-Sánchez, and Yang J. Chem. Phys. 129, 121104 �2008�



hand side of Fig. 2 we show spin-unrestricted calculations on
the atoms with fractional spins also relative to the normal
�ms=S� spin-unrestricted atoms. The expression for the den-
sity, �fs�S ,��, is exactly the same as Eq. �4� but with frac-

tional occupation, nHOMO
� = 1

2 + �
2S and nHOMO

� = 1
2 − �

2S , for the

top 2S multiple HOMOs �e.g., the N atom, �fs� 3
2 ,0� has half

an � electron and half a � electron in the top three 2p orbit-
als�. To compare to molecular dissociation the two densities
mixed in Eq. �7� must have the same symmetry. All DFAs
violate the constancy condition �Eq. �7��. The overestimation
in the energy for molecular dissociation matches exactly the
overestimation for the dissociating atoms with fractional-
spin density �fs

��S ,0�.

The error in the energy for molecular dissociation is nor-
mally attributed to the lack of static correlation, which is
remarkably captured by the violation of the constancy con-
dition for the fractional-spin states of the dissociating atoms.
It is thus natural to define a quantitative measure of the SCE
for approximate density functionals as

SCE = Ev��fs�S,0�� − Ev���S,S�� . �8�

Static correlation can be described with the use of a few
Slater determinants for small molecules. However, for large
and bulk systems, this becomes impractical. It is now clear
that SCE is an inconsistency in the commonly used DFAs.

The errors are massive and increase with the number of
bonds. It is also very significant to see that the error at the
dissociation limit dominates at finite bond lengths and can
even determine the behavior close to the bonding region,
making the limiting behavior analysis of E��fs�S ,0�� broadly
relevant. For Cr2, SCE make HF and B3LYP fail to describe
bound molecules and LDA has a very small range of bond-
ing. Note that these cases are not only challenges for DFT
but also for single reference wave function methods. The
cases considered here are homonuclear diatomics but the
same arguments apply to the dissociation of heteronuclear
diatomics and more complicated molecules. The above dis-
cussion is extremely parallel to the case of fractional
charges,11,12 where the infinite dissociation limit is extremely
important to understand the DE that is actually seen in real
systems.

For the fractional-spin states �fs�S ,��, we have only ex-
plored the consequence of the two-state ensemble, which
leads to an understanding of static correlation. There are,
however, more general fractional-spin states,

�fs�S,�Cms
�� = �

ms=−S

S

Cms
��S,ms� , �9�

where 0�Cms
�1 and �ms=−S

S Cms
=1. Based on Eq. �1� the

fractional-spin constancy relation is

Ev��fs�S,�Cms
��� = Ev���S,ms�� , �10�

which will also have important consequence for molecules
and solids. What may hinder the exploration of Eq. �9� is the
difficulty with which DFT deals with ��S ,ms� for �ms�
S.
Usually only the state ��S ,S� is calculated, as it can be con-
structed easily from a KS determinant. It is difficult, if not
impossible, in general, to construct a KS determinant for
other states ��S ,ms� with �ms�
S.

It is also possible to have fractional-spin states arising
from an ensemble of states, which are degenerate because of
other symmetries �e.g., spatial�,

�fs�S,�Ci,ms
�� = �

i=1

g

�
ms=−S

S

Ci,ms
�i�S,ms� , �11�

for a g-fold degenerate system. The exact energy functional
gives constant energy for all �Ci,ms

�. For example, a spherical

atom density given by �i=−L
L 1 / �2L+1��i�S ,S� has �

fractional-spin occupation of the spatially degenerate states.
If we consider the case of the B atom, which is threefold
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FIG. 2. �Color online� The same as in Fig. 1 but for top, C2 �double bond�,
middle, N2 �triple bond�, and bottom, Cr2 �sextuple bond�.
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degenerate, the lowest energy state predicted by DFAs is
given by a nonspherical density. We now examine the energy
of �fs�S , �C���=� /2��1�S ,S�+�2�S ,S��+ �1−���3�S ,S� such
that at �fs�S , �C0�� corresponds to the normal ground state
nonspherical atom and �fs�S , �C2/3�� corresponds to the
spherical B atom. The energy of the fractional-spin states
relative to the ground state of the B atom is plotted in Fig. 3,
and shows again the violation of the constancy relation for
DFAs. The error of HF is similar to the case for �fs�S ,�� but
with pure DFT the error is much smaller �only
1–2 kcal /mol for LDA�.

Equation �1� is also valid12 for energy functionals of the
first-order reduced density matrix �e.g., Ref. 5�; therefore,
our discussion and main results �Eqs. �7� and �10�� hold in
reduced density-matrix functional theory.

In summary this Communication highlights a basic error
of DFAs for degeneracy problems, which are also applicable
to the case of near degeneracy. These situations can be de-
scribed within DFT by fractional-spin states that are en-
sembles of degenerate pure-spin states. This is a simpler con-
cept than the multiconfigurational view, which places any
solution outside the realm of normal KS DFT. It is now clear
that the error is solely in the exchange-correlation functional.
The exact constancy relation for the energy derived from this
Communication quantifies the SCE of functionals and shows
the basic error that needs to be addressed for the proper

description of strongly correlated systems, such as magnetic
molecules and solids, band structures of superconductors and
Mott insulators. Satisfying a similar straight line condition
for fractional charges has been very important in addressing
the DE of functionals,20 and we expect the exact condition of
constancy of E��fs� to offer a new challenge for Exc��� and
open new frontiers of DFT for strongly correlated systems.

This work has been supported by the National Science
Foundation.
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FIG. 3. �Color online� B atom with fractional � spins �= 2
3 corresponds to

the spherical B atom.
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