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Abstract. The asymmetric Hubbard dimer is used to study the density-dependence of the exact frequency-
dependent kernel of linear-response time-dependent density functional theory. The exact form of the kernel
is given, and the limitations of the adiabatic approximation utilizing the exact ground-state functional are
shown. The oscillator strength sum rule is proven for lattice Hamiltonians, and relative oscillator strengths
are defined appropriately. The method of Casida for extracting oscillator strengths from a frequency-
dependent kernel is demonstrated to yield the exact result with this kernel. An unambiguous way of
labelling the nature of excitations is given. The fluctuation-dissipation theorem is proven for the ground-
state exchange-correlation energy. The distinction between weak and strong correlation is shown to depend
on the ratio of interaction to asymmetry. A simple interpolation between carefully defined weak-correlation
and strong-correlation regimes yields a density-functional approximation for the kernel that gives accurate
transition frequencies for both the single and double excitations, including charge-transfer excitations.
Many exact results, limits, and expansions about those limits are given in the Appendices.

1 Introduction

Time-dependent density functional theory (TDDFT) is a
popular first-principles approach to calculating low-lying
optical excitations of molecules [1–3]. A typical calculation
first involves optimizing the structure within ground-
state DFT using some approximate exchange-correlation
functional. Then a linear-response TDDFT calculation,
usually solving RPA-type equations in frequency space
[4–7], or via real-time propagation [8], yields both tran-
sition frequencies and oscillator strengths. The TDDFT
step almost always makes the adiabatic approximation
for the unknown and (generally) frequency-dependent
exchange-correlation (XC) kernel, in which its zero-
frequency limit is used [9]. This is simply the second
functional-derivative of the exchange-correlation energy
of ground-state DFT. Usually, the same approximate XC
functional is used for the first ground-state step and for
the TDDFT step. Several thousand papers per year use
this method to extract useful information on electronic
excitations, with typical transition frequency errors of
order 0.25–0.5 eV [10–14].
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However, in the three decades since the Runge-Gross
theorem established the formal exactitude of this
approach [1], a variety of situations have been identified
where approximations fail, often qualitatively. Among the
most notorious are failures for charge-transfer excitations,
whose transition frequencies are typically grossly under-
estimated by the standard functionals [15–20], but rea-
sonable results can be obtained by using range-separated
hybrids [21–25]. Another one is the complete absence of
double-excitations from the spectrum within the adiabatic
approximation [26–28]. Initial hopes of extracting double-
excitations from higher-order response theory were dashed
by reference [29,30]. A simple model of the frequency
dependence for the specific case of a double excitation
close to one or a few single excitations in a weakly corre-
lated system [28,31], is a useful tool for a post-adiabatic
TDDFT treatment called dressed TDDFT, and has been
applied to a range of systems [32–34] but has not been
widely adopted.

While practical electronic structure calculations begin
from the real-space Hamiltonian, much useful insight
and even semi-quantitative results can be extracted from
model Hamiltonians, especially when correlations are
strong [35,36]. The paradigmatic case in condensed mat-
ter is the (one-band) Hubbard model, which is usually
taken on an infinite lattice, and can be analyzed in 1-, 2-,
or 3 dimensions. The model is characterized by only two
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parameters, a hopping energy between nearest neighbours
t and an on-site Coulomb repulsion for doubly-occupied
sites U , and site-occupation plays the role of the den-
sity. Model Hamiltonians are not aimed at high levels of
quantitative accuracy, but are designed to explore qual-
itative features of correlation physics. For example, the
2D Hubbard model may display the essential features of
high-temperature superconductivity [37–39].

Thus, Hubbard (and more complex) chains have been
used to study, e.g., correlation effects in transport through
single molecules and small quantum dots. They have also
been used to explore full time propagation in TDDFT,
going beyond the linear response regime [40–56]. It is
usually relatively straightforward to exactly solve the
time-dependent Schrödinger equation in these cases. It
can also be easy to find the exact ground-state density
functional [47,50,57–59], and to propagate the fully time-
dependent Kohn-Sham equations within the adiabatically
exact approximation, in order to study its capabilities and
limitations.

Interestingly, among all the papers using TDDFT in lat-
tice models, relatively few have studied frequency-domain
linear-response TDDFT (lrTDDFT) in interacting sys-
tems [49,56,60]. In the case of the two-site Hubbard
dimer, Aryasetiawan and Gunnarson [60] did ground-
breaking work in studying the performance of lrTDDFT
for the symmetric dimer. However, as emphasized in a
recent review focussed solely on ground-state DFT for the
dimer [61], many crucial DFT features can only be seen
when the dimer is made asymmetric via a difference in
the on-site potentials ∆v [47,57]. In fact one cannot really
speak of density-functionals if restricting to symmetric
cases, since there is no dependence on the ground-state
density, as the site occupations always remain identical.
In addition, the Kubo response of the asymmetric dimer
shows two excitations, while only one survives in the sym-
metric case. Again, a few recent works have noted this
effect [47].

In the present article, we thoroughly explore the asym-
metric dimer within lrTDDFT, finding the exact non-
adiabatic density-functional for the exchange-correlation
kernel. In previous works [62,63] the exact frequency-
dependent kernel has been found for a given system:
in reference [63] an analytic expression is derived for a
homogeneous two-electron density on a ring while in ref-
erence [62] a general numerical procedure is given for
computing the kernel of a given system. This is, we
believe, the first time that the exact frequency-dependent
kernel as a functional of the ground-state density has
been found for any model; the Hubbard model is sim-
ple enough to allow for a complete analytic study. We
find that correlations are suppressed by asymmetry, so
that a weak correlation approximation remains accurate
even when the ratio between the Coulomb repulsion U
and the hopping integral t is very large, as long as the
asymmetry between the on-site energies ∆v is also large.
In fact, for sufficiently large ∆v/U , this weakly corre-
lated kernel remains accurate, no matter how large U/t
is. Only when U is large relative to both 2t and ∆v
does the weak-correlation kernel fail. Moreover, a sim-
ple expansion about the strongly-correlated limit, which

Fig. 1. Transition frequencies ω as a function of onsite poten-
tial asymmetry, ∆v for U = 10 t. Black lines are exact, blue
are the transitions of the KS electrons with the exact ground-
state functional, dashed magenta includes TDDFT corrections
with an adiabatically exact kernel, i.e., using the exact ground-
state functional in TDDFT. The cyan line shows TDDFT with
a weak-correlation approximation to the kernel, which diverges
for sufficiently small asymmetry. The red line is the interpo-
lation kernel developed in this work. Within this figure, the
exact and interpolation lines can hardly be distinguished.

we call the Mott-Hubbard (MH) regime, suffices for all
other cases, so that an appropriate interpolation between
the two yields accurate results for almost all parameter
values. Thus we have found an accurate approximate ker-
nel for both double and charge-transfer excitations, that
works in both weak and strong correlation regimes. We
note that this provides a useful explicit example of the
frequency-dependence of the kernel as a functional of the
ground-state density for this model, but does not produce
a general purpose density functional for this frequency
dependence.

To illustrate these results we plot in Figure 1 the tran-
sition frequencies for both singlet excitations when the
dimer is strongly-interacting (U = 10 t) as a function of
asymmetry, ∆v. In the symmetric limit (∆v = 0), the two
excited states are barely separated. Because correlation is
strong, the KS transitions are a poor approximation to the
exact ones, and even the adiabatically-exact correction to
TDDFT does not really improve matters. It vastly overes-
timates the correction to the single excitation and, being
adiabatic, yields no prediction for the double excitation at
all. The interpolation kernel developed here, which inter-
polates between the weakly and strongly correlated limits,
is almost perfect for these transition frequencies. Note
how, if the asymmetry is comparable to U or larger, then
the weak-coupling approximation works well. We explain
this feature in this work.

While this article may appear long, its main results can
be easily summarized. In Section 3, we give a very detailed
account of how lrTDDFT behaves exactly for the Hub-
bard dimer. This is a beautifully simple case, with a very
limited Hilbert space, in which the (usually unknown) XC
kernel of TDDFT can be written exactly and explicitly (at
least as function of the potential), including the frequency-
dependence needed to generate the double excitation. This
can be thought of as a many-body person’s guide to
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TDDFT. On the other hand, in Section 4, we explore
meatier issues of approximations. We begin with weakly
correlated systems (Sects. 4.2 and 4.3) and show how the
usual approximations work in the usual way for such sys-
tems, drawing the analogy with dressed TDDFT, which is
a specific approximation to the frequency-dependent ker-
nel that captures double excitations in this regime. But we
also explore the strongly-correlated (Mott-Hubbard) limit
(Sects. 4.4 and 4.5), and show how to distinguish weak and
strong correlation in this case. We perform the necessary
expansions in the two limits (Appendix C), and construct
an interpolation scheme for the kernel that gives highly
accurate results in both regimes, and reasonably accurate
results in the interpolative regime (Sect. 4.6).

For those with an interest and background in TDDFT,
some key results to take away include a general discussion
of state labelling (how do you classify something as a dou-
ble excitation?: see Sects. 3.1 and 3.2), defining (relative)
oscillator strengths in lattice models (see the same section
and Sect. 3.2), confirmation that the oscillator strength of
a double can be extracted from Casida’s matrix formula-
tion (Sect. 3.4), and illustration that a pole in the kernel
produces a double excitation, as in dressed TDDFT. For
those with a background in many-body theory, some
other key results are the separation of Mott-Hubbard
and weakly correlated regimes (Sect. 4.4 and Fig. 7),
and generalizations to site-dependent U (Appendix B.3)
and fractional particle numbers (Appendix B.4). The
exact formulas (Appendix A.1) and expansions and limits
(Appendix C) should prove very useful to anyone using
Hubbard Hamiltonians with any background.

Finally, we include here a table of notation that should
help any reader dealing with the many symbols used here
(Tab. 1).

2 Background

2.1 Time-dependent DFT

Time-dependent density functional theory (TDDFT) is
based on the Runge-Gross theorem [1], which is derived
in a very different way from the Hohenberg-Kohn the-
orem of ground-state DFT [64]. The theorem proves a
one-to-one correspondence between time-dependent den-
sities and one-body potentials, for a given initial-state,
particle-particle interaction, and statistics. Applied to
electrons starting in a non-degenerate ground-state, and
using the Hohenberg-Kohn result that the ground-state
wavefunction is a functional of the ground-state density,
it implies that all properties of the many-body system can
be extracted from knowledge of its time-dependent density
alone.

TDDFT can be and is applied to many-electron systems
driven by arbitrarily strong laser fields [3,9], but the vast
majority of applications use results from linear-response.
Defining the density-density response function of a system
as

χ(r, r′, t− t′) =
δn(r, t)

δvext(r′, t′)

∣∣∣∣
n=n0(r)

, (1)

Table 1. Our Hubbard dimer notation. The dimension-
less variables are set in units of twice the hopping unless
otherwise stated. A subscript s denotes a Kohn-Sham
counterpart of any variable.

