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The exact conditions for density functionals and density matrix functionals in terms of fractional
charges and fractional spins are known, and their violation in commonly used functionals has been
shown to be the root of many major failures in practical applications. However, approximate func-
tionals are designed for physical systems with integer charges and spins, not in terms of the frac-
tional variables. Here we develop a general framework for extending approximate density functionals
and many-electron theory to fractional-charge and fractional-spin systems. Our development allows
for the fractional extension of any approximate theory that is a functional of G°, the one-electron
Green’s function of the non-interacting reference system. The extension to fractional charge and
fractional spin systems is based on the ensemble average of the basic variable, G°. We demonstrate
the fractional extension for the following theories: (1) any explicit functional of the one-electron
density, such as the local density approximation and generalized gradient approximations; (2) any
explicit functional of the one-electron density matrix of the non-interacting reference system, such
as the exact exchange functional (or Hartree-Fock theory) and hybrid functionals; (3) many-body
perturbation theory; and (4) random-phase approximations. A general rule for such an extension
has also been derived through scaling the orbitals and should be useful for functionals where the
link to the Green’s function is not obvious. The development thus enables the examination of ap-
proximate theories against known exact conditions on the fractional variables and the analysis of
their failures in chemical and physical applications in terms of violations of exact conditions of
the energy functionals. The present work should facilitate the calculation of chemical potentials
and fundamental bandgaps with approximate functionals and many-electron theories through the
energy derivatives with respect to the fractional charge. It should play an important role in develop-
ing accurate approximate density functionals and many-body theory. © 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4817183]

. INTRODUCTION

Exact conditions for the ground-state energy of many-
electron systems play a very important role in the develop-
ment and understanding of approximate density functional
and many body theories. Particularly relevant are the exact
conditions for fractional charges' and fractional spins,>? that
have highlighted some key failures of approximate density
functionals which are connected to major failures in chem-
ical and physical applications* associated with the dissocia-
tion of molecular ions, polarizabilities, barrier heights, mag-
netic properties, fundamental bandgaps, and strongly corre-
lated systems.

The main problem of density functional theory (DFT)
to give accurate energy gaps in finite and bulk systems can
be traced to the delocalization error, which is defined as the
deviation of a given approximate functional from the exact
linear behavior in fractional charges.> Consequently, most ap-
proximate functionals tend to over-delocalize the added elec-
tron or hole to give unphysically low energies for delocal-
ized electrons. The consequences of the delocalization error
can be seen not only in the prediction of derivative prop-

erties such as bandgaps and charge transfer excitations,® or
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the energy of stretched molecular ions,” but also in ther-
mochemistry and structures of molecules at equilibrium.®°
Progress has been made in designing functionals with re-
duced delocalization error.!*'* Because of the delocalization
error, currently, reliable bandgap prediction is dependent on
the use of many-body Green’s function theory, such as the
GW approximation. '3

Analogously, it has been proven® that fractional spins
arise in systems with large static correlation energy (strongly
correlated systems). Static correlation error of approximate
functionals is defined as the deviation in the energy of
fractional-spin states from the constancy condition defined
by the energy of the comprising pure spin states. This leads
to another set of different failures in DFT such as incorrect
chemical bond dissociation or failure for the band structure
prediction of Mott insulators.>?

The simple physical picture of fractional charges and
fractional spins comes from molecular dissociation.'® For ex-
ample, fractional-charge hydrogen atoms result from the dis-
sociation of HJ,” and fractional-spin hydrogen atoms from
the dissociation of H,.> This is key as it makes possible the
direct numerical verification for the fractional extensions of
approximate theories: The fractional-charge or fractional-spin

© 2013 AIP Publishing LLC
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calculations have to yield energies that agree with the limits
of the corresponding molecular dissociation.!”

For the extension of approximate functionals of the den-
sity or the first-order density matrix to fractional charges, N
4+ 6 (0 <68 < 1),the ensemble average of the density' or the
one-electron density matrix'® can be used

p1(N +8) = (1 =8)pi(N) +8pi1(N + 1). (1)

This leads to the use of fractional occupation of the orbitals,
p1(r, ') = Y inipi(r)¢:(r'), which extends local density
approximation (LDA), generalized gradient approximation
(GGA) or Hartree-Fock method (HF) to fractional charges
and fractional spins.> 319

These exact conditions for fractional charges and frac-
tional spins are just as important for many-body theory based
methods, where an extension to fractional occupations is
still required. However, this generalization is not always a
trivial question because the basic variable is no longer the
density or the one-particle density matrix. Furthermore, the
extension to fractional occupations does not correspond to a
finite temperature formulation of the theory evaluated at T
= 0. For Mgller-Plesset theory (MP2) and the random phase
approximation (RPA),?*-?> which depend on the unoccupied
orbitals and eigenvalues, the basic variable is the one-electron
Green’s function, which now plays the same role as the one-
electron density matrix for approximate density functionals.
The fractional extensions have been made for the MP2%?
and for the random phase approximation,>*?> but without
rigorous derivation.

In this work, we will show that the basic variable is an
ensemble average of the one-electron Green’s function for the
non-interacting systems. As it will be shown, this result agrees
with Eq. (1) and allows the correct extension of many-body
methods to fractional charges and fractional spins.

J. Chem. Phys. 139, 104114 (2013)

Il. FRACTIONAL CHARGES AND FRACTIONAL SPINS
BASED ON ONE-ELECTRON GREEN’S FUNCTIONS

There is a large class of approximate functionals or
many-body theories, which can be cast as functionals of the
one-electron Green’s function of the non-interacting reference
system. Because the electron density and the first-order den-
sity matrix for the non-interacting reference system is given
by the one-electron Green’s function, thus common function-
als of the density or the one-electron density matrix are in-
cluded.

The one-electron Green’s function of an N-electron sys-
tem in its ground state |¥}') is defined as*

G, j;t—1") = —i(‘IJ(I)V|T(ai(t)a}(t'))|‘lfév), @3]

in terms of the time ordering operator T and the creation af
and annihilation a operators. Note that the index i includes
spin. In terms of combined spatial and spin coordinates X,

GV(x, Xt —t) = —i(W) [T x, P, )| W)

=) GG jit — 0P X)), (3)
ij
with the field operators,

Px, )= ¢i(Xai(r) )

and

Pl =Y ¢;xa ), ©)

expressed as linear combinations of creation and annihilation
operators where the coefficients are the single particle spin or-
bitals {|¢;)} and the sums run over all possible single particle
states.

The one-electron Green’s function can also be expressed
in terms of a complete set of eigenstates {|\IJ,Q’ +1y) and eigen-
values {EN *+1} of the system Hamiltonian:

GN(l,],t —t) ie(t I)Ze’(EO EN+1)(1 t)<lIJN|a |\I1N+l)(\IJN+1|aj-|\I}(§V)
o — t)Ze"(Eg’Ef")("”)<\I/év}a}}lll,ﬁv’l)(\y,’tv’l\ai\\I’év) , (6)

which leads to the Lehmann representation in energy, given
by the Fourier transform
+00

GV, j.E) = / dt

oo

=2

_ t/)eiE([_l,)GN(l., ],t _ t/)

WN!GJ“’”“)(‘I’N“! aj| v

m

—(Ex" —E)) +in

‘I’N|aT|‘1’N ! ai | wy')
N—EY) —in

+Z

N

For a non-interacting system that is described by a nor-
malized Slater determinant ®) with one-electron orbitals
{|¢;)} and orbital energies {¢;}, its single-particle Green’s
function is given by

G*NG, jit—1)
= —i{®) |T(a;(t)al (1)) @)
= —i8;;e O — 10 — F) — 0(' — O(F — i)},

®)
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where F is a number larger than the index for the highest oc-
cupied orbital but smaller than the index for the lowest unoc-
cupied orbital. In coordinate and spin space

GONx, Xt — 1) = —i(®) [T x, HY X, )| D)) (9

=GN jit = e P x).  (10)
ij

In energy representation,

+00
GOV, ji E) = / d(t — 1) EIGONG, ot — 1)
—00
(11)
(i — F O(F — i
—5, | OO PED |y
E—¢+in E—¢g —in

and

GOV x, X3 E) =) GOV, j; E)pi (0] (x)

ij

=) e UL
i>F
+) B iy HOOB )
i<F
= Z By PRy

AP

where a, b, ¢, d are particle indexes (unoccupied), i, j, k, [ are
hole indexes (occupied), and m, n, o, p are general indexes.
Sometimes, i, j, k, [ are used for general indexes, in specific
cases as in Eq. (2).

To make the extension to fractional charge and fractional
spin systems, we construct an ensemble of systems that are
described with the same non-interacting reference Hamilto-
nian. For a fractionally charged system with N + § electrons,
where the spin character of the additional fractional charge &
is expressed through the orbital and its corresponding occupa-
tion number 7n;, we define the single-particle Green’s function
as the following ensemble average:

¢>, )¢ (x)*, (13)

G(),N+3(l-’ J,t _ t/)
=1 =80G", jit — 1)+ 8GN, jir — 1)
= —i8;;e 00 — 1)1 —n;) — 0¢ —Dn} (14)
or

GO,N+§(Z-’ J,E) — (1 _ (S)GO’N(ia j;E)+8GO’N+1(i, J’E)

_s (1 —ny) 4 n; (15)
T YlE-g+4in E—g—inl’
where
Zni=N+8. (16)
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In coordinate and spin space,

GOV, X1 E) = Y GOV, ji E)pi(x)¢i(x)

i

= Z F oo i 0o
i>F
+ ZFj F s i 00

1 7 s I\*
= 4 m%(x)%(x)

1
+ZE_81_”7

—i(0gi(x)*. (A7)

Fractional occupations occur only at the frontier levels, be-
cause we require the non-interacting ground state representa-
tion of an interacting system.

We have extended the index a for unoccupied orbital (par-
ticle) to include fractionally unoccupied states, and index i for
occupied states (hole) to include fractionally occupied states.
We also introduce the occupation-scaled unoccupied orbitals

$a(x1) = v/1 = naa(xi) (18)

and the occupation-scaled occupied orbitals

$i(x2) = /mi¢i(x2). 19)

Our extension allows the direct incorporation of fractional
charges and spins into many-body theories based on Green’s
functions.

The expression GV +(x, x'; E) Eq. (17), is the key re-
sult, which underlies a simple rule for extending approxi-
mate density functionals and many-body theories to fractional
charges and fractional spins: Notice that GOVt (x, x'; E) has
the same form as G%V (x, x'; E), except that (i) the parent or-
bitals need to be replaced by the occupation-scaled orbitals,
(ii) the set of occupied orbitals includes fractionally occu-
pied ones, and (iii) the set of unoccupied orbitals includes the
fractionally unoccupied ones. Thus, fractional orbitals enter
into both sets: as fractionally occupied, and as fractionally
unoccupied.

Because the fractional orbitals enter into the formal-
ism as fractional hole/occupied orbital and also as frac-
tional particle/unoccupied orbital, the matrix representation
for GON+9(j, J; E) can be written in the extended matrix of
(n, + nr + ny + n,), where n, is the number of (fully) occu-
pied orbitals, ny is the number of fractional orbitals, and #, is
the number of fully unoccupied orbitals. G N+ (i, j; E) is a
diagonal matrix with four blocks of states: occupied states of
the size n,, fractional occupied state of the size ny, fractional
unoccupied states of the size ny, and unoccupied states of the
size n,. The structure is

1
E—gi—in
GO,N+5 — E—¢i—in (lenp) . (20)

E—¢i+in

E—S,"’rirl
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Note that in Eq. (20), the Green’s function has been unfolded
into a matrix with the dimension of (n, + ny + ns+ n,), larger
than (n, + n; + n,), which is the dimension of all one-electron
states. In this way, the matrix elements in orbital space in
Eq. (20) are different from those in Eq. (15), but they have
the same real-space representation of Eq. (17).

In the following, we apply the fractional extension
G%N+% in various approximations and work out the details
applied to various types of approximate functionals in many-
body theory. Remarkably, in all the cases the simple extension
rule applies.

lll. HARTREE FOCK AND PERTURBATION THEORY

A. The density and density matrix from one-particle
Green’s functions

The non-interacting one-electron density matrix, corre-
sponding the hole part in the many-body language, is given
by

—+00 dE
psa,j):f o e ENGONT (i i E)
—00

dE
/ GON-‘rtS(l ] E)
cr 2mi

= —iG"" i, ji1, 1)

= §;jn;, 2n
where the integration along the path C4 is the integration from
—o0 to +00 and closed on the negative side of the complex

E plane. Analogously the non-interacting particle matrix of
many body-theory (the virtual state density) is

T JE
ﬁs(i,j)=/ S TIGONG, i )

—00
=iG"NT, jirt —1)

= §;;(1 — n;). (22)

In coordinate and spin space
ps(,X) =Y py(i, i (0T (X)
ij

— —l.GO’N+8(X, X/; t, t+)

=2 nidi (¢ (), (23)
and
%, X) =Y i i ()¢ (x)
ij
= Z(l — )i ()] (X)), (24)
such that

ps(x, X) + ps(x, X') = 8(x — X). (25)
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The electron density can thus be expressed in terms of the
occupation numbers as

P(X) =D nigi ()} (X). (26)

This equation is consistent with previous work>*!® for
any functional of p(x) or ps(X, X') such as LDA, GGA or HF.
Here and hereafter, we suppress the superscripts “N + §”
for the density and particle matrix for the non-interacting
fractional reference systems, when the fractional context is
unambiguous.

B. Perturbation theory based on one-particle
Green’s functions

We will derive energy functionals of G*"*+% within the
perturbation theory. The many-electron Hamiltonian is given
by

1
H=3), (—Evf + vmm)) +2_ v, @D
i i#]
or equivalently in Fock space

H = Zh,]a aj+ = Zl]lklaaalak

ljkl

—Zh,ja a; + — Zl]”klaaa/ak, (28)

l/kl

where
1 | .
hij = {¢i] — §V2 + Ve (D)| ;) = (i] — §V2 + Vexs (0] 1),
(29)
and

(ijlkl) = // dxidxo¢; (x1)¢; (X2)v(r12)di (X1)Pi(x2), (30)

(ijllkl) = (ijlkl) — (ijllk). (D)

Consider a non-interacting reference system which can
have a local or non-local potential vy = v.,; + u, of the form
vs(X) or vy(x, X') respectively, as determined by the nature
of u,

1
(—§V2+vm +u> pi) = i |di) - (32)
The equation for the Green’s function of the physical interact-
ing system is
[E—(h+u+Z9HGE)=1 (33)

and the corresponding Dyson equation

G(E) = GUE) + GYE)S*(E)G(E). (34)

The irreducible self-energy X *(E), expanded up to second-
order perturbation in the electron-electron interaction,?® is
given by

¥k, 1, E) = —(klu|l) + AZ*V(k, 1, E) + 222*@(k, 1, E),

(35)
where A is the order parameter representing the electron-
electron interaction, and the first- and second-order contribu-

tions are
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dE’
=0 ) = [ S5 S KNG ki) (36)
ct 2mi m

= D _(iklljl)ps(l. k)

kl

= D (k| jk)n
k

=J;—K

and

Q)i 1 [T dE, [T dE,
X6 E) = —5 Py Py
2 ) 2mi J_o 2mi

ijs (37)

DY ikliim) (nplljq)G°U, n; ENG’(m, p; E2)G (q, k; Ey + E2 — E)

klm npq

(I =npd = nwng

12(' [llm){Im||jq) +
= = l m m
2 a4 14 E—¢ —¢en+e;+in

Imgq

For the details of the integration leading to Eq. (38), see Sub-
section 2 of the Appendix.

Now we introduce the Hamiltonian H(}) as a function of

the coupling parameter A,

H(}) = Hy + A H], (39
where
Hy = Z(hij + uij)ajaj
ij
= Z aiajai, (40)
and

1 ..
= L ke - Sele, @
ijki i

Thus, H(0) = Hy, H(1) = Hy + H| = H. Then the total energy
as a function of A is

EM) = (W) )| HW)| WY ), (42)

and its derivative is

% = (W O Hy [ W (L) (43)

mn,(1 —ny) }

38
E—¢—¢en+e;—in (38)

The total energy E(1) for the physical system is given by
E(1) — E(0)

dMW O Hy [ Wi (1)

S t~—-

1

[ @
0

1
+5%(ij|k1)(‘IJéV(X)|aJa;a,ak}\I/(’)V()L)> . (44)
ij

— Z Mij(‘yév(K)MTa.i |\I'I(§V()‘))
ij

where we suppress the index of A in ;. This equation will
lead to various useful expressions of the total energy in terms
of Green’s functions, G*(E) and G(E), and the self-energies.