Definition Description

t Hopping
U Coulomb interaction, Hubbard U
v1, v2 = −v1 On-site potentials
∆v = v2 − v1 On-site potential difference
n1, n2 Site occupations
N or N Electron number
∆n = n1 − n2 Occupation difference
ρ = |∆n|/2 Useful alternative to ∆n
|Ψi〉, Ei, ωi Exact states, energies, and transitions
Wi Exact excitation weights
f relative oscillator strength of 2nd excitation
MHn Mott-Hubbard expansion to nth order
WCn Small-U expansion to nth order

Dimensionless variables
u = U/2t Dimensionless Hubbard U
x = ∆v/2t Dimensionless potential difference
z = x/u Potential difference in units of U
ū, x̄, z̄ Reduced variables, ranging from 0 to 1
xs = ∆vs/2t Kohn-Sham potential difference
ei = Ei/2t, νi Dimensionless energies and frequencies
ν3, ν4 Auxiliary frequencies
χ dimensionless response function
χAE Adiabatic approximation to χ
a, b, c, νf Exact response function parameters
fHXC Hartree-exchange-correlation kernel
fst, fc,dyn Stationary and dynamic part of the kernel

where n0(r) is the ground-state density, analysis leads to
the famous Dyson-like equation [65]:

χ(ω) = χS(ω) + χS(ω) ? (fH + fXC(ω)) ? χ(ω), (2)

where ? denotes matrix multiplication in r-space (given
two real-space functions, f(r, r′) and g(r, r′), matrix
multiplication means

∫
dr′′ f(r, r′′) g(r′′, r′)). χ(ω) =

χ(r, r′, ω) is the Fourier transform of χ(r, r′, t− t′), χS(ω)
is its non-interacting KS analog, while fH = 1/|r − r′|
is the Hartree kernel and fXC(ω) = fXC[n0](r, r′, ω) is
the frequency-dependent XC kernel, a functional of the
ground-state density. The latter is the time-Fourier trans-
form of δvXC(r, t)/δn(r′, t′). This Dyson-like RPA-like
equation can in principle be solved for the exact χ, which
has poles at all optically-allowed excitations of the system.

For molecules, equation (2) is often re-cast in the form
of a matrix equation in the space of single KS excita-
tions. These can be derived and represented in several
ways [4,6,7,66], but all are essentially equivalent to finding
eigenvalues and eigenvectors of the matrix

Rqq′(ω) = ω2
q δqq′ + 4

√
ωqωq′ f

qq′

HXC(ω) , (3)

where

fqq
′

HXC(ω) = [q|fH + fXC(ω))|q′], (4)
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and q = (i, a) represents a double-index, with i labelling
an occupied orbital and a an unoccupied one, with

[ q|fXC(ω)|q′ ] =

∫
d3r d3r′ Φq(r) fXC(r, r′, ω)Φq′(r

′), (5)

and Φq = φ∗iφa. The eigenvalues of the matrix equation
(3) are the squares of the transition frequencies ωI , and
oscillator strengths out of the ground-state, fI , can be
extracted from the eigenvectors. The latter satisfy the
Thomas-Reiche-Kuhn (TRK) sum rule [67–69]∑

I

fI = N. (6)

In principle, both the transition frequencies and oscillator
strengths are given exactly when both exact ground-
state and time-dependent DFT are used. Even with the
exact ground-state functional, the KS response function
has poles only at single excitations and, in the adiabatic
approximation, the excitations resulting from solving the
matrix equations yield only linear combinations of single
excitations. The frequency-dependence of fXC generates
the states of multiple-excitation character.

Practical DFT calculations require functional approxi-
mations. In most applications of TDDFT, the adiabatic
approximation is made, allowing both the kernel and the
starting point to be approximated via ground-state func-
tionals. Such an approximation is usefully accurate for
many low-lying excitations of chemical interest [10–14].
However, much experience has been gained on where stan-
dard semilocal approximations, applied in this way, fail
quantitatively or even qualitatively, including Rydberg
excitations, charge-transfer excitations, double excita-
tions, conical intersections, the thermodynamic limit, etc.
[9] More sophisticated functionals have been shown to
offer a good solution to several of these cases. Many of
these failures can be traced to errors made in the ground-
state part of the calculation; these can be eliminated by
using the exact ground-state functional, when available,
for simple model systems.

Some years ago, a modest proposal was made for
recovering double excitations in lrTDDFT, at least in
cases where the double was close to one or more sin-
gle excitations, and correlations were weak [28,31]. By
reverse engineering the exact wavefunctions in such a case,
the frequency-dependent kernel of dressed TDDFT was
proposed:

2[q|fXC(ω)|q] = 2[q|fAXC|q] +
|HqD|2

ω − (HDD −H00)
, (7)

for the case of a KS single excitation q = i → a mixing
with a KS double excitation D. Here, fAXC is an adiabatic
approximation to the kernel, and HIJ are matrix elements
of the full Hamiltonian between the KS states indicated.
The additional pole in this kernel generates a double exci-
tation at approximately the correct transition frequency
when the system is weakly correlated.

2.2 Asymmetric Hubbard dimer

We analyse here the asymmetric Hubbard dimer model
with two opposite-spin fermions:

Ĥ = −t
∑
σ

(ĉ†1σ ĉ2σ + h.c) + U
∑
i

n̂i↑ n̂i↓ +
∑
i

vin̂i

= T̂ + V̂ee + V̂ext. (8)

We set v̄ = (v1 +v2)/2 = 0 and rewrite the external poten-
tial term as Vext = −∆v∆n/2, where ∆v = v2 − v1 and
∆n = n1 − n2. We use 2t to set the energy scale, and so
define dimensionless measures of the interaction strength
u = U/2 t and the asymmetry x = ∆v/2 t. The Hamilto-
nian has three basis states within the sub-space N = 2,
S2 = 0, Sz = 0, so that it can be diagonalized analyti-
cally yielding a ground state and two excited states with
energies ei and wave functions Ψi, i = 0, 1, 2. Explicit
expressions are given in Appendix A.1.

The asymmetric dimer makes a beautiful illustration
of all the principles of TDDFT, because so many con-
fusing features of TDDFT have explicit formulas in this
case due to the very small Hilbert space [58]. A recent
review of simply ground-state DFT using the asymmet-
ric dimer references the substantial literature on this [61].
The density functional for fixed integer particle number
N is just a function of the site occupation difference ∆n,
and the KS system is just an asymmetric tight-binding
problem. Explicit formulae for fractional particle numbers
N can also be drawn. Many features, from the effect of
strong correlation on the Green’s function, to the deriva-
tive discontinuity correction to the gap at integer N ,
can be calculated exactly and often explicitly. While the
XC energy functional cannot be written analytically, a
parametrization given in reference [61] is so accurate as to
make no discernible error on the scale used here. It can
also be simply generalized to include distinct Coulomb
energies on the two sites, and so include the 2-site
Anderson model as a special case (see Appendix B.3).

3 Linear response

For the present purpose, we must go beyond just ground-
state properties, and calculate the excited state energies
and “optical” response. We confine ourselves to spin-
conserving perturbations. We emphasize that several
results in this section already appear elsewhere, although
not in the forms presented here.

We will be interested in extracting information about
excitations in response to a weak perturbation. Define the
dimensionless density-density linear response function,

χ̃(t, t′)

=

(
δ∆n(t)/δx(t′)|∆n0,N0

δN(t)/δx(t′)|∆n0,N0

δ∆n(t)/δv̄(t′)|∆n0,N0
δN(t)/δv̄(t′)|∆n0,N0

)
. (9)

However, N̂ commutes with the Hamiltonian and we work
in this article in a subspace with definite N (= N0 = 2).
As a consequence, only χ(t, t) = δ∆n(t)/δx(t′)|∆n0,N0 is
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different from zero and we drop henceforth the subindex
N0. Nothing forbids choosing subspaces with non-definite
value of N , it is just more complicated [58], and in this
case the four matrix elements would be non-zero.

3.1 Many-body theory

We work from now on with χ(t, t) = δ∆n(t)/δx(t′)|∆n0,N0
;

whose Fourier transform with respect to t− t′ gives, in the
Lehmann representation [70],

χ(ν) =
2 ν1W1

ν2
+ − ν2

1

+
2 ν2W2

ν2
+ − ν2

2

, (10)

where ν+ = ν + i δ, ν = ω/2t are dimensionless frequen-
cies and the infinitesimal positive number δ enforces the
causality of the response function and shifts the poles
infinitesimally below the real axis. (Here χ is 2t times
the dimensional tight-binding version of Eq. (1).) The
two excitations are characterised by their frequencies and
weights,

νi = ei − e0, Wi = |〈Ψ0|∆n̂|Ψi〉|2 (11)

whose explicit expressions are given in Appendix A.1. We
define as “first” and “second” excitations always ν1 and ν2

respectively, e.g., “first” is the lower and “second” is the
higher of the two excitations of the Hubbard dimer. The
weight of the second excitation vanishes in the symmetric
case: much of what can be learned about how TDDFT
works for strongly correlated cases requires asymmetry.
The frequency integral of the imaginary part of νχ(ν) is
(see Appendix B.1):

−
∫ ∞

0

d ν

π
Imχ(ν) ν = ν3 = ν1W1 + ν2W2. (12)

For a real-space Hamiltonian, this integral satisfies the
TRK sum rule [67–69], where the right hand-side is justN ,
and so can be used to define oscillator strengths. Because
of the lattice nature of the model, this rule is not true here
[71–73], and the right-hand side is not a universal value,
independent of the interaction or potential. We define a
relative oscillator strength for the second excitation as

f =
ν2W2

ν1W1 + ν2W2
=
ν2W2

ν3
, (13)

so that equation (10) can instead be written as

χ(ν) = 2ν3

(
1− f
ν2

+ − ν2
1

+
f

ν2
+ − ν2

2

)
. (14)

Throughout our analysis, we will also use an equivalent
form, namely

χ−1(ν) = a ν2
+ − c−

b ν2
+

ν2
+ − ν2

f

, (15)

Fig. 2. Transition frequencies of the first and second exci-
tations and oscillator strength of the second excitation as a
function of onsite potential asymmetry x = ∆v, for u = 1 and
u = 5, where 2t = 1.

where, defining

ν4 = ν1W2 + ν2W1, νf =

√
ν1ν2ν4

ν3
, ν̄f = νf

ν3

ν4
, (16)

then, with ∆ν = ν2 − ν1, ∆νf = ν̄f − νf :

a =
1

2ν3
,
b

a
= ∆ν2 −∆ν2

f , c =
ν1 ν2

2 ν4
. (17)

Thus the response can be characterized by four functions
(a, b, c and νf ) of the basic reduced variables u and x,
which can be deduced from equations (10), (12), and (15).
We will consider many approximations to χ, but all will
have the same form as the exact χ of equation (15), and
therefore can be defined in terms of a, b, c, and νf .