Using the equation of motion, we obtain, with details
given in Subsection 3 of the Appendix, E(1) in terms of G*(E)
and the irreducible self-energy X**(E),

E(1) — E(0)
1
1 T dE 1o s
0
(45)
Using the Dyson equation
G*(E) = G%(E) + GYE)Z*(E)GY(E), (46)

in terms of the reducible self-energy X*(E),
SME) = T*ME) + TM(E)G°(E)X*M(E)
= X*"(E) + T*(E)GY(E)ZX(E), 47)
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we obtain E(1) in terms of the reducible self-energy ME)
and GY(E),

1 P +00 dE - 0
E(1)— E0) = /dk/ é' ”Tr[ u(G"(E)
oo 2711

0
+GYE)ZME)GY(E)) + %EHE)GO(E)}

(48)

We now use Eq. (47) and express X*(E) in terms of the irre-
ducible self-energy X**(E) and G*(E),

INE)=ZME)[1 - GO(E)):“(E)]‘1 , (49)

which can be used to obtain the perturbation expansion for
>*(E) to input into Eq. (48) to obtain the total energy. In

addition, from Eq. (45), and using (G*(E))~! = (G%(E))™!
— X**(E), we have
+o00 1
E(1)— E©0) = /dk/ ’E”Tr< X):*’\(E))
x ((GUE)™ —=HE) ™, (50)

which expresses the total energy directly in terms of the irre-
ducible self-energy £*(E) and G*(E).
To second order, using Eq. (35) in Eq. (47),

IHNE) = [-au + AZ*(E) + A2 Z*O(E)]
+ [+ A2 O(E) + 22T (E)G(E)
x [—au+ AZ*D(E) + 2T PE)] + - -
= [—au+ AZ*D(E) + A2 E*O(E)]
+[—2u+AZ(E)IG(E)
x [—ru+ A2 V(E)] +
= M—u+ Z*V(E)] + 2}{Z*P(E)
+-u+ T OENCE)~u+ VBN + -,
(51

which will be used to derive the perturbation energy
functional.

1. Perturbation energy up to the first order

We now consider Eq. (51) up to first order, T*(E)
= A[—u + T*D(E)]. Then, collecting the terms of order A°

J. Chem. Phys. 139, 104114 (2013)

in the integrand of Eq. (48) gives

+00
EO — g+ L /dx/ dE g,
Zm
x Tr{A[—2u + Z*D(E)GYE)}

= Z(h,-,» +ugn; + {— > uin +% Xk:(ik|lik)nkni:|

1
= Zhiini +3 ;wknik)nkni, (52)

which is just the Hartree-Fock energy functional for fractional
systems.

2. Perturbation energy up to the second order

Consider Eq. (51) up to second order and collect the
terms of order A! in the integrand of Eq. (48), then

“+o00
E? =L /dk/ dE jien
2711

x Tr{—u(G*(E)(A\[—u + T*D(E))G(E))

n %AZ(Z*(Z)(E) + [—u+ T O(E)GY(E)[—u

+Z*D(EG(E))
+00
_! / d—E,efE"Tr{z*@)(E)GO(E)
4 J_ 2mi
+[=2u+ Z*V(E)G(E)[—u + T*V(E)GYE)).
(53)

Using Eq. (A20),
1 [T dE
Z/_OO 2mi

1
=7 > Gigllimimlliq)*

ilmg

TP (E)GY(E))

1 —n)(1
&+ & — €& —Em

— Np)Ngn;

With HF orbitals where —u + £*V(E) =
energy is given by

0, the second order

E® — % Z(iq”lm)(lmlliq)(l = Pu)(1 = g , (59

g +e& —& —é&n

ilmg

which is the fractional extension of the MP2 energy used
previously.”> We attributed initially this fractional extension
to the finite-temperature extension of second-order perturba-
tion theory,?’ with the fractional occupations from finite tem-
perature excitations. For a recent discussion on the finite-
temperature MP2 theory, see Ref. 28. However, the current
derivation has been developed for systems with fractional
charges and spins at zero temperature.

Straightforwardly, we can obtain the derivatives
with respect to the occupation numbers of the MP2 second
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order energy

JE@
Bni

(I = ny)njng

2(l —n)(l —ny)n;
& t+ej—¢e —é&p

1
— 7 D_(ikllim){ml|im)2

Jjkm

1
= 3 D_tijllm){iml|ij)

o &+ & —& —&n
2

(1 - nl)(l - nm)nq + nlnm(l - nq)
& —& —&mt & & —& —&mt &

1
= 5 2 _liglitm){im]liq) {

Imgq

= 2*(2)(i,i,8l’), (55)

where —u + X*V(E) = 0 has again been used. These derivatives have previously been used to calculate the MP2 gap of some
atoms and molecules.??

IV. POLARIZATION PROPAGATORS AND RANDOM PHASE APPROXIMATIONS

Moving forward, we consider partial summation of perturbation theory based on the random phase approximation. The particle-
hole two-particle Green’s function is defined as

Gon(x1, X0, 1) — 1) = —i<\p(l)v|T(I/}T(I)K[Af(l)l/}]t(z)&(z))}Wév)
= —i(W [T W)

= —i{0(n — (W' [H(DAD)| W) + 62 — 1)(Wy' | 52D Wy )}

- {9(“ — i Y2 - ED g oo e o o))

+60(t, — 11) Z e"(Eo”—Eu”)“?—’l)(\ygV |px)| WY )WY |,6(x1)|\llév>} ) (56)

The Lehmann representation in energy is given by

+00
Gon(x1, %2, E) = / d(t; — 1) EOTG y(x1, Xa, 11 — 1)
—00
3 (o 0ol ) g [ o 94 o
. E—(EN — EY) +in - E—(E) —EN—in
Considering the density operator in terms of the field operators
px1) = YD)
=Y eixalt) Y ¢ixnain)
j i
leads to the diagonal elements
Gpn(X1, X058 — 1)) = Z¢;‘<(Xl)d)i(xl)¢:(X2)¢1(X2)G1)h(iv Jik, Lt — 1), (58)
ijkl
and
Gon(X1, X3 E) = Z¢>‘?(X1)¢i(X1)¢;(X2)¢1(X2)Gph(i, Ik, L E), (59

ijki
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where we have used the four-point Green’s function

Gouli, jik. Lty — 1) = —i(W) | T (@} (t)a;(t)al()ar )| W)

- —i{@(tl — i) Y e (B E 0 g g, | W YWY a0
n

00 = 1 30 B E) 0w a0 s )
n

Thus,

(95" laja [ 9 |afen | W (o' lagen| @)WY |ajas | W

Gpnlio Jik L E) = E—(EN —E))+in Z E—(Ef —EY)—in

n

Similarly the polarization propagator in the spin and coordinate space is defined as

TI(x1, o511 — 1) = —i {(¥) [T (2()AQ@Y| W) — (wg' [ 6D W)@y |p2) ')}

= =i {00 — 0 3 B ) [ 509
n#0

0 — ) Y BN o)W e w)
n#0
or
(W' [ Ao [ )9 |p(xa) ') ) (o' [0 | Wi )W [ p(x) ')

n#0

n#0

The four-point polarization propagators are

G, jik, Lt — 1) = —i [(\y§|T(aj(z1 yai(t)al (t)a()| W) — (9 |alay |\IJ(])V)<\I/6V}a;[a1|‘-IJéV>}

=—i {e(n i 3 ) ol w0 afa )

n
60 — 1) 3 B E N afa |0 s >}

— (W |ata; W )i |afar | W)

= GGtk Loty — 1) — () b )0l ).
or
e e e

E—(EN —EY)+in _;; E—(EY —EN)—in

NG, jik. LE) =y
n#0

= Guli, jik. 11 E) — 2m8(E)W) |ala; | W) )W) |afar | W),
In coordinate and spin representation X, the diagonal elements are

M(x;, X251 — 1) = Z¢>;‘(X1)¢i(X1)¢:(X2)¢l(X2)H(l’7 Jik, ity — 1),
ikl

and

H(x, X5 E) = Z¢f(X1)¢i(X1)¢Z(Xz)¢1(X2)H(i, Jik, L E).

ijki

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)
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The polarization propagator describes the dynamic density-
density fluctuation, which can be approximated in the ran-
dom phase approximation and leads to an approximate ground
state correlation energy.

A. Non-interacting systems

The non-interacting propagator can be evaluated from
Egs. (64) and (65), or it is given by?®

n°G, jik, l:t — 1)

=—iG', kity — )G, jitr — 1)

= —i(—)8ie " THO(1 — 1) — F)
—0(1, — 1)O(F — i)}
(—i)8e” " "0t — 1)0(j — F)
—0(t1 — )O(F — j)}

= —i88;," Oty — )0 — F)O(F — j)
+0(t, — 1)O(F — )O(j — F)}, (68)

and

n°G, j;k, I; E)

+oo JE’
_ / &% 6%, k;E + ENG(, j; E')

oo 2Ti

O(F — ot — F) Q(F—i)Q(j—F)}
E—(s—¢ep)+in E+(—e)—in]’
(69)

=61 {

B. Non-interacting systems with fractional charge
and fractional spin

Using the key equations, Egs. (14) and (15), and follow-
ing the same relationship as the integer cases in Sec. [V A, we
obtain the propagator for fractional systems,

NG, jik, In — 1)
= —iG" i kit — )GV jin — 1)
= =iy 8" Ot — 1)(1 — nin;
+6(t — t)ni(1 = n )}, (70)
and

noN* G, jik, I E)

T JE’
- / — GOV ks E + ENG™NTo(, jL E)
oo 2Ti

(1—nin; B ni(1 —nj) }
E—(ss—¢)+in E+(;—&)—in]’
(71)

=61 {

This is another key equation, which raises several inter-
esting points:

1. %N +9% is not the ensemble average of the N and N + §
systems, whereas GON+3 s,

2. In Ho(i,j; k, I; E), Eq. (69), for integer systems it is ob-
tained that I1°(, j; k, [; E) = (1 — §;)T1°(i, j; E), because

J. Chem. Phys. 139, 104114 (2013)

of 6(F — j)8(i — F). However, for the TI®N+9(i, j: k, I;
E), the term i = j is non vanishing in general, because
(1 — mnj)n; can be non-zero for fractionally occupied
orbitals.

3. The index i can be divided into three sets: particle (p) (or
unoccupied u), hole (h) (or occupied, o), and fractional
(H. Note the somewhat confusing many-body terms of
hole state for i < F, and particle state for FF < i. The
particle and hole concept is from the “vacuum” of the
Fermi sea, a particle is obtained by adding it to the state
above F' and hole is obtained for states below F. In nor-
mal terms, the occupied states (o) are below F, and the
unoccupied states (u) are above F. When appropriate,
we will use {a, b, c, d, ...} to denote unoccupied (par-
ticle) and fractional unoccupied states, {i, j, k, I, ...}
to denote occupied (hole) and fractional occupied states,
and {m, n, o, p, ...} to denote arbitrary states. In the
concept of the “vacuum” of the Fermi sea, the frac-
tional occupied states are both particle and hole states.
In the normal occupied/unoccupied concept, the frac-
tional occupied states are both occupied and unoccupied
(fractionally).

4. T%N+3(, j: k, [; E) is non-vanishing for the following
cases:

(a) (I —mnyn; #0, whenj < F < i; thatis jis a hole state
(j < F) or a fractionally occupied state (j = F), and
i is a particle (F < i) or a fractionally occupied state
(F=1).

(b) ni(1 — n;) # 0, when i < F < j; that is i is a hole
state or a fractionally occupied state, j is a particle or
a fractionally occupied state.

5. Mo~N+ ‘S(i, Ji k, I; E) is a diagonal matrix in the space of
(if x ki) because of 8;45;;. Similarly to Eq. (20), we will
use the unfolded matrix representation of the propagator,
whose dimension is d;; = 2(n, + ny)(n, + ny), where n, is
the number of (fully) occupied orbitals, n; the number of
fractionally occupied orbitals, and n,, the number of fully
unoccupied orbitals. Its structure is given in Table 1.

In the two-point spin coordinate representation, the frac-
tional propagator is given by

MOV (xy, X031 — 1)
= > ¢1x1)Gi(x1)p; (x) ()TN, jik, Lty — 1),
ijkl
(72)
which in the energy form is
MV (xy, x,; E)
= ¢3x)i (x); (X)) NG, jik, 15 E)

ijkl

= ¢1(x1)e; <xl)¢;"(X2)¢j<X2){

ij

(1 —ni)nj
E— (i —gj)+in

Il,(l —nj)
_E+(sj—8i)—in}

_ Z Pi(X1,X2)p0j (X2, X1)  pi(X1, X2)0 (X2, X)
T E—(ei—ep)+in E+(s;—&)—in’
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TABLE I. Structure of IT®N*3(j, j: k, I; E).

J. Chem. Phys. 139, 104114 (2013)

j index
i index o (occupied) of (occupied fractionally) uf (unoccupied fractionally) u (unoccupied)
° 0 0 *% o=
of 0 0 7% R
where the occupied density matrix (hole) is and
Pi(X1. X2) = nigh (X))} (X2). (73) (5 a2V [ %' )

and the unoccupied density matrix (particle) is B l N Z(i . N ot N

) =3 JIKD(Wg' ()] (1)a ()ar(t)ar ()| Yo' (1)

pi(X1,X2) = (1 — ny)gi(x1)P; (X2). (74) ijkl
If the orbitals are real, then | A R

pi(x1.32) = pilxa, X, (75) = 3 [ [ dsayo plw ol 0.0

and the second part in M%N+3(x,, x,; E) can be rearranged as

Z pi(X1, X2)pj (X2, X1) Z pj (X1, X2)pi (X2, X1)
E+(g; —&)—in - E+ (g —gj)—in

ij

T Etei—ep)—in
therefore

MY (xy, x0; E)
= Z Pi(X1, X2)p (X2, X1) <
ij

1
B E+(£,-—£j)—i77>' an

1
E—(Ei—Sj)+i17

C. Ground state energy from the polarization
propagators

A nice property of the polarization propagator is that it is
connected directly to ground state density matrix and hence
the total energy.

1. Potential energy from T1(x, y; E)

Consider the interaction energies

(Wo' [V[Wg') = {95 D]V g (D)

dMW )| V] )

o

+{W O V[ 0), (78)

x Py, D (. O] W3 (). (79
The diagonal part of the two particle reduced density
matrix (2-rdm) is
2ya(y. X)
= (W [F v P T w))
= (0’| = P Y TP )| ¥y)
= (W) | = P @6 —y) — TV X)) b )| wy)
= —s(x — (W [F 0P ()| wY)
H P @ (P vt W) T | W)
= —5(x — y)px) + (W | px)p(y)| W)
= p(x)p(y) — §(x — y)p(x)
+{¥'| (p®) — o)) (A(¥) — () [¥7')

= p(X)p(y) — (x — y)p(x)

+ ) ()

n#0

e w NN [pe| v (80)
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The last term in the previous equation can be rewritten as

S [peo| e NN [p)|wd)
n#0

(|| W ){w, [P wo')

— E n
Z/ ¢ E—(EN —E})+in

n#0

L [ a0 0
0 E—(EN - E)) +in
g [ | p )| ')

E+(EY —E))—in

\DN A \IJN \IIN A \IIN

n#£0 E_(En_EO)_'_”7
[ A ')

E+(EY —E))—in
1 [®

= P dEImII(x,y; E)
T J—c0

_ ico
— dEe*TI(x, y; E), (81)
= 27 _ico

where we have used Y,o(%('1p00IWN) (W |51
= 2o (WY 1AWIWY) (Y [p(x)|Wy) as the 2-rdm is sym-

metric, y»(y, X) = (X, y).
Now from the previous equations, we have

2ya(y, X) = p(x)p(y) — 8(x — y)p(x)
— L /OO dEImII(x,y; E)
27 J_o

= p(x)p(y) — 8(x — y)p(x)

1 ioo

dEeFTI(x,y; E).  (82)

2ri J_ ico
Hence,

(' [V ]¥')

= // dxdyv(x, y)ya(y, X)

1 1 [
= —// dxdyv(x,y)| — —/ dEImII(x, y3; E)
2 27 J_ o

+ p(X)p(y) — 8(x — Y)p(X)}

= %// dxdyv(x, y)|:—

+ p(X)p(y) — 8(x — y)p(x)}. (83)

1 100 )
_ / dECTI(x, y: E)
27Tl —ioco

J. Chem. Phys. 139, 104114 (2013)

2. Potential energy from I1(i, j; k, I; E)

Sometime it is desirable to work in the 4-point index
space. We can express the potential energy as

1
(W V) = 5 DGk o] ajmar|wg)

ijkl
1 n
= 5 UKD afafarar| W)
ijkl
= > (ijlkD)yGij. k)
ijkl

> (i1 Vonlklyy (L, jk)

ijki

1
5 D _SiillkLy Gij, kD)

ijki
1 . .
= 5 2 {iVoulkDyy L, jk), (84)
ijkl
where we use
y(ij, kl) = <\IJ |a azak|‘-IfN>

(85)
(ij1kl) = / / dxadxodt (6 (520D e (x1h (52,

and
(1KLY = (ijIkD) — (11K, (86)
(G Vonlkl) = (il]1j)
_ / / dx1d%o8 (%)) (X0 (r12)
x (1 — P12 (x1)pr(X2),
(87)
V) = (il]j)

_ / / dxdxad? (<) (X (r 1) (x1 ) ().