Figure 2 shows the transition frequencies and relative
oscillator strength f (of the second excitation) as a func-
tion of the dimensionless potential asymmetry x = ∆v/2t
for two different values of u. On the left, u = 1 and
the system is weakly interacting. The first excitation fre-
quency initially drops with x, with the correction being
(1− 3u)x2/2, but eventually grows as x when x is larger
than u. The second excitation has no linear correction in u,
and so behaves largely as its non-interacting value, being
2 in the symmetric case, and 2x for large x. The situation
is very different when interaction is strong (u = 5). Now,
the frequency of the two excitations equals about u in the
symmetric limit. These frequencies split linearly however
as x grows as u ± x all along the Mott-Hubbard (MH)
regime, that covers all values of x smaller than u (see
Sect. 4.4). This behaviour changes as soon as x becomes
larger than u, where the system enters the charge-transfer
(CT) regime. Subsequently, the frequency of the first exci-
tation grows like x−u, while that of the second grows like
2x. The gap between the two hence grows linearly along
the CT regime at a rate of x+ u. So we find that the exci-
tations behave the same for any value of u, for sufficiently
large x. We will see later (Sect. 4.4) that sufficiently means
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x > u, hence the CT regime. They however behave very
differently for small and for large u for small values of x,
marking the MH regime u > x.

It is useful to consider the nature of the ground and
excited states in the extreme MH and CT limits to further
understand these curves. Simplified expressions for the
three states in these limits can be found in Appendix C.5.
In the MH limit of very large u/x (i.e., towards the left
of each plot in Fig. 2), the ground-state approaches one
fermion on each site. This means the lowest excitation
transfers one fermion to the lower site, costing an energy
of u−x, while the second excitation transfers one fermion
to the upper site, costing an energy of u+x. On the other
hand, in the CT limit of u/x very small, the ground-state
approaches the situation where both fermions sit on the
lower site. The lowest excitation transfers one electron to
the other site, costing an energy of −u+ x, while the sec-
ond excitation transfers both to the upper site, costing an
energy of 2x relative to the ground-state. These limiting
behaviors are evident in the plots above.

3.2 KS response

In the previous section, we discussed our system within
a traditional many-body framework, with all parameters
considered as functions of u and x = ∆v/2t, the interac-
tion and one-body potential respectively. This next section
is devoted to showing how this system is treated exactly
from a TDDFT viewpoint, using the ground-state den-
sity in place of the one-body potential. Notice that we are
working within the sub-space N = 2. However, we write
down analytical formulae for the KS response function for
fractional occupation numbersN ∈ [0, 4] in Appendix B.4.
Knowledge of the dependence of the full response function
on N relies on a complete analysis of the dependence of
the XC kernel on N , which is beyond the scope of this
article. The ground-state DFT analysis of the Hubbard
dimer for arbitrary integer or fractional N groundstate
was discussed in detail in reference [61].

The exact ground-state KS system is simply the asym-
metric tight-binding model whose ground-state site occu-
pation difference matches that of the interacting system,
i.e., xS(ρ) = ∆vs/2t = ρ/r, where ρ = |∆n|/2 is the exact

interacting ground-state density and where r =
√

1− ρ2.
Thus it is trivial to construct the KS potential as a func-
tion of the ground-state density. The tight-binding model
has two orbitals, the lower being doubly occupied and the
higher unoccupied in the ground state. These fictitious KS
electrons have a response function

χs(ν) =
2 νsWs

ν2
+ − ν2

s

, (18)

where

νs =
√

1 + x2
s =

1

r
, Ws =

2

1 + x2
s

= 2 r2. (19)

Thus

χ−1
s = as ν

2
+ − cs, (20)

where aS = 1/4r and cS = 1/4r3. Notice that the KS pole
corresponding to the second excitation has zero weight,
i.e., fS = 0, bS = 0. This expression for χs is generalized
to fractional particle number in Appendix B.4.

We end this section with a digression to give a general
definition of the nature of an excitation within TDDFT.
Our definition applies whenever the exact KS ground-
state wavefunction is a single slater determinant, but can
easily be generalized beyond that. In such a case, the
nature of an excitation of the KS system is clear, e.g.,
a double excitation is a slater determinant with two elec-
trons excited from their ground-state orbitals. We note
that the Hilbert space of states of the system is classified
into subspaces labelled unambiguously with every set of
quantum numbers available, that includes N . Then, the
number of KS slater determinants and the number of exact
many-body states in every subspace is the same. As a con-
sequence, each many-body excitation can be continuously
connected to a well-labelled KS state via the adiabatic
connection, i.e., by following its behavior as a function
of λ, while keeping the ground-state density fixed. This
gives an unambiguous labelling to each level of the many-
body system. This is the natural choice within KS DFT.
It differs from that of wavefunction theory, which usu-
ally starts from the HF wavefunction. The differences are
small for weakly correlated systems, but can be quite large
when correlation is strong. In fact, when an unrestricted
HF calculation breaks symmetry, this creates difficulties in
using the HF wavefunction as a reference. Here, the exact
ground-state KS wavefunction is always a doubly occupied
singlet, and so does not suffer from this difficulty.

We follow this procedure here, and show, in strongly
correlated cases that, even when the interacting wave-
function is a mixture of several determinants, its label
remains unambiguous. Of course, when correlations are
strong, the overlap between the many-body and KS wave-
functions is often much less than 1, but this is also true in
the ground-state theory. This definition must be applied
carefully when curves cross or in the thermodynamic limit,
where there are infinitely many states. In Appendix C.5,
we show how the many-body and KS states behave in
the dissociation limit. The adiabatic connection between
the many-body and KS wavefunctions can be traced down
analytically in this limit, keeping the density fixed, and so
determine the nature of the wavefunctions, even though
their overlap at full-coupling is much less than 1.

3.3 Exchange-correlation kernel

From equation (2), the Hartree-exchange-correlation ker-
nel is defined by the difference of the true inverse response
function from the KS inverse response function

fHXC(ν) = χ−1
S (ν)− χ−1(ν). (21)

This is in general a frequency-dependent quantity, but in
almost all TDDFT calculations, it is approximated by its
static limit fst = fHXC(0). For any finite system, this is
exactly given by ground-state DFT, and here

fst = c− cS. (22)
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Fig. 3. Exact (black) and CFSB (dashed red) reduced external
potential z̄ = z/

√
1 + z2, where z = x/u, as a function of ρ =

|∆n|/2 for u = 0.2, 1, 2 and 5 (2t = 1).

Fig. 4. Frequency dependence of exact (black) and Kohn-
Sham susceptibilities (blue) and exchange-correlation kernel
(red line) for u = x = 1, with poles marked by dashed vertical
lines, as a function of frequency ν (2t = 1). The red line shows
the exchange-correlation kernel.

Moreover, with only two electrons, the exchange is pre-
cisely minus half the Hartree, which has no frequency
dependence. Thus the interesting dynamic contribution
to the kernel is purely correlation,

fc,dyn(ν) = (aS − a) ν2
+ +

b ν2

ν2
+ − ν2

f

. (23)

This dynamic contribution depends on only three
parameters, a, b and νf , which are in turn functions of
u and x = ∆v/2t. But, by virtue of ground-state DFT,
the one-body potential is a unique function of the den-
sity (difference), and so the three parameters in the kernel
are functions of u and ρ, which is how they appear in a
TDDFT calculation. This dependence can be found by
using the results of reference [61] for the ground-state,
that we summarize in Appendix C.2. In short, a very
accurate approximation for the universal contribution to
the energy functional, F(ρ, u), can be found. Since mini-
mizing the ground-state energy yields x = −∂F/∂ρ, this
is an explicit expression for x(ρ, u). This expression can
be inserted into the three parameters to deliver the ker-
nel functional. A comparison between the exact value of
z = x/u and the approximation is shown in Figure 3, and
any differences are invisible to the eye.

In Figure 4, we plot the response functions and kernel
for u = 1 and x = 1, a relatively weakly correlated and
asymmetric system. The exact response function (black)
has poles at both the first excitation (ν about 1.4) and
the second (about 3.1). The KS function (blue) has only
a single pole, corresponding to the KS first excitation,

Fig. 5. Transition frequencies (top) and oscillator strength for
the many-body system (solid black), its Kohn-Sham counter-
part (solid blue) and the adiabatically exact approximation
(magenta) as a function of x, for u = 1 (weakly correlated
regime) and u = 5 (strongly correlated regime) (2t = 1).

which is close to the exact first excitation because this
is a weakly-correlated case. But there is no sign of the
second excitation in the KS response. The kernel has its
own pole at about 2.95 which, when added to the KS
response function, produces the exact second excitation.
Note that this requires a pole in the kernel at frequency νf :
a smooth kernel would not produce the needed pole in χ.
Note also that expansions of the parameters in the kernel
(in, for example, powers of u) do not yield a well-defined
expansion of the kernel itself, as they differ by arbitrarily
large amounts for frequencies near the poles.

In almost all applications of TDDFT, the adiabatic
approximation is used, i.e., fHXC(ν) is replaced by a
constant. We define the adiabatically exact (AE) approxi-
mation by replacing fHXC(ν) with the exact fst = fHXC(0)
in equation (21). This yields

χAE(ν) =
1

1/χS − fst
=

2 νsWs

ν2
+ − ν2

AE

, (24)

where νAE =
√
νs ν1 ν2Ws/ν4 is the (single) excitation

frequency in the adiabatic approximation. Since the AE
approximation has no poles in the kernel, it fails to gen-
erate any excitations in the response beyond those in the
KS response function, one of its principal failings. In fact,
the weight and oscillator strength are identical to the KS
values. It is simply that the position of the KS excitations
are shifted.

In Figure 5, we show the values of transition frequen-
cies and oscillator strength for both weak (left panel)
and strong (right panel) interaction. For u = 1 and in
the x/u > 1 domain for u = 5, the KS values are a rea-
sonable approximation to the exact values, and the AE
correction greatly improves the first transition frequency.
In both cases (KS and AE), f = 0, but the exact value
of f is never greater than 0.1. On the other hand, for
u = 5 and x/u < 1, the KS single is a vast underestimate
relative to the exact single, the AE is a serious overcor-
rection, the KS double (placed at double the KS single)
remains very far from its physical value, and f can be as
large as 0.4, i.e., almost half the oscillator strength can
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go into the second excitation. In the next subsection we
will draw a close analogy between this behavior and that
of a real stretched diatomic molecule. Thus a frequency-
dependent kernel is vital to produce even qualitatively
correct excitations when correlation is strong. Note that
although the first excitation improves when x/u > 1, and
f is also small, the second transition remains very badly
described by its KS analog, even for high asymmetry.