(88)

Using Eq. (65), we have
-1 [
— f dEImIIG, j;k, 15 E)
T Jooo

= 8kipj1 + 81 oki — 201 pji + AVjk.ils

which is derived in details in Subsection 5 in the Appendix.
Thus,

-1 [ .
2V = E/ dEImIIG, j;k,1; E) + pupji
—o0

1
5 (8ki pj1 + 81 pi ) -

and for real orbitals, v i = Y, ji -
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We now can express the potential energy as

(W [V W) =D i1V k) i i
ijkl

ijki
1 [
—0Q

Equivalently,

1
(W' VW) = 5 D i1V lkd i i
ijki

—1 [
= gﬁw dEImTr V11

J. Chem. Phys. 139, 104114 (2013)

1 - -1 (= . 1
= E (ij1Vpnlkl) —/ dEImING, jik, I3 E) + pupji — = (Skioj + 81joxi)
2 m ) 2

_ 1
= 1= dEImTr VI + > / / dxdyv(x, y) [ p(x)p(y) — 8(x — y)p(x)] . (89)

1 1
+ 7 // dx1dx,¢] (X)) (X)v(X1, X2)(1 — P12)¢pj (X1 (X2) [Pklpji — = (Buipj + (Sljpki)i|

_ oo

= - dEImTr V11
T J-c0

2

1
+ 1 // dx1dxv(X, X2) (p(X1)p(X2) — p(X2, X1)p(X1, X2))

1
+g f f dx1dxav(xi, X2) (p(x1)8(X2 — X1) — p(x1)8(0)). (90)

See Subsection 6 in the Appendix for details of the derivation.

3. HF energy from II%N*3(xy; x2; E)
Given the HF determinant wavefunction @6\' , the poten-

tial energy in HF theory is given by

ey

pot

/ / dxdyv(x, y)y2(y, X)
1

=3 f f dxdyv(x, y)[p(X)p(y) —d(x—y)px)

— L /00 a’EIml'IO(x; y; E):|. 91
27 J_wo

To extend this expression to fractional charges and fractional
spins, simply use IT%V*%(x;;x,; E) of Eq. (77), and

1 o0
5 / dEImIT" M (x;; %03 E)

1~ i
=5 7oodEIm;Pi(X1,X2)Pj(X2,X1)

1 1
X _
(E—(8i—8j)+i77 E+(8,—81)—lr})

=Y pi(X1.X)p;(Xa, X1)
ij

= p(X1, X2)p(X2, X1). (92)

Thus the last two terms of Eq. (91),

[e.¢]

1
—8(X1 — X2)p(X1) — E/ d EImI*N " (x;;x5; E)

—00

1 o0
= 5% X2 X)) 5 / dETmIO N P (x,: x0: E)

= —(p(x1, X2) + p(X1, X2)) p(X2, X1) + A(X1, X2) p(X2, X1)

= —p(x1, X2)p(X2, X1),

and we have

1
Epy = 3 / / dxdyv(x, y) [p(X)p(y) — p(x1, X2)p(Xa, X1)] ,

93)
which recovers the HF potential energy for fractional
systems.

4. Correlation energy

We will use an adiabatic connection, which is more gen-
eral than Eq. (39), to calculate the total energy:

(W o) Hy | W (1) = / / dxdyv(x, y)yiy.x)  (94)

with corresponding energy
1
E(l) = E(O)+/dk(\ll$’(k)|H1|\IJ§’(A)). (95)
0
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We use a new expression for H (1), H(A) = Hy + H;(A), such that H(1) = Hy + H(1) is the physical H. Then

1

dH
E(l) = E(0)+/dx<qfo (x)| 1|\I!0 ).
0
Let HA) = Ho + Hi(h), HO) = Ho= Y, (hj+u(ajaj, and Hy(A)=AV — Y u;(Mala;; then E(0)
= Trp°h + u(1)), and
E(1) — E(0)
1
=fdk (W v |y o) — (¥ ja,-|\1/{,v()\))
0

1
- / dATrp? (8”(”) / i / / dxdyv(x, y)p*®p*(y)
0
! o0
—%/dk // dxdyv(x, y) [5(x—y)pk(x)+ %/ dEImn*(x;y;E)}
0 —00
1
— [ axTrp* au(x) d | | dxa
o xdyv(x, y) (0*(®)p(y))

0

o0

- _/dx // dxdyv(x, y)|: x—y (p*x®) — p°®) + —/OQ dEIm ( IT*(x;y; E) — 1°(x; ; E)):|

—5// dxdyv(x, y) [p°(x1, x2)p (%2, X1)] ,

where we used the result from Sec. IV C 3 on IT°(x; y; E), In general u(1) = (vy — v), u(0) = 0, where v is the non-
interacting reference potential. In between both limits

1 u
5 / / dxdyv(x, y)[(s(x—y)po(x) we can have any u(i), so that [ dip* (3 W) = plu(l)

e — [ u() % dx, and
— —/ d EImIT’(x;y; E)] 1
27 J oo 0 L ((du(h)
Trp (h+u(1))—/dkTr,o T

1 0 0
=3 dxdyv(x, y) [p(x1, X2)p" (%2, X1)] . 0
1
ap*
Thus we have the general expression for calculating the = Trp’h + Tr (,00 - pl) u(l) + / dkTru(A)aT.
ground state energy from polarization propagator, 0
E(1) We then have another general expression for calculating the
| ground state energy from the polarization propagator
ou(r
=Trp° (h + u(1)) — /a’)LTr,oA (%) E) 1
A

9
0 = Trp%h + Tr (0° — p") u(l) + / d)\Tru(x)%

0

1 | A A 0 0
43 [an [ [ axayoe v w00 - 6500 L
) +3 / da / / dxdyv(x, y)(p* (x)p"(y)—p"(x, )p°(y, X))

1 0

1 N 0 1

0

1 o0 1 o0
+E/ dEIm (I (x;y; E) — 1°(x;y; E))).  (96) +Z/ dEIm (MT*(x;y; E) — no(x;y;E))] 97)
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There are various ways to design adiabatic connections,?3?
that are now considered in this context.

a. Linear potential connection. First, one can follow
the linear path for the potential u(A) = Au(l) = A(vy — v)
(Ref. 29), then

|

Teo® (h + u(1)) — /d)\Trp* <8L;E\“>
0

1

= Trp° (h + u(l)) — /dATrp* (u(1))
0

1
= Trp’h + / dATr (,00 — p’\) u(l)
0
1

= Trp%(r + v) + / dATr (p° — p*) (v; — v)
0

1
= Trp’ + f di [Tr,o)\v + Tr (,00 - ,o*) vs] ,
0
and the ground state total energy, Eq. (97), for the linear
potential path is

E(1)

1
= Trp’ + / di [Tr,o’\v + Tr (,00 - pk) vs]
0

+

N =

i
/dk//dxdyv(x, Y) (0 ®)p* () —p°(x, y)p°(y, X))
0

1
1
-5 / d / / dxdyv(x, y) [5(x —y) (0*(x) = p°(%))
0
L A 0
+ — dEIm(l'I xy; E)— (s y: E)) | - (98)
27 J_ oo
Using HF energy expression,

1
E"F = Trp%h + % / d / / dxdyv(x, y)(p"(x)0°(y)
0

- )Oo(xv Y)po(y, X)),

J. Chem. Phys. 139, 104114 (2013)

EHF

the correlation energy E. = E(1) — is then

1
E.=— / d\Tr (,0’\ — ,00) u
0
| 1
+3 / dh / / dxdyv(x,y) (p*(x)p*(y) — p"(®)p°(y))
0

1
1
-5 f d f / dxdyv(x, y) [5(x —y) (0" () = p°()
0

[e.¢]

1
+ —

5- | dEIm (Mxy; E) — M(x3y; E))] . (99)

b. Constant density connection. The second path is

. . . . A
the constant-density adiabatic connection,’3! 33% =0,

p° = p* = pl, namely, the electron density along the adia-
batic connection is kept constant and is equal to the density
of the physical system. Then, the ground state total energy,
Eq. (97), becomes

1
EQ) = Teph + | / / dxdyv(x, y)(p()p(y)

—p°(x, y)p"(y, X))

1
—%/d)» // dxdyv(x,y)
0

X |:2L /00 dEIm (H’\(x; y; E) — °(x; y; E))] .