When we come to discuss approximations to the dynam-
ical kernel, we will write these in terms of a, b, and νf .
The corresponding transition frequencies and oscillator
strength can be found directly from any such set. Defining

γ = (ν2
f + (c+ b)/a)/2, and ∆ =

√
γ2 − ν2

f c/a, we find:

ν2
1,2 = γ ∓∆, f =

1

2

(
1−

ν2
f − γ
∆

)
. (25)

We end this section with a well-known result. In DFT,
the fluctuation-dissipation theorem is often cited [74,75],
and can be the starting point of RPA-type approximations
to the ground-state XC energy. In Appendix B.2, we show

EXC(ρ) = −U
2

∫ 1

0

dλ

∫ ∞
0

dω

2π
Imχ(λU, ρ, ω)− U N

2
.

(26)
This applies for either N = 1 or 2. Here λ multiplies U
everywhere, but ρ is kept fixed. This adiabatic connection
is the DFT equivalent of the coupling constant. At λ = 1,
one gets the fully interacting system, while at λ = 0, the
KS system is recovered, and χλ=0 = χs. Inserting our χ
from equation (10), we find a very simple form:

EXC(ρ) = −U
2

∫ 1

0

dλ

(
2∑
i=1

Wi(λU, ρ)−N

)
, (27)

an elegant expression of the ground-state XC energy in
terms of the weights of the excitations.

3.4 Matrix formulation

The analog of the TDDFT matrix equation (3) for the
Hubbard dimer is particularly simple due to the small
Hilbert space. We can derive this from equation (21), with
the observation that χ(ν) has a pole at the exact inter-
acting frequencies ν1,2 (Eq. (10)), and so χ−1(ν1,2) = 0.
Then, inverting equation (18) for χ−1

S (ν) on the right-
hand-side of equation (21), and rearranging to solve for ν,
we obtain [49]

ν2 = ν2
S + 2νSWSfHXC(ν) ≡ RH(ν), (28)

whose solutions yield the exact frequencies of the inter-
acting Hubbard dimer, ν1, ν2. This is the analog of what
is known as the small matrix approximation for real
molecules, when the matrix R of equation (3) is truncated
to just one single KS excitation. Since there is only one
KS single excitation in the Hubbard dimer, equation (28)
is exact.

As discussed in Section 2.1, oscillator strengths of real
molecules are extracted from eigenvectors of the TDDFT
linear response matrix equation (3). To obtain the oscil-
lator strengths of the exact transitions in the Hubbard
dimer from equation (28), we retrieve a formula from ref-
erence [4], which showed that the eigenvectors GI of the
matrix equation (3) must be first normalized such that

G†I

(
1− ∂R

∂ω2

∣∣∣∣
ωI

)
GI = 1 , (29)

before the oscillator strengths can be correctly extracted.
Since usually an adiabatic approximation is used, there
is no frequency-dependence in the matrix R and so this
condition just reduces to requiring normalized eigenvec-
tors. In fact, to our knowledge, there has not been any
use of this result of reference [4] in the literature, likely
because of the predominance of the adiabatic approxima-
tion. However, with a non-adiabatic kernel, such as we
have in the Hubbard dimer, the frequency-dependence
results in a rescaling of the eigenvectors, redistributing
the oscillator strength in a way that depends on the exci-
tation frequency. For our Hubbard dimer, this means the
oscillator strength from the single KS excitation gets split
into two, according to

G1,2 =
1√

1− ∂RH(ν)
∂ν2

∣∣∣
ν1,2

. (30)

Taking the derivative of equation (28), using equations
(18) and (10) in equation (21), then readily gives us

G2
i =

νiWi

νSWS

. (31)

That is, the ratio of the transition strength of the second
excitation to the total transition strength, is

G2
2

G2
1 +G2

2

=
ν2W2

ν1W1 + ν2W2
, (32)

coinciding with our definition of f in equation (13).

4 Weak and strong correlation

4.1 Background

Here we study the behavior of the system when interaction
is weak, i.e., u . 1. Of course, all quantities (excitation
energies, oscillator strengths, kernel parameters, etc.) can
be expanded as a power series in u, and the results are
given in Appendix C.3. But we make a note of caution
here: There are many different expansions in powers of u.
They differ in terms of which variable is held fixed. From
a many-body point of view, the natural expansion is hold-
ing the external potential x = ∆v/2t fixed, and expanding
in powers of u, which is the meaning we have used so far.
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However, even in ground-state DFT, the natural expan-
sion is the one used in the adiabatic connection formula,
in which ∆n is held fixed. This expansion differs from the
many-body one. As we will show later, when dealing with
strong correlation, even in many-body theory, it will be
more useful to hold the ratio z = x/u fixed than keeping
x fixed.

A second crucial point is that, in any of these expan-
sions, because of the frequency-dependence in the kernel
and the existence of a pole, there is no simple connec-
tion between an expansion of the kernel parameters and
the resulting behavior of calculated transition frequencies.
Expansions in powers of u do not commute with expan-
sions in terms of the frequency, say. It has long been known
that, evaluating the kernel to leading order in λ, i.e., at the
exchange level, yields transitions that contain all orders
in λ, due to the non-linearity of the RPA-type equation.
Thus, use of the exchange kernel leads to approximate
correlation corrections to the transitions.

4.2 Relation to dressed TDDFT

In the weak interaction limit the true excitations have
a clear single and double excitation character respec-
tively. Here we discuss some similarities and differences to
dressed TDDFT. First, dressed TDDFT isolates a single-
and double-excitation from among a spectrum of many
excitations, assuming they are more strongly coupled to
one another than to any other. Here, there are only these
two excitations in the entire spectrum. This is why the the
exact kernel of equation (23) has a simple pole of the same
type introduced in dressed TDDFT. The only difference
is that there are two poles here, ±νf , which reflects the
symmetric inclusion of both forward and backward transi-
tions. However, the essential condition of dressed TDDFT,
namely that a specific single excitation is closest and most
strongly coupled only to a specific double excitation, is not
satisfied here. For example, in the weak coupling limit, the
double is at twice the frequency of the single, and no closer
to it than the ground-state is.

4.3 Weak-correlation kernel

To create an approximation that is appropriate for condi-
tions of weak correlation (corresponding to most current
successful applications of lrTDDFT), we expand in small
u for a fixed value of x. We consider the many-body expan-
sion of Appendix C.3 in which we keep terms up to order
u2 in each of the parameters determining the kernel:

aWC2 =
p0

4

(
1− x2 ũ+

(1 + 8x2) ũ2

8

)
,

bWC2 =
9x2 p3

0 ũ
2

16

(
1− 2 p2

0 ũ

3

)
,

νWC2
f = 2 p0

(
1 +

p2
0 ũ

2

8

)
, (33)

where p0 =
√

1 + x2 and ũ = u/p3
0, plus an extra term in

the expansion of b. With these expressions, we study the
weakly correlated behaviour of the dimer.

In Figure 6 we plot the deviations of the transitions from
their KS values ∆νj = νj − j ∗ νs, j = 1, 2, both exactly
and for the AE and weakly-correlated approximations for
u = 1 and u = 2. We see that, in the weakly correlated
case (u = 1 or less), the adiabatic approximation for the
transition frequencies is very close to the exact quantity
for both cases. This is what is used (usually with a ground-
state approximation) in most applications of TDDFT.
However, here we can also add the dynamical correction,
expanded to leading order in the strength of the correla-
tion, and we find it improves the results even further. This
is especially apparent for the oscillator strength, where the
performance is very good, as u = 1 is no longer very weak
correlation. However, once u is large enough, this approx-
imation must fail. The weakly correlated approximation
delivers poor results for the frequencies and the oscillator
strength for u = 5, except for x̄ = x/

√
1 + x2 close enough

to one. We explore this point in the next section.
However, these are not explicit functionals of the den-

sity, but rather they are post-calculation corrections to
a standard TDDFT calculation with an adiabatic kernel.
To convert them to density functionals, we express x as a
function of ρ by using the relationship x = −∂f/∂ρ and
the ground-state density functional F(ρ, u) described in
Appendix C.2. We expand the functional in powers of u
as described in Appendix C.2.1 and find

x ' ρ

r
+ ρ u+

5

8
ρ r3 u2 +

1

4
ρ r2

(
1− 4 ρ2

)
u3, (34)

where r =
√

1− ρ2. This is then used to eliminate x in
equations (33) power by power, yielding:

aWC2(ρ) =
1

4 r

(
1 +

1

8
r4 u2

)
,

bWC2(ρ) =

(
3 ρ r

4

)2

u2

(
1 +

4

3
r (1− 3 ρ2)u

)
,

νWC2
f (ρ) =

2

r
+ 2 ρ2 u+

1

4
r3 (1 + 9 ρ2)u2. (35)

4.4 When is a system strongly correlated?

In this section, we discuss the concept of strong corre-
lation in the context of density functional theory, with
special emphasis on the differences from many-body the-
ory. The key point is that, because the exact KS system
reproduces the exact density of the system, even when
correlations are strong, it can be a much closer mimic of
the true system than the traditional many-body starting
point, namely a self-consistent Hartree-Fock approxima-
tion, depending on what property is of interest. For
example, when correlations are strong, the lowest-energy
self-consistent HF approximation breaks spin symmetry
(the unrestricted solution, UHF), whereas the KS wave-
function always remains a singlet, no matter how strong
correlation is (using the exact ground-state functional).
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Fig. 6. Corrections to KS transition frequencies and oscilla-
tor strength as a function of x̄ = x/

√
1 + x2 for exact system

(solid black), within AE approximation (dashed magenta) and
with the weak-correlation dynamical approximation WC2 of
equation (33) (solid cyan).

Fig. 7. Physical regimes in the Hubbard dimer: dark blue is the
pure Mott-Hubbard regime (limited error of approximations
around MH limit), while pale blue is the pure weakly correlated
regime (limited error of approximation about the WC limit).
The solid black line is the contour of 86% overlap between the
many-body and Kohn-Sham wavefunctions.

Thus the greatest differences occur just as correlations
become strong.

The first issue to address is how to decide when our
dimer is strongly correlated. The most studied case is the
symmetric case (x = 0). Here, it is clear that a Taylor
expansion in small u has a radius of convergence of u = 2
(branch cut at u = 2i), while a similar expansion in 1/u
also converges up to 1/2. Thus u = 2 is very definitively
the dividing point between weak and strong correlation.

But DFT is primarily concerned with inhomogeneous
systems, which for our dimer means asymmetry, so our
definition must be generalized to all values of x. When the
potential is highly asymmetric, does this categorization
change? In fact, it does so, in an extremely important
fashion.