T [

Thus, the correlation energy is

1
1
E. = _E/dx // dxdyv(x,y)
0

X |:2L/ dEIm(l'IA(x;y;E)— HO(x;y;E)):|.
T J-oo

(100)

In four-point matrix form, we have

1
l/dkl [oodEI > (MG, jik, 1 E)
2 w ) AN
0

ijki

E.

—11°G, jsk, I3 E))KI| Vi)

1
I/d)\ ! /oo dEImTr (IT*(E) — I°(B)) V
2 ] ph
0

1 .
1 ] 100 ) _
—— | dr— dEeTr (MMNE) — TYE)) V,,
2/ 2;1/,,-00 e"Tr (TTH(E) (E)) Vi
0

(101)
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and

E.

__/d)“_f dEImZ(l‘I’\(z Jik,;E)

ijkl

—11°G, j; k, ; E))(KL Vi lij)

1
I/dx ! /Oo dEImTr (IT"(E) — M°(E)) V
—= — mlr — h
4 ] P
0

1 1 i ,
—— | dr— dEet " Tr (MMNE) — TY(E)) V).
4/ 2n/ﬂm ST (TT(E) — TO(E)) Vg

(102)

where we use the anti-symmetric interaction matrix (il||jk)
= (ij|V,ulkl) to calculate the correlation energy, as in
Eq. (84). We also replaced the integration along the real axis
by integration along the imaginary axis, as they are shown
equivalently in Eq. (83).

Equation (100) is convenient for RPA calculations with-
out exchange interaction in two-point real space representa-
tion, while Eq. (101) for RPA calculations without exchange
interaction, and Eq. (102) for RPA calculations with exchange
interaction.

D. Random phase approximations
1. RPA equations

RPA?’ can be written as the equation for the polarization
propagator,

%G, jik, 13 E) = I°G, j; k. 15 E)
+ Y 1%, j; p. g E)pqlUpnlrs)
pqrs
x TIRPA(r, 51k, I E), (103)
or in condensed notation
mRPA — ° + HOUthRPA’ (104)

where (ij|Up;|kl) can be a general energy-independent inter-
action. (ij|U,,lkl) = (ij|\7ph|kl) for RPA with no exchange
interaction, and (ij|Upp|kl) = (ij|V,u|kl) for RPAE, the ran-
dom phase approximation with exchange interaction.
Assume that TTRPA has a Lehmann representation as that

of the exact one in Eq. (65),%0

IRPAG, ik, I; E)
\I-’RPA|a a; |‘~I/RPA><\I‘RPAiaka1 | wRPA)

_Z (EN

N —Ey)+in

\IJRPA‘aka "-IJRPAX\IJRPA‘CI a; ’w(l)?PA)

— E (105)
_ EN) _
n#0 E, )
Within RPA, define the excitation energy
el =EY —EJ, (106)
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the column matrix X" with dimension (n, + nf)(n, + ny),

Xj; = (0" aa; |95

= (Wl [0, (107

and the column matrix Y" with dimension (n, + np)(n, + ny),

Y}, (108)

= (U3 alay [5™).

then we can write°
X" M Y" *
(w)<X" v () o)
HRPA — _ .
PRRLEANNSS )

n#0 E- n#0 E+8r711_i77

(109)

It is not necessary to solve the RPA equation, Eq. (104),
directly for every energy, because we can use the analytical
structure of II(E) from Eq. (109). We multiply Eq. (104) from

the left by (TI°) ™,
(HO)—l MRPA — 1 + UthRPA’
thus,

()™

We only need to solve the equations at the singularity of
ITRPA. Thus

—U,,)I*** =L

lim (E — & +in) (M%) —U,) IR = 0.

T
E—el—in

Take the limit

lim (E—ef +in) I* =

E—el—in

(?) XY, (110)

U,) (i) _0.

Thus, Eq. (111) is valid for any &7 , including the ¢ = 0 when
the ground state is degenerate for both the many-electron and
the non-interacting reference system.

Equation (111) can be rewritten in terms of two blocks,
corresponding to the X" and Y” components:

((M°eT — i)~ (111)

(Ma, isa, isef —im) ™' X

=Y ((@i|Upn|bj)X}; + (ailUpnl jb)Y};) . (112)

bj
and

(MG, azi, az 67 —in)”'Y,

=Y ((ialUpn|bj) Xy, + (ialUpl jb)Yy).  (113)

bj
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Based on Table I, (I1%a,i;a, i;e] — in)~!

_ % then Eq. (112) becomes

ey —(ea— &),

(I —ngn;
1
— =2 [V mmaittpei
a 1 bj

n

1
+ VU —nani{ailUp| jb)

X

X

1 n

Define the following fractional-transformed quantities:

VU = na)ni(ailUpnlbj)y/(1 = np)nj = (ai|Up|bj) .

(115)

VI =nanalailUpn jb)/(1 = np)nj = (ai|Up|jb) s,

(116)
! X' = X" (117)

(1 _na)ni ai — “tai>
! Y. = Y" (118)

ST —npn; P

Then Eq. (114) can be written as
(&7 = (ea — £)) X,

=Y " {@i|Upnlbj) 1 X3; + (@ilUpnl jb) s ¥y} . (119)

bB

Similarly, (M°G, a;i, a;ef —in))™"
I e G

g )) from Table I, we can convert Eq. (113)

using

into

1
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— (EZ + (84 — 8,-)) Ya"l
=Y {(ialUpmlbj) s Xp; + (ialUpl jb) (Y2} (120)
bj

In matrix notation

A B X" X"
~ =~ ], (121)
—B* —A* Y” Y”

where the A and B matrices including fractional occupations
are

Aja,jb = (€a — €)8apbij

+(@i|lUpnlbj)y/(1 = nani(1 = np)nj,  (122)

Bia,jb = (ailUpn) jb)y/(1 = nni(1 = np)nj.  (123)

This is the RPA equations for systems with fractional charges
and fractional spins, which were developed in our previous
work,>*2> based on just using the occupation-scaled orbitals
with Eqgs. (18) and (19) and extending the dimension of the
matrices to include the fractional orbitals in both the occu-
pied and unoccupied states. The static limiting case of E = 0
has also been developed® in conjunction with extending the
analytical evaluation of Fukui functions** and local condi-
tions for the fractional charge and fractional spins. Here we
have given the full derivation starting from the basic formula
of the single-particle Green’s function for fractional systems,
Eq. (15). Our derivation also gives clear meaning for the
eigenvectors X" and Y” for fractional systems.

2. RPA energy expressions

‘We now focus on the correlation energy. The RPA equa-
tion, Eq. (104), for TIRPA-* at the coupling constant A can be
solved as

RPAL _ 1 )
((IMO)~! — AU,,)

Then, the RPA approximation to correlation energy, based on
Eq. (101), is

1
L o | v
E. = yp /;oo dEImO/dATr|:((I_IO(E))_1 ~30,) I (E):| Vou

1
1 [ 1
——/ dEIm/dkTr 5
4 —c0 5 (1 — A (E)Uph)

1 [ 1 1 -
e /_w d EImTr [5 (I(EYU )" + 3 (M°(EYU,4)° +- } (Upn)”™ Vo

1 [ e
o / d EImTe [In(1 — TI°(E)U 54) + T°(E)U ] (Upn) ™ V.
T J-oo

n°(E) — H"(E)} Vo

1
1 [ _
—4—/ dEIm/dATr[l + AI°(E)U,, + AT E)U,, IY(E)U,y, + -+ - — 1] TAE)V,y,
s —00
0

1 [ 1 1 a
e / dEImTr [EHO(E)U,,;, + gHO(E)U,,hHO(E)U,,h .. } M°(E)V

1 =

(124)
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Note that if we use (jkl||il) = (kl|Vp,lij) instead of {jkl|il)

= (kl|\_/,,h|i j), there is an additional factor of % as in
Eq. (102), and therefore

1 o0
EXS-DFT o / d EImTr[In(1 — TT°(E)U,)

oo

+ I°(E)U,,1U )"V . (125)

We can see the convenience of using Eq. (124) for conven-
tional RPA without exchange interaction where Up, = \_’,,h
and Eq. (125) for RPAE with exchange where U,;, = V ;. In
Subsection 7 of the Appendix, we show that

1 o0
— f d EImTr [In(1 — I°(E)U,;,) + M°(E)U ]
4 J_o

1 1
=523 2.

1 . .
ea—e)=5 D _GiilUpnlif)

n>0 aeparticle,i ehole ij
1 . |
= - — =TrA. 126
> ; en — 5 Tr (126)
Thus for RPA, U, = Vph, without exchange
ERPA — Zs - —TrA (127)
n>0
For RPAE, U, = V;,, with exchange,
ERPAE — Zs - —TrA (128)

n>0

These are the desired results rigorously derived from the en-
semble of the basic variable, which have been used previously
in showing the large localization error in the RPA energy.>*?

Equation (127) extends the results of previous work?>:3°
to fractional systems. Equation (128) clarifies the issue on the
proper factor for the RPAE correlation energy. The present
derivation shows that the additional factor of % is needed for
RPAE correlation energy compared with that for RPA.2!-22
Both Eqgs. (127) and (128) apply for both the normal RPA and

also the RPA with fractionally occupied orbitals.

V. CONCLUSIONS

Many approximate approaches and many-body theoret-
ical methods are explicit functionals of the single particle
Green’s function of the non-interacting reference system. This
work shows the rigorous extension of those methods to frac-
tional charges and fractional spins. This is achieved by taking
the appropriate ensemble average of the one-electron Green’s
function, which is the basic variable, and using this in the cor-
responding energy expression. We have shown this for meth-
ods such as LDA, HF, MP2, and RPA using the fact that the
non-interacting one-electron density matrix, Eq. (23), and the
non-interacting polarization propagator, Eq. (71), can be ex-
pressed in terms of the non-interacting single-particle Green’s
function, Eq (15). This leads to expressions in terms of frac-
tional charges and fractional spins describing systems that
correspond to the dissociation limit of molecules with integer
occupation numbers, as has been shown for H;r and H,.*

J. Chem. Phys. 139, 104114 (2013)

It should be noted that for many-body methods such
as RPA, our development is different from the finite tem-
perature extensions previously considered in the literature.’’
The dimension and structure of our RPA matrix equations,
Eq. (121), are uniquely related to fractional systems at zero
temperature. The development in this paper is completely
consistent with the simple scaling of the orbitals: ¢; = N
for the occupied orbitals, and ¢, = /(T — n,)¢, for the unoc-
cupied orbitals, and the inclusion of fractional orbitals in both
the occupied and unoccupied sets of orbitals. For other meth-
ods where the connection to the underlying single particle
Green’s function is not clear, we expect the occupation scal-
ing to apply. This development should allow examining and
developing functionals based on many-body methods to meet
the very challenging exact conditions for fractional charges
and fractional spins,® which is important, as the violation of
these conditions explains many dramatic failures of DFT in
realistic applications.
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APPENDIX: DETAILS OF DERIVATION

1. An identity
Considering
L _ P gy S(E Al
Exin g Fimd(E), (AD
then
< 5(E (BN~ £)
DR LA TR T T
x8(E — (E) —EN7Y). (A2)
Let
t=t4n, (A3)

where the infinitesimal number n > 0, then

0
—GNG, jit—1T
a7 @ Jj )

=iy e"(Eo”*Eu”“)0“0(_1‘)(195V - EY
n
x (a0 0w g )

—Z (E) —E)! (\ygv|a}|\y,7—1)(w,§v—‘}ai}\yy). (A4)
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Thus,

dE
/ —EG i j; E)
ct 2mi

T
/+°° 9E yeng |3 (‘1’€'|ai|‘1’%1)<‘1’3;1|aj|fl’(7>
_ —  E—(ENT' —E))+in
el o o)
EY —EY7") —in

+Z

=) (E) - Eév’l)(‘l’évlaﬁl‘l’évfl)ﬁl'n“‘Iail‘l’oN>

n

0
= =G, jir.17)

at
1 Noo o
= — | dE EImG"(, j; E), (AS)
T
—0Q
wheree, = E) —E) ' =p ,ef = E}™ — EY = ut.

2. The second order self-energy

The second order self-energy is given in terms of G* and
we perform the energy integration

>, j, E)
_ /+oo dE +o0 dE2
T2 ) o 2mi oo 2mi
x Y (iklllm) (npl| jq)G U, n; E\)G(m, p; Ey)
klm npq
xG%q.k;E\ + E; — E)
1 . .
= =32 D _liklilm){nplljq)
klm npq

(I =ny)n,
E—E|+¢&;, —ey+in

/M dElG“(z ESd
X — VN
o 27i 17%mpSak
nq(l_nm)
E—E +ée; —en—in

1
=— DO ikllim) (npl1iq)SmpSgidin

klm npq

= = nn,
E—é¢ —éen+te,+in
(1 —I’ll)(l _nm)nq

1
= - iq||lm)(l j
2;@” m>(m||jq>{E—s,—sm+sq+in

g, (1 _nq)
E—¢& —ent+e,—in

g, (1 _nq)
E—¢—ente,—in)

which is Eq. (38) in the text.
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‘We have used the following integrals:
/*Oo dE’ H, Py
I = el — + ;
o 2mi \E'—hi+in E —pi—in

H2 P2
X —+ ;
E'—E—hy+in E —E—py—in

H1P2 H2Pl
= — — —, (A6)
E+p,—h +in E+hy,—p —in
such that
TR JE 1—n, m
11=/ —?{(n).Jr . }
—00 2mi E2—8m+ln Ez—Em—lU
1—
x{ (d=ny) — + T ; }
Ey+ Ey—E—¢g4+in  E\+E;—E—¢g,—in
_ (1 - nm)nq nm(l - nq)
T E—E +e —étntin E—E +e& —é&n—in
(A7)
and

I _/*“’ dE,; (1—ny) n nj
*T ) 2ni |Ei—a+in  Ei—&—in
y A —=npyn, _ ny(1 —ngy)
E—E +e;—en+in E—Ei+g —&n—in

_/*OO dE; (I —np) n n
T ) 2mi |Ei—e+in Ei—g—in
(1 _nm)nq

9 np(l —ng)
Ei—E—¢,+ep—in E —E—¢g;+e,+in
(1 _nl)(l _nm)nq

e —E—¢,+e,—in g
(1 —n)(1 —ny)n,

E—¢—¢en+e,+in

(1 _nq)
—E—¢;+e,+in

mn, (1 —ny)
E—g —en+te,—in

(A8)

3. Energy expression from the equation of motion

The equation of motion for H()), suppressing the index
of A in a;(¥), can be expressed as

i%ai (1) = [ai(t), HO)

J

+A Y Gijlkhal(Daas).  (A9)
ki
Then
Y i IkDal(ta()a(t)
Jkl
)
= io-ai(t) - ;[h,-,- + (1= Wuifla; (). (AL0)
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and (using 7 =t + 0),

Y i IkDal (@ alkOa)a)

ijki

= Za (m( )a,a)

and similarly

- Z[l’l,’j + (1 - )\)uij]aj(t+)aj(t)'

ij

(A11)

Thus,

1
(W () V] W (1)) = 5/
cr
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Therefore at A =1,

dE
%Tr{[E —h]G*="(E)},
(A13)
N N dE =1
(W' ()| h| W] (1))=/CT z—mTr{hG (E)}. (Al14)

Thus, the ground state energy can be expressed as

(v [ )

E) = E(1)

R
7 ;ankw(wg M)]al Ol OaBa )| W ()

1 d
3 St lale) (1) ol )

i

1 ;
=5 2t + (1= Mg (WG ()] () (0] ' ()

ij

- -Z [( ) (W ()l (t+)a,<r)|wN<x>>}

1

2

Taking the

1
=5 D hij + (= MG ist — 1)

= (W () 1R WY (D) +
A

3

(WY vy )

dE a=1
sz_Tr{hG (E)}

J
J

choice of h + u as the Hamiltonian for the

1

dE
—Tr

i {[E —h1G=(E)}

9E (B +h)GE)) .
4 27i

non-interacting reference system,

! [z% - (h+u)} G =1, (A15)
1 ( a) ey ot
==-Tr|i—)G*"¢—t")— =Trlh+u—2u]G*( —tT")
2 ot 2 we have
e '3—(h+ —au) [GHr,th) ;0 Wyl GH
= 3Tr|ie u—Au : [15—(h+u+2*)}(}(0=1, (A16)
_1f dE _ _ * d
5 fm 2mT r{[E — (h+u—Aw]GHE)}, an
*A A _
using [E—(h+u+ZH]GNE) =1, (A17)
G, jit — 1) then
_ 9
:/ 9E Gri, i B) 6 0= [iE—(h+u+Z**)}
ct 2 Tl
=(G") ')+ 3. (A18)
dE [+ Bt ke s
=/ —f d(t —tHeEIGH, jit — 1),
1 270 J oo This gives
(A12)
[E — (h+u— )] GHE) =1+ (Z* + ru) GM(E).

and the identity of Eq. (AS).