In Figure 7, we plot a contour of the square overlap of
the exact ground-state KS wavefunction with the exact
interacting wavefunction as a function of z̄ and ū. We
have chosen the value

√
3/2 ≈ 0.86, as this yields precisely

u = 2 (ū = 1/
√

2) when x = 0. We have also colored in
the region where Mott-Hubbard physics dominates (dark
blue) and the region where weak correlation approxima-
tions work (pale blue). These will be quantified below.
For now, the important lessons of Figure 7 are first that

Fig. 8. Contour plot of the square of the overlap between the
true and KS wavefunctions (black), as well as contours of error
for WC2 (cyan) and MH approximations (blue), and our simple
interpolation (red line).

most of the phase diagram is colored pale blue and second
that the variable on the x-axis is x/u, i.e., the asym-
metry divided by the interaction. In fact, if this ratio is
greater than 1, the dimer is always weakly correlated, i.e.,
the black borderline never crosses x = u, no matter how
strong the interaction. (The edge of the pale blue region
simply delineates a contour of finite error for the WC
approximation, as described below.) This is because, in
the ground state, both electrons sit on one site, despite
the strength of the interaction.

4.5 Mott-Hubbard regime and expansions

To capture the physics described above, we introduce a
new variable

z =
x

u
=

∆v

U
. (36)

This is the onsite potential difference, but measured on the
scale of the interaction. We show below that this is a more
useful variable than x in considering strong correlation. A
similar variable was used in reference [76] in their analysis
of a Hubbard model of LiF. We also define the reduced
variables,

ū =
u√

4 + u2
, z̄ =

z√
1 + z2

, (37)

that run from zero to one as u and x span their whole
range from zero to infinity. Here, u = 2 corresponds to
ū = 1/

√
2, while x = u corresponds to z̄ = 1/

√
2.

Figure 8 replots Figure 7 in terms of the reduced vari-
ables, and with more detail. The solid black line is still the
86% overlap contour. For ū below this contour, the overlap
is at least this value, and we consider the system weakly
correlated. The first thing to notice is that the contour
is confined to the upper left corner of the ū–z̄ plane. In
all the remaining phase space, the overlap is better than
0.93, including all z̄ > 1/

√
2 (e.g., x > u), no matter how

large the value of u. It makes intuitive sense that for suf-
ficiently asymmetric systems, u must be much larger to
create strong correlation effects. What is notable is that
the system is always weakly correlated when x > u. This
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Fig. 9. Corrections to KS transition frequencies and oscillator
strength as a function of z̄ = z/

√
1 + z2 for exact system (solid

black) and with the MH2 (solid green) and CT (dashed brown)
expansions.

is the explanation for the success of our weakly-correlated
kernel to the right in the previous figures.

Now, the upper left corner (large u, small x) is the
Mott-Hubbard regime, i.e., the familiar physics of strong
correlation in the symmetric limit. In this quadrant, the
strong-correlation expansion described below is accurate.
Above the blue contour, the strong correlation expression
for the ground state energy has an error of 0.23 at most
(in units of 2 t). On the other hand, below the cyan con-
tour, the WC2 approximation for the energy has an error
of only 0.086 at most (in units of 2 t again). The over-
lap contour runs neatly between these two. Thus we need
only the weakly-correlated and the MH regimes to cover
all the physics in the dimer. We can make a simple smooth
interpolation to capture the contour, namely

ūc(z) = a+ bz̄p, (38)

where a and b are positive real numbers, and p a posi-
tive integer. We find p = 4 simulates the actual contour
well. Then a = 1/

√
2 and b = 4(1− a) to achieve the cor-

rect limits. This approximate contour is also plotted in
Figure 8.

So, in order to capture the MH regime, we perform an
expansion for large u, keeping z fixed and less than 1. The
results are (Appendix C.4)

aMH2 =
u za

8

(
1 +

2 (1 + z2)

z2
au

2

)
,

bMH2 =
u3 z2 z2

a

2 zb

(
1 +

7 z4 + 18 z2 − 1

z2
a zbu

2

)
,

νMH2
f = u z

1/2
b

(
1− z2 − 2

za zbu2

)
, (39)

where za = 1 − z2 and zb = 1 + 3 z2. Clearly, these
expressions fail for z = 1 or larger, with higher-order
terms diverging. The complementary expressions for z > 1
are the CT approximation, and are given in the same
Appendix.

Figure 9 shows the exact deviations from the KS fre-
quencies and oscillator strength alongside the MH and CT
approximations. For larger u, MH works well until close

Fig. 10. Corrections to KS transition frequencies and oscil-
lator strength as a function of z̄ exactly (black), WC2 (cyan)
and CT expansion (dashed brown).

to x = u, and CT works beyond that. But clearly, near
z = 1, neither work well, and in fact diverge. The region
in which this failure occurs shrinks with increasing u, but
always exists. For smaller u, such as u = 1, this region
is so large that the MH approximation essentially never
works, and CT only works for very large z.

In Figure 10, we compare the performance of the WC2
and CT expansions. For u = 2 (left panel) and smaller, it
is clear that WC2 is about the same as CT for large z, but
works much better for smaller z. Even for u = 5, where
WC2 fails badly for z < 1, it still works better than CT
for z > 1. In fact, we found no region in parameter space
where CT outperformed WC2. This is consistent with the
contours of Figure 8.

4.6 Interpolation kernel

In this section, we construct an interpolation kernel
between the MH and WC regimes. We first improve the
weakly correlated and MH approximations so that they
match as smoothly as possible in the crossover region.
We define WC4 as the expansion of the dynamic kernel
parameters (a, b, and νf ) to 4th order in u, for fixed x.
The corrections to WC2 (Eq. (33)) are:

∆aWC4 =
p0 ũ

3

16

(
x2 (4x2 − 1) +

16x4 (8x2 − 9)− 1

32
ũ

)
,

∆bWC4 =
p3

0 x
2 (8x4 + 58x2 + 23)

128
ũ4,

∆νWC4
f =

p3
0 ũ

3

4

(
x2 +

16x4 − 9x2 − 1

16
ũ

)
. (40)

We see in Figure 11 that these clearly improve the fre-
quencies and oscillator strength over WC2. On the other
hand, while adding one or two further terms in the
MH expansion does not seem to improve matters much,
removing divergences at x = u does improve things. We
can regularize the MH2 expressions by replacing u za
with

√
u2 z2

a + z2. This provides a significantly smoother
matching with the WC4 approximation at the crossover
region when the interpolation scheme explained below is
deployed. Figure 11 shows the impact of these two schemes
on the frequencies and oscillator strength, where we use
equation (40) for the weak-coupling expansion and (a reg-
ularized) equation (39) for the MH expansion. For u = 5,
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Fig. 11. Corrections to KS transition frequencies and oscilla-
tor strength as a function of z̄ exactly (black), weakly corre-
lated expansion WC4 (cyan) and regularized MH2 expansion
(green).

Fig. 12. Exact (solid black) and interpolated (red) deviations
from KS frequencies and oscillator strength as a function of z̄.

we clearly see (regularized) MH working well up to x = u,
and WC4 working well beyond that (and each one failing
outside its domain). As u is reduced, the regime where
WC4 fails shrinks (u = 2), until for u = 1, WC4 is almost
perfect everywhere.

We suggest the following interpolative scheme for each
of the kernel parameters:

aint(u, z) = nF a
WC4(u, z) + (1− nF ) ãMH2(u, z), (41)

where the tilde indicates that MH2 has been regularized,
and nF (u, z) varies smoothly from 1 to 0 as the contour
uc(z) given by equation (38) (and shown in Fig. 8) is
crossed. We choose a Fermi function:

nF (u, z) =
1

eβ(u−uc(z)) + 1
. (42)

We find β = 20 yields a reasonably accurate transition.
We plot the results of the interpolation kernel for sev-

eral values of u as a function of z in Figure 12. We see
that it works reasonably well for u < 1 for all x, and
for z > 1 (z̄ > 1/

√
2) for any u, and gives an imperfect

but reasonable interpolation in between. This approxi-
mate kernel is not designed to yield the extreme accuracy
of the ground-state approximations of reference [61], but
just to show that once the limiting physics is included, an
approximation can be generated that works reasonably in

Fig. 13. Exact (solid black) and interpolated (red) kernel
parameters as a function(al) of density ρ. The parameter b
for u = 5 has been divided by 10 to fit in the same y-scale as
in the other two panels.

Fig. 14. Exact (solid black) and interpolated (red) frequency
deviations and oscillator strength as a function of density ρ.

all regimes. Its limitations are most easily understood by
starting with u = 5, where the error in the stitching is vis-
ible at z̄ = 1/

√
2 (i.e., z = 1, or x = u), but it is small and

spans a relatively small region of z. As u is reduced, this
region grows, and is largest for u = 2. By the time u = 1,
this region has vanished entirely, and the WC4 formula
dominates and works well everywhere.

The final step is to write these interpolations as a
function of u and ρ instead of the dependence on x
through z̄. This is accomplished again using the results
for the F-functional from Appendix C.2. We thus find
z = x(ρ, u)/u = −1/u × ∂f/∂ρ. The values of z(ρ, u)
can be inserted into equation (41) to deliver the ker-
nel functional. The kernel parameters as a function(al)
of ρ are plotted in Figure 13. The frequency deviations
and oscillator strength as a function of ρ are plotted in
Figure 14.

5 Discussion and outlook

5.1 Analogy to real diatomic molecules

The asymmetric Hubbard dimer behaves similarly to real
diatomic molecules stretched to large bond-lengths when
the latter are treated within a “minimal model”, i.e.,
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when only the KS HOMO and LUMO orbitals are con-
sidered. If the molecule is neutral, these two orbitals
become energetically so close when approaching the dis-
sociation limit, that the minimal model captures the
essential physics since couplings to the many other orbitals
in the molecule are far smaller in comparison. In the Hub-
bard model, there are only ever two orbitals, so it makes a
natural model for these stretched molecules. (Such a min-
imal model does not capture van der Waal’s interactions
between the atoms, which result from fluctations within
each atom.) The problem of laser-induced charge-transfer
dynamics has been studied in this way [20,49,50]. Here we
compare the kernel of the real molecule in this limit with
that of the Hubbard model.

The ground state of such a stretched neutral molecule
has close to one electron on each atomic HOMO. Assum-
ing then that the atomic orbitals are orthogonalized, we
consider the MH limit of the Hubbard dimer, whose
ground state is (see Appendix C.5 for details)

|ψ0〉 ≈
1√
2

(|12〉+ |21〉). (43)

(On the other hand, a stretched cationic diatomic
molecule approaches the CT limit of the Hubbard dimer,
in the particular case where the LUMO and HOMO of the
molecule are on different atoms.) In neutral molecules, the
exact KS HOMO has the form of a bonding orbital, strad-
dling both atoms with a density equal to the sum of the
individual atomic HOMO densities, while the LUMO has
approximately an antibonding form. This holds for both
homo-atomic and hetero-atomic neutral molecules [19,77].
Their orbital energies become increasingly degenerate as
the molecule is stretched, so the KS excitation energy
becomes very small (exponentially small with the inter-
atomic distance R). This is consistent with the Hubbard
dimer, where this excitation energy is equal to the hopping
integral 2 t, which would also decay exponentially with R
(see again Appendix C.5). Strictly speaking, to model a
heteronuclear neutral molecule with a Hubbard dimer, we
should require different U -parameters on each site, with
Ui = Ii − Ai (although Appendix B.3 shows how to map
such a dimer onto one with the same U on each site).
In any case, even with the same U on each site, we cap-
ture the basic qualitative features of excitations and the
xc kernel of stretched molecules with the MH limit of the
Hubbard dimer.

For the molecule, we can write the kernel (in the
minimal model, restoring dimensional units) [19,20] as
fqqHXC(ω) = fqqHXC(ω = 0) + fqqHXC,dyn(ω). The adiabatic part

fqqHXC(ω = 0) =
ω1ω2

4ωS

− ωS

4
, (44)

where ω1 = Ib − Aa − 1/R, ω2 = Ia − Ab − 1/R are the
excitation frequencies for charge-transfer excitations from
atom b to atom a and vice-versa, and ωS ∼ e−αR is
the Kohn-Sham HOMO-LUMO gap. Comparing with the

adiabatic Hubbard kernel in the MH limit, equation (22),

fst =
ν1 ν2

2 ν4
− νS

2Ws
, (45)

we see the adiabatic part in both is proportional to the
product of the exact excitation frequencies, and both
blow up as in the limit (u/x or R→∞). Comparing the
dynamical part

fqq,dyn
HXC (ω) = fqqHXC(ω)− fHXC(ω = 0)

=
ω2

ωS

(
δ2

ω2 − ω1ω2

)
, (46)

where δ = (ω1 − ω2)/2, with that of the dimer, equation
(23), we observe both have a pole at the product of the
two exact excitation frequencies, and both blow up in the
limit. Thus the kernel in the case of a stretched diatomic
molecule maps closely to the form of the kernel for the
Hubbard dimer in the MH limit (Appendix C.5).

5.2 Applications

In this paper, we have thoroughly explored the linear
response TDDFT of the Hubbard dimer. We have shown
how the standard expansion of many-body theory is not
useful for understanding the competition between inho-
mogeneity effects and correlation effects. We find that
strong correlation is better characterized by an expansion
in which the ratio ∆v/U is kept fixed rather than ∆v
itself. It makes sense that inhomogeneity should be mea-
sured relative to the interaction strength. By expanding in
powers of 1/u keeping that ratio fixed, we find an accurate
expansion for the strongly correlated limit. Moreover, we
can smoothly interpolate this expansion with the standard
weakly-correlated limit, and construct an explicit approx-
imate XC kernel that works well in both regimes, and does
not fail badly in between.

How can this kernel be used? Clearly, this kernel itself
is constructed within a lattice model, and so might be
used as an approximation (or the starting point of a more
general approximation) to apply TDDFT to lattice mod-
els. There is substantial history of studies in this area
[40–56,60]. Such applications can be useful in studying
systems too large to be accessible by more direct quan-
tum solvers, where the relative inexpensiveness of DFT
can be crucial.

A second way one could imagine this kernel being used
is in a continuous real-space calculation, e.g., a diatomic
molecule, in which some choice has been made that assigns
some fraction of the electrons to each atom. Then the ker-
nel might be applied directly to these occupation numbers,
allowing double excitations to be included in TDDFT cal-
culations of the system. This might prove particularly
effective when the bond is stretched, so that electrons
truly are localized on each site.

A third way the kernel might be used is simply
as an illustration of the effects of strong-correlation
within linear-response TDDFT, to inspire construction of
frequency-dependent kernels that can be applied to realis-
tic systems. Such kernels, when applied within a minimal
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basis model, should capture the same effects shown here,
as discussed in the previous section.

The range of validity of the kernel can be extended
and tested by solving larger or more complex systems
like multi-orbital Hubbard dimers, because some of these
models are amenable to numerically exact solutions.

An important point in this work is also the literal
existence of the kernel itself. We have given the explicit
frequency-dependence of the dynamic XC kernel that is
exact for this Hamiltonian and two electrons. Such kernels
do exist and reproduce the exact transition frequen-
cies and oscillator strength, including that of the double
excitation, even when it represents a charge transfer.

The Hubbard dimer can be easily generalized to the
asymmetric Anderson dimer as discussed in Appendix B.3.
So the results presented here can be applied to this later
model.

We have also proven or illustrated many smaller, related
results, such as how to identify multiple excitations from
single ones, the oscillator strength sum-rule for this lattice
model, the adiabatic connection formula and the Kohn-
Sham linear response for fractional occupations.
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Appendix A: Exact energies and weights

We use the following basis states to span the sub-space
labelled by N = 2, S2 = 0 and Sz = 0:

|ϕa〉 =
|12〉+ |21〉√

2
= (1, 0, 0)†,

|ϕb〉 = |11〉 = (0, 1, 0)†,

|ϕc〉 = |22〉 = (0, 0, 1)†. (A.1)

A.1 Many-body states

The three singlet eigen-energies of the Hubbard dimer
within the sub-space are (i = 0, 1, 2):

ei =
2

3

(
u+

√
3 + 3x2 + u2 cos

(
θ +

2π

3
(i+ 1)

))
,

θ =
1

3
cos−1

[
9x2 − 9/2− u2

(3 + 3x2 + u2)3/2
u

]
, (A.2)

and cos−1 denotes the principal value of the complex
arccos function. Next, the eigenstates are,

|Ψi〉 = (αi, β
+
i , β

−
i )†,

αi =
ei − u
ei ri

, β±i
u− ei ± x√

2 ri
,

ri = r(ei) =
√
x2 + (ei − u)2 (1 + 1/e2

i ). (A.3)

Notice that normalization implies |αi|2 + |β+
i |2 + |β−i |2 =

1, and that the density for each of the three states is
ρi = ∆ni/2 = (β+

i )2 − (β−i )2. We denote the ground-
state density ∆n = ∆n0 (or ρ = ρ0) and the transition
frequencies as

ν1 = e1 − e0 = 2
√

1 + x2 + u2/3 sin θ,

ν2 = e2 − e0 = 2
√

1 + x2 + u2/3 sin(θ + π/3). (A.4)

The weights are given by

√
W1,2 = |〈ψ0|∆n̂|ψ1,2〉| =

4x e2,1

r(e0) r(e1,2)
, (A.5)

while

ν3 = ν1W1 + ν2W2 = −8 (e0 − u)2

e0 r2
0

. (A.6)

Equations (A.4) and (A.5) are used in equation (11), and
equation (A.6) is used in equation (12) of the main text.

A.2 Kohn-Sham states

The spin-independent dimensionless Hamiltonian written
in the single-particle {|1〉, |2〉} basis is

ĥs =

(
v̄s
2 t −

∆vs
4t −1/2

−1/2 v̄s
2 t + ∆vs

4t

)
, (A.7)

where the KS potentials are

v̄s = v̄ + v̄Hxc = v̄Hxc,

∆vs
2t

=
∆v

2t
+

∆vHxc

2t
= xs = x+ xHxc. (A.8)
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It is useful to define the auxiliary variables rs =
√
x2
s + 1,

x̄s = xs/rs. Then, the eigenvalues and normalized eigen-
functions are given by

e±s = v̄s/(2 t)± rs/2, |φ±〉 = c±s |1〉 ∓ c∓s |2〉, (A.9)

where c±s =
√

(1∓ x̄s) /2. The ground-state density is

ρ = 〈φ0|
∆n̂

2
|φ0〉 = x̄s, xs =

ρ√
1− ρ2

. (A.10)

The singlet KS 2-particle states can be found from slater
determinants of the KS single-particle states:

|Φ0〉 =
(√

2 c+s c
−
s , (c−s )2, (c+s )2

)†
,

|Φ1〉 =
(

(c+s )2 − (c−s )2,
√

2 c+s c
−
s , −

√
2 c+s c

−
s

)†
,(A.11)

|Φ2〉 = (
√

2 c+s c
−
s ,− (c+s )2, −(c−s )2)†. (A.12)

The KS transition frequencies are:

νs = rS, νd = 2 rS, (A.13)

where νd is the KS double, trivially twice the single, νs.
The weights are

√
Ws = |〈Φ0|∆n̂|Φ1〉| =

√
2

rs
, (A.14)

while Wd vanishes entirely. Equations (A.10), (A.13) and
(A.14) are used in equation (19) of the main text.

Appendix B: Proofs and generalizations

B.1 Oscillator strength sum rule

The sum rule for the density-density response operator
can be obtained from:

〈Ψ0|

[
ρ̂,

[
ρ̂,
Ĥ

2 t

]]
|Ψ0〉 = −2

∑
m6=0

νm |〈Ψ0| ρ̂ |Ψm〉|2.

(B.1)
Some little algebra shows that the commutators can be
written as T̂ /(2 t), yielding

∑
m6=0

νm |〈Ψ0| ρ̂ |Ψm〉|2 = −1

2
〈Ψ0|

T̂

2 t
|Ψ0〉. (B.2)

This result is general and valid for the Hubbard dimer irre-
spective of the number of electrons. The relation between
the kinetic energy and the weights of the density-density
linear response in the Hubbard model has been already
established in the literature in the past (see e.g., [71,72]).
In these references it is emphasized that the sum rule
for this model is not providing the full story because the
Hamiltonian contains only a single state per site and thus

allows only intraband transitions. The complete f -sum
rule includes all allowed interband transitions and does
not depend on the electron-electron interaction unlike the
case in the Hubbard model [72]. Equation (B.2) reads
explicitly for N = 2

ν3 = ν1W1 + ν2W2 = −8 (e0 − u)2

e0 r2
0

, (B.3)

where the right-hand side of the equation is a function of
x and u. Equation (B.3) is used in equation (12) of the
main text.