(A19)



104114-20  Yang, Mori-Sanchez, and Cohen

The expression for the energy can be cast as, using
Egs. (44) and (A13),

E(1) — E(0)

1
= / dn(Wg (M| Hy Wy (V)
0

= uii (% )]ala; | W' )

ij

+z kal (W )|a)alajar| Wl ()
ljkl

1
- [
0

11
+55 > (W oola 1)

ij

9
x (z a0 = 3 (hij + iy = i) a./(f)> "I’év(m}

1
+ood
I CY
)
0

= (W )ala; | W 0)

i

’E”Tr [uG’\(E)]

1 [dx [T® dE | .
+z/ 7/_00 ¢ [T+ (Z(E) + Au) GH(E)]

1
+o00 dE )
= _/d)\f —— ' E"TruG*(E)
oo 2T

0

1 (dr [T®dE
— | = ENTr (Z(E) + 2u) GMNE
+2/A/WZM r (Z°(E) + ) GM(E)

1
1 T dE .
= —/dA/ —— T [ [ —u+
2 oo 2T

0

which is Eq. (45) in the text.

%E*HE)) GA(E)} :
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4. The second-order energy

The detailed integration needed for the second order en-
ergy is as follows:

1 [t dE
é_l/ i

1 (Y dE ;1 . ;
ZZ/ Se 13 D tigliim) (im]liq)

oo 2T

T ZC(E)G(E))

ilmg

{ (1 - nl)(l - nm)nq

nng (1 —ny)
E—¢g—¢ent+e +in

E—¢g—¢ent+e —in

(1 —n;) n;
X — + ;
E—¢+in E—¢g —in

1
= g 2_tigliim){imllig) [ninn(1 = ny)

ilmg

g
—(—g

n; }
+ .
—(—& —emt+eg) —& —in

(I —ni)
_51n+8q)_8i+in

1 - 1- m
. { d—n)d—n )nq.
& —& —Emtegtin

+ nn,(1 _nq) }:|

g —& — &yt &g —in

S Z(lq”lm Y{Im|liq)

llmq

1
gy — & +in

X |:n1nm(1 —ny) {s, -

nj
+ -
& — & —&mt & —1IN

n (I = n)(1 = nyingn;
& — & — &+ &5 +1In

: m 1-— 1 — ;
:§Z<iqlllm>(1m||iq>{”l” (1 —ng)(1 — ;)

: e1+Eem—€g— &
ilmg

n (I = n)(1 = ny)ngn;
&iteg—8& —énm

I —=npd

& te&g— & —é€nm

1 .
= 2 Y ligllim)(imllig) g

ilmg

(A20)
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5. The integration of the polarization propagator

_1 o0
-1 f dEImTIG, j: k. I: E)
T J_so

=2 (9 ]aja WY\ w |aja| v)
n#0

+ (90 |ajar | WY )@ |aja | 0)]
= (0 b [ W | )

+ > (0 |ala; |w NN |afa|w)
n

— (W) |ajan |0\ i aja | )

+ (W afa| 0 )WY ajai | )
n

= —pjipu + (\I/(’)V}a}aiaza,|\llé")
—pupji + (9 |alaala; | w))
= (W) |alar| W) — (W) |alalaia | W) — pjipu
0l ) = (e 93) — o
= 8uipji — (\Dév‘aja,ia,-alf\lfév> — pjiPrr + 81 pri
— (W) |afataa; | W) — pup;i
= 8kiPji = 2Vjk1i — PjiPk + 81j ki — 2Vijit — PriPji
= 8uipji + 81 Pk — 20:Pji — 4V ki
= 8upji + (\Dév‘aja,ialai W5} = pjipa + 81 xi
+ (Wl alataia | W) — pup;i
= 0kipji + 2Vjk,it — PjiPk + S81jPri + 2Vkjii — Pk1Pji

= 8kipji + 81 Pri — 20:pji + VK.l
where we used
2Yjkii = 2Vkji1 = (\I’(Z)V|a;a]iaial|‘lj(§v)y
and

2Yikit = —2Vjkii = <‘1’(§v|a;azalai|‘l"(1)\,>-
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6. The details of the potential energy expression

1 - 1
3 Z(lJthVd) [szpji —3 (8kipji + Sljpki):|
ijkl

1 * *
= EZ// dxdx,¢; (X))@ (X2)v (X1, X2)P (X1 )Pr(X2)

ijki

1
X |::0kl:0ji 3 ( kiPj1 + 5lj;0ki)i|

1
= 5// dx1dx;v(X1, X2)p(X1, X1) (X2, X2)

1
-2 f / dxdxav(x1, %2) (0(X1, X2)8(%2 — X1)

+ p(x2, X1)8(X2 — X1))

1
=3 / / dxdxav(x1, %2) [0(%)p(%2) — pxS(Ks — X1)].

This is just part of Eq. (89) in the text, and

1 . 1
1 Z<1J|Vph|kl> |::0klpji 3 (Sipji + 81_jpki)i|
ikl

1
=2 Z// dxidxa¢; (x1)¢] (X2)v(x1, X2)(1 — P12)

ijki

1
x ¢ (X1)Pr(x2) [szpji - 5(31@‘,0]‘1 + 5lj,0ki)]

4
— p(X2, X)p(X1, X2))

1
~3 // dx1dx;v(xX1, X2)(0o(X1, X2)8(X2 — X1)

1
_1 / / dxd%,v(x, X2) (oK1, X1)p (%2, %2)

— p(x2, X2)8(X1 — X1) + p(X2, X1)8(X2 — X1)
—p(X1, X1)8(X2 — X2))

= %[/ dx;dxav(x1, X2)(p(X1)p(X2)
—p(X2, X1)p(X1, X2))
—é// dx;dxav(x1, X2)(2p(x1)8(X2 — X)
—p(x1)8(0) — p(x2)8(0))

1
~ 4 //dxldxzv(xl’ X2)(p(X1)p(X2)—p (X2, X1)p(X1, X2))

1
-2 / / dx1dxu(x1, X2)(p(x1)8( — 1)

—p(x1)5(0)).

7. RPA correlation energy

Here we will evaluate the integral of Eq. (126),
using some techniques from Ref. 27. Based on
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limg_, o M'(E) ~ 1/E,

d
lim E——Tr[In1 - n°(E)U,)]

E—oo

d
= lim E—Tr[In(1 — O%E)U,)].

E——00 d
because  [In(1 — M%(E)U,y)] = —M%E)U,, — S(T(E)
U,n)? = SAUE)U,,)° + and  limg_ o E -2 Tr{In(1
— l'[O(E)Uph)] is an even function of E. We thus have

1 [e¢]

d EImTr [In(1 — I°(E)U,;,) + M°(E)U ]

4

N / ” EdE d ImTr [In(1 — I(E)U,,;)]
T dE ph
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! /oo EdE d ImTr [In(1 — T(E)U,,p)]
=—— —ImTr {In(1 —
dr J_o dE Ph

] o0
+E/, dEImTr [I°(E)U,,] . (A21)

We will consider the two parts in Eq (A21) separately. Using
Eq. (104) we get
(HRPA)*I

= (M — U,
Then

d
d—ETr [In(1 — M°(E)U,)]

_ diETr [n (m° (m*) )]

i 0 RPAi RPA) !
I () ()|

[e’e] — HO -1
+$ dEImTr[HO(E)Uph] r[( ) d
_ 0—1i 0 RPA i 0y~!
+EEImTr[ln(l—l'[O(E)Uph)]Eooo _Tr[(n) gg™ () 7E () }
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|
ON+S: iop 1o s s (I —ni)n; _ ni(l —nj) }
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0n-1 4 o
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_Z{ (1 —nin; ni(1—nj) }‘li{ (1 —non; ni(1—nj) }
_ij E—(s,-—aj)+in E+(j—¢)—in dE (s,—s])+zn E+(gj—¢)—in
_Z{ —nn; n(l—n]) (1 —nin; ni(1 —nj)
_(81_81)+”7 E+ (e — —(s,—a,)+zn) (E+(5‘,-—s,')—in)2
L o1 4 o
_E/_ EdEImTr[(n) dEn]

—nn;

ni(1—nj)

=__/ EdEZ{ (81_81)+l77

1 —nn;
M SE (e

—1
E+(8j—8i)—in}
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(1—n)n;
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(i — ¢j). And % = —1, for i € hole, j € particle, because (1 — n;)n; = 0, excluding the frac-frac block, which is

i)y i J
zero from (g; — ¢)).

Consider now
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where we use the normalization condition for the RPA matrix eigenvalue problem, Eq. (121),
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Now consider the last term in Eq. (A21),
1 oo 0
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47 J_oo m r[ (E) ph]

J. Chem. Phys. 139, 104114 (2013)
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Finally,
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which is the RPA correlation energy, Eq. (126).
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