B.2 Fluctuation-dissipation theorem

We start by rewriting the Hubbard interaction term in
terms of N and ∆n,

V̂ee =
U

4
(N̂2 + ∆n̂2)− U N̂

2
, (B.4)

where we have used the fact that n̂2
iσ = n̂iσ for fermion

operators. Using this definition we can write the Hamilto-
nian

Ĥλ = V̂ λ + T̂ + λ V̂ee

= −∆vλ ∆n̂

2
+ T̂ +

λU

4

(
N̂2 + ∆n̂2

)
−λU N̂

2
. (B.5)

By integrating the Hellmann-Feynman equation between
λ = 0 and λ = 1 we obtain the following expression for
the ground-state energy

E0 = −∆n∆v

2
+ Ts

+
U

4

∫ 1

0

dλ 〈Ψλ0 |N̂2 + ∆n̂2|Ψλ0 〉 −
U N

2
. (B.6)

By comparing this expression for E0 with the definition
of the total energy, we extract

Exc =
U

4

∫ 1

0

dλ 〈Ψλ0 |N̂2 + ∆n̂2|Ψλ0 〉 −UH −
U N

2
. (B.7)

The first term in the integrand in equation (B.6) is just
N2, while from equation (10) we find

∑
m6=0

|〈Ψλ0 |∆n̂|Ψλm〉|2 = − 1

π

∫ ∞
0

dω Imχλ(ω). (B.8)

Inserting this into equation (B.7) we finally have,

Exc = − U

4π

∫ 1

0

dλ

∫ ∞
0

dω Imχλ(ω)− U N

2
, (B.9)
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where we have made use of the expression of the Hartree
energy,

UH =
U

4

(
N2 + ∆n2

)
. (B.10)

We also see that

Ex = − U

4π

∫ ∞
0

dω Imχλ=0(ω)− U N

2
, (B.11)

where we have made use of the expression of the exchange
energy for integer occupations N = 1, 2,

Ex = − U

4N

(
N2 + ∆n2

)
. (B.12)

This finally yields,

Ec = − U

4π

∫ 1

0

dλ

∫ ∞
0

dω Im
(
χλ(ω)− χλ=0(ω)

)
.

(B.13)
Equation (B.9) is used to define equation (26) of the main
text.

B.3 Generalization to Ui

It is easy to show that any result obtained for the Hubbard
dimer can be easily translated to a dimer with different
Coulomb energies U1 and U2 by simply re-writing the on-
site potential and Coulomb terms. For example for N = 2,
Sz = 0 we can use the relationships

∆v = ∆v′ +
U2 − U1

2
, U =

U2 + U1

2
, (B.14)

to write

Ĥ =

 0 −
√

2 t −
√

2 t
−
√

2 t −∆v′ + U1 0
−
√

2 t 0 ∆v′ + U2

 . (B.15)

Similar transformations can be defined for N = 1, 3. A
corollary is that the solution of the Anderson dimer can
be obtained from the solution of its equivalent asymmet-
ric Hubbard dimer. Equation (B.14) can be inserted in
equation (8) of the main text.

B.4 Fractional particle number

By inverting the relation

∆n[∆vs,N ] = (1− w) ∆n[∆vs, N ]

+w∆n[∆vs, N + 1], (B.16)

where N = N + w, and defining Ñ = N for N ≤ 2, Ñ =
4−N for N ≥ 2, we find

∆vs[∆n,N ]

2 t
=

∆n√
Ñ 2 −∆n2

,

rs[∆n,N ] =
Ñ√

Ñ 2 −∆n2
,

c±s =
1√
2

(
1∓ ∆n

Ñ

)1/2

. (B.17)

The above expressions yield

χs(ν) =
4
√
Ñ 2 −∆n2

Ñ
(
ν2 − Ñ 2

Ñ 2−∆n2

) , (B.18)

that indicates that we can generalize the response func-
tion to arbitrary fractional N . Equation (B.18) is used to
define the exact expressions of the coefficients in equation
(19) of the main text.

Appendix C: Expansions and limits

C.1 Symmetric limit

The energies can be written in terms of ru =
√

4 + u2 as

e0,2 =
1

2
(u∓ ru), e1 = u. (sym) (C.1)

The linear response frequencies and weights are

ν1 =
1

2
(u+ ru), ν2 = ru, (sym) (C.2)

W1 = 2

(
1− u

ru

)
, W2 = 0.

The weight of the second excitation is identically zero. The
linear response parameters described in the main text are

a =
ru
8
, b = 0, c =

ru
8

ru + u

ru − u
, νf = ru. (sym)

(C.3)
Finally, the overlap between the exact and KS ground
state wavefunctions is

〈Ψ0|Φ0〉 =
2− u+ ru√

2 [(u− ru)2 + 4]
. (sym) (C.4)

Equation (C.2) is used in the discussions after equation
(11) and Figure 2.
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C.2 Ground-state density functional

The F-functional of the Hubbard dimer looks like

F(ρ, u) =
F (ρ, u)

2 t
= min

Ψ
〈Ψ | T̂

2t
+
V̂ee
2t
|Ψ〉

= min
g

(−g + h(g, ρ, u)),

h(g, ρ, u) = u
g2
(

1−
√

1− g2 − ρ2
)

+ 2 ρ2

2 (g2 + ρ2)
. (C.5)

Solving for g in ∂h/∂g = 1 yields a tenth-order equation,
that after some tuning can be reduced to the following
sixth-order equation

p2(g)u2 + p1(g)u+ p0(g) = 0, (C.6)

where

p0 = (g2 + ρ2)2 (g2 + ρ2 − 1),

p1 = 2 ρ2 g (g2 + ρ2 − 1),

p2 = g2 ((g2/2 + ρ2)2 − ρ2). (C.7)

The resulting g0, when introduced in equation (C.5) deliv-
ers the F-functional. This is substituted in the equation
∂F/∂ρ = −x to find z(ρ) = x/u.

We bring back now the ansatz developed in reference
[61], that provides an excellent approximation for the
reduced potential z(ρ). This is

gapp0 (ρ) =

√
(1− ρ) (1 + ρ (1 + (1 + ρ)3 a1 u))

1 + (1 + ρ)3 a2 u
,

ai = ai1 + ai2 u,

a21 =

√
(1− ρ) ρ/2

2
, a11 = (1 + ρ−1) a21,

a12 =
1− ρ

2
, a22 =

a12

2
. (C.8)

We show in Figure 3 in the main text that the potential
z(ρ) obtained this way provides a very accurate fit to the
exact reduced potential.

C.2.1 Weakly correlated functional expansion

We expand the parameter g using the weak coupling
expansion g =

∑
n an u

n, and then apply the constraint
∂h/∂g = 1 to find the an coefficients for g0. We find

g0 = ρ̄

(
1− ρ̄2 u2

8
+
ρ2 ρ̄5/2 u3

4

)
,

F = −ρ̄
(

1− (1 + ρ2)u

2
+
ρ̄2 u2

8
− ρ2 ρ̄5/2 u3

8

)
,

∣∣zWC
∣∣ =

ρ

ρ̄ u

(
1 + ρ u+

5 ρ̄2 u2

8

+
(1− 4 ρ2) ρ̄5/2 u3

4

)
, (C.9)

where ρ̄ =
√

1− ρ2. This procedure delivers an accurate
estimate of z(ρ) for u ≤ 1− 2. We find that adding higher
orders than u spoils the estimate. Equation (C.9) is used
in equation (34) of the main text.

C.2.2 Strongly correlated functional expansion

The large-u expansion can be found from equation (C.6).
We expand g =

∑
n bn u

−n and find

g0 = ρ̃

(
1 +

√
1− ρ
2 ρ

1

2u

+
3 (1− 3 ρ)

16 ρ u2
+

1− 8 ρ+ 11 ρ2

8 ρ ρ̃ u3

)
,

F
u

= ρ

(
1− ρ̃

ρ u
− 1− ρ

4 ρ u2
− (1− 3 ρ) ρ̃

16 ρ2 u3

)
,

∣∣zSC∣∣ = 1− 1− 2 ρ

ρ̃ u
+

1

4u2
+

1 + 3 ρ− 6 ρ2

16 ρ̃ ρ u3
, (C.10)

with ρ̃ =
√

2 ρ (1− ρ). This procedure provides an accu-
rate estimate of z(ρ) for sufficiently large u, except near
ρ = 0. We have found that including higher orders in the
expansion also spoils how zSC fits z. This Appendix is not
used in the main text, but is included for completeness.

C.3 Many-body expansion

The Taylor series expansion in powers of u for fixed x
can be found by straightforward perturbation theory. A
simpler route however consists of expanding θ in equation
(A.2) in powers of u. We find to the order given:

e0,2 = ∓p0

(
1∓

(
1

2
+ x2

)
ũ+

1/4 + x2

2
ũ2

)
,

e1 = p0 ũ
(
1 + x4 ũ2

)
, (C.11)

where p0 =
√

1 + x2 and ũ = u/p3
0. The frequencies are

νj
p0

= j

(
1 +

1 + 4x2

8
ũ2

)
+ δj1

1− 2x2

2
ũ, (C.12)

while the weights are

W1 =
1

p2
0

(
2 + (4x2 − 1) ũ+ 2x2 (3x2 − 4) ũ2

)
,

W2 =
x2

p2
0

ũ2

(
1 +

(
2x4 − 4x2 − 1

4

)
ũ2

)
, (C.13)

and the oscillator strength is

f = x2 ũ2. (C.14)
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The KS values are

νs
p0

= 1− x2 ũ+
7x2

8
ũ2,

Ws =
2

p2
0

(
1 + 2x2 ũ+ x2

(
3x2 − 7

4

)
ũ2

)
. (C.15)

The kernel parameters are, to the order given,

a =
p0

4

(
1− x2 ũ+

(
x2 +

1

8

)
ũ2

)
,

b =
9x2 p3

0 ũ
2

16

(
1− 2

3
p0 ũ

)
,

νf = 2 p0

(
1 +

p2
0 ũ

2

8

)
. (C.16)

Equation (C.16) is used to define equation (33) of the main
text.

C.4 Expansion for fixed interaction-asymmetry ratio

We find that equation (A.2) can be written as the
following cubic equation for the variable cos θ:

cos 3 θ = cos θ
(
4 cos2 θ − 3

)
=

9 z2 − 1− 9/(2u2)

(zb + 3/u2)3/2
, (C.17)

where zb = 1 + 3 z2. The zeroth order of the above
equation in a 1/u expansion looks hardly solvable for
cos θ:

cos θ
(
4 cos2 θ − 3

)
=

9 z2 − 1

z
3/2
b

(u→∞). (C.18)

However, we note that the second excited state can be
written in this limit as

e2 = u (1 + z) =
2

3
u (1 + z

1/2
b cos θ) (C.19)

so that we find

2 z
1/2
b cos θ(z) = 1 + 3 z,

2 z
1/2
b sin θ(z) = ±

√
3 (1− z). (C.20)

It is easy to check that this result for cos θ solves the
cubic equation (C.18). Choosing the plus or minus signs
for the sin function yield e0 = 0 or u (1− z) hence render-
ing the MH or CT regimes, respectively. We can expand
now the full θ function in powers of 1/u2, and retrieve eas-
ily the results found below using the perturbation theory.
These results are used to find equation (33) in Section 4.3
and equation (39) in Section 4.5 and equation (40) in
Section 4.6.

C.4.1 Perturbative expansion

The basis states |ϕa,b,c〉 defined in equation (A.1) become
the eigenstates for u =∞, and are the starting point of the
perturbative expansion. The ground state is |Ψ0〉 = |ϕa〉 if
z < 1 and |Ψ0〉 = |ϕb〉 if z > 1. There is therefore a change
of limits at z = 1 that demands a different expansion for
the MH and CT regimes. The dimensionless perturbed
energies to third order in 1/u are

ea = − 1

za u
+

16 (z2 + 1)

(za u)3
,

eb,c = u (1∓ z) +
1

2 (1∓ z)u

− z ± 1

8 z ((1∓ z)u)3
, (C.21)

where za = 1−z2, and the corresponding perturbed states
to up to order 1/u4 are:

αi = gα,i
∑
k

f
(k)
α,i u

−k,

β±i = gβ,i,±
∑
k

f
(k)
β,i,± u

−k,

gα,a = gβ,b,+ = gβ,c,− = 1,

gα,b(z) = − 1√
2 (1− z)

, gα,c(z) = gα,b(−z),

gβ,a,± = ∓ 1√
2 (z ∓ 1)

,

gβ,b,−(z) = − 1

4 z (1− z)
, gβ,c,+(z) = gβ,b,−(−z),

f (0)
α,a = f

(1)
α,b = f

(1)
β,a,± = f

(0)
β,b,+ = f

(2)
β,b,− =

= f
(2)
β,c,+ = f

(0)
β,c,− = 1,

f (2)
α,a = −z

2 + 1

2 z2
a

,

f (4)
α,a =

3 z4 + 30 z2 + 11

8 z4
a

,

f
(3)
α,b(z) = − 2 z + 1

4 z (1− z)2
, f (3)

α,c(z) = f (3)
α,c(−z),

f
(3)
β,a,± = −z

2 ± 2 z + 3

2 z2
a

,

f
(2)
β,b,+(z) = − 1

4 (1− z)2
, f

(2)
β,c,−(z) = f

(2)
β,b,+(−z),

f
(4)
β,b,+(z) =

6 z2 + 6 z − 1

32 z2 (1− z)4
, f

(4)
β,c,−(z) = f

(4)
β,b,+(−z),

f
(4)
β,b,−(z) = − 3

4 (1− z)2
, f

(4)
β,c,+(z) = f

(4)
β,b,−(−z).(C.22)
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C.4.2 Mott-Hubbard regime U > ∆v

The ordering of states in the MH regime is 0 = a, 1 = b,
2 = c. Then, the excitation energies are:

νMH4
1,2

u
= 1∓ z ± z ± 3

2 za u2
∓ (1± z)4 ± 8 z (z2 + 1)

8 z z3
a u

4
,(C.23)

while the weights and oscillator strength are

WMH4
1,2 =

2

(1∓ z)2 u2
− 2 z3 ± 7 z2 + 8 z ∓ 1

z (1− z)4 (z + 1)2 u4

±2 (z5 ± 8 z4 + 23 z3 ± 20 z2 + 14 z ∓ 2)

z (1− z)6 (z + 1)4 u6
,

fMH4 =
1− z

2
+

3 z2 − 1

4 z za u2
− 3 z4 − 22 z2 + 3

16 z z3
a u

4
. (C.24)

The density ρ = (β+
0 )2− (β−0 )2 is given to second order in

t by

ρ =
2 z

(za u)2

(
1− 2 z (2 + z2)

(za u)4

)
. (C.25)

This formula fits very well the exact ρ, although a slight
improvement can be gained by using

ρ =
2 z

z2 + u2 z2
a

. (C.26)

The kernel parameters are

aMH6 =
za u

8

(
1 +

3∑
p=1

f
(p)
a (z)

(za u)2 p

)
,

bMH6 =
z2
a z

2 u3

2 zb

(
1 +

3∑
p=1

f
(p)
b (z)

(z2
a zb u

2)p

)
,

νMH6
f = z

1/2
b u

(
1 +

3∑
p=1

f
(p)
ν (z)

(za zb u2)p

)
f (1)
a = 2 (1 + z2),

f (2,3)
a = −2− 7 z2 + z4, 2 (1 + 6 z2 + z4),

f
(1)
b = 7 z4 + 18 z2 − 1,

f
(2)
b =

37 z8 − 152 z6 + 202 z4 − 352 z2 + 9

4
,

f
(3)
b = −13 + 1063 z4 + 219 z8 + 49 z12

2

+383 z2 + 1242 z6 + 71 z10,

f (1)
ν = 2− z2,

f (2)
ν = −4− 3 z2 + 19 z4 − 4 z6

2
,

f (3)
ν =

8− 4 z2 + 137 z4 + 70 z6 + 49 z8 − 4 z10

2
,(C.27)

where za = (1− z2), zb = 3 z2 + 1. Equation (C.27) is used
in equation (39) of the main text. Equations (C.24) and
(C.27) are used to plot Figure 9 of the main text.

C.4.3 Charge transfer regime U < ∆v

The ordering of states in the CT regime is 0 = b, 1 = a,
2 = c. Then, the excitation energies, weights and strengths
are:

ν1 = u (z − 1) +
z + 3

2 z̄a u

−z
4 + 12 z3 + 6 z2 + 12 z + 1

8 z z̄3
a u

3
,

ν2 = 2 z u+
z

z̄a u
− z4 + 6 z2 + 1

4 z z̄3
a u

3
,

W1 =
1

(z − 1)2 u2

(
2− 2 z3 + 7 z2 + 8 z − 1

z z̄2
a u

2

+
2 (z5 + 8 z4 + 23 z3 + 20 z2 + 14 z − 2)

z z̄4
a u

4

)
,

W2 =
1

z2 z̄2
a u

4

(
1− 2 (2 z2 + 1)

z̄2
a u

2

+
40 z6 + 95 z4 + 26 z2 − 1

4 z2 z̄4
a u

4

)
,

f =
1

z z̄a (z + 1)u2
− 6 z3 − 3 z2 + 2 z − 1

2 z2 z̄3
a (z + 1)u4

. (C.28)

Here z̄a = z2 − 1. The density is given to second order in
t by

∆n = 2− 1

(z − 1)2 u2
+

3 z2 + 4 z − 1

4 z2 (z − 1)4 u4
, (C.29)

although the following expression fits the exact ∆n better:

∆n =
4u2 (1− z)2

2u2 (1− z)2 + 1
. (C.30)

The kernel parameters are

a =
(z − 1)

4
u+

z + 1

8 z (z − 1)u
− z2 + 5 z − 2

32 z2 (z − 1)3 u3
,

b =
(3 z − 1)2

16 z3
u,

− (3 z − 1) (18 z4 − 46 z3 + 31 z2 − 8 z + 1)

64 z6 (z − 1)2 u
,

νf = 2u z +
4 z2 − 4 z + 1

4 z2 (z − 1)u

− (2 z − 1) (8 z4 − 20 z3 + 26 z2 − 7 z + 1)

64 z5 (z − 1)3 u3
. (C.31)

Equations (C.28) and (C.31) are used to plot Figures 9
and 10 of the main text.
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C.5 Dissociative limit

We analyse here the states and charge response in the dis-
sociative limit, e.g., t → 0. Within the notation followed
in this article, this means z, u → ∞. We find that the
many-body and KS ground states match in the dissocia-
tive CT regime, but are very different in the dissociative
MH regime. We start with the Kohn-Sham response.

C.5.1 Kohn-Sham response

The KS potential in the MH regime is zero, xs = 0. There-
fore, rs = 1 and the wave-function coefficients cs,± =

1/
√

2. Hence the KS HOMO/LUMO wavefunctions are
bonding/antibonding orbitals

|φ±〉 =
|1〉 ∓ |2〉√

2
, (MH) (C.32)

with energies ∓t. As a consequence, the three singlet two-
particle states are

|Φ0〉 =
|12〉+ |21〉+ |11〉+ |22〉

2
,

|Φ1〉 =
|11〉 − |22〉√

2
,

|Φ2〉 =
|12〉+ |21〉 − (|11〉+ |22〉)

2
. (MH) (C.33)

We also find that the excitation frequencies and weights
are νs = 1 and νd = 2, Ws = 2, Wd = 0. Finally, the KS
charge response coefficients are as = cs = 1/4.

In contrast, the KS potential in the CT regime is xs =
x− u > 0. Therefore rs = x− u, the KS HOMO/LUMO
are

|φ−〉 = |1〉, |φ+〉 = |2〉, (CT) (C.34)

with energies ∓(x − u)/2. the singlet two-particle KS
eigenstates in the dissociative CT regime are

|Φ0〉 = |11〉,

|Φ1〉 =
1√
2

(|12〉+ |21〉) ,

|Φ2〉 = |22〉. (CT) (C.35)

The excitation frequencies are νs = x− u, νd = 2 νs, and
the weights are Ws = 2/(x − u) and Wd = 0. The coef-
ficients of the response function are as = (x − u)/4 and
cs = (x− u)3/4. The results of this section are also used
in the discussion in Section 5.1.

C.5.2 Many-body response

The eigenstates in the symmetric limit are

|Ψ0〉 =
|12〉+ |21〉√

2
, |Ψ1,2〉 =

|11〉 ∓ |22〉√
2

, (C.36)

while in the MH regime are

|Ψ0〉 =
|12〉+ |21〉√

2
, |Ψ1〉 = |11〉, |Ψ2〉 = |22〉. (C.37)

The overlap between the exact and KS ground state
wavefunctions in the MH regime is

〈Ψ0|Φ0〉 =
1√
2
. (MH) (C.38)

The states |Ψ0〉 and |Ψ1〉 swap their nature at around
z = 1, so in the CT regime the states are

|Ψ0〉 = |11〉, |Ψ1〉 =
|12〉+ |21〉√

2
, |Ψ2〉 = |22〉. (C.39)

The overlap between the exact and KS ground state wave-
functions in the MH regime is 1. We analyze only the MH
regime from now on because the CT formulas are rather
cumbersome and are not used in our interpolation. We
find that the excitation frequencies and weights are

ν1,2 = u∓ x, Wi =
2

ν2
i

. (MH) (C.40)

Then, the kernel parameters are

a =
1

2 ν3
=
u2 − x2

8u
, b =

(u2 − x2)2

2u (u2 + 3x2)
,

c =
ν1 ν2

2 ν4
=

(u2 − x2)3

8u (u2 + 3x2)
,

ν2
f =

ν1 ν2 ν3

ν4
= u2 + 3x2. (MH) (C.41)

Equation (C.36) is used in equation (43) of the main text.
The results of this section are also used in the discussion
in Sections 3 and 5.1.
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