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The calculation of the band gap by density-functional theory �DFT� is examined by considering the behavior
of the energy as a function of number of electrons. It is explained that the incorrect band-gap prediction with
most approximate functionals originates mainly from errors in describing systems with fractional charges.
Formulas for the energy derivatives with respect to number of electrons are derived, which clarify the role of
optimized effective potentials in prediction of the band gap. Calculations with a recent functional that has much
improved behavior for fractional charges give a good prediction of the energy gap and also �HOMO�−I for
finite systems. Our results indicate that it is possible, within DFT, to have a functional whose eigenvalues or
derivatives accurately predict the band gap.
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One of the many important uses of density-functional
theory �DFT� is the calculation of the band structure which
has many applications throughout physics, for example, in
semiconductors, electron transport, and reactions at surfaces.
The first step in achieving accuracy in the band structure is to
understand the band gap which standard functionals have
long been known to systematically underestimate by as much
as �50%. Recent efforts have focused on use of the opti-
mized effective potential �OEP� method, which can often
give an improvement in the prediction of band gaps for
small-gap semiconductors, but has problems with wider gap
semiconductors and insulators.1–3 In many cases, it has
proved necessary to move to the quasiparticle GW theory to
calculate the band gap of solids accurately.4 Conventionally,
the band-gap problem has been related to the so-called “de-
rivative discontinuity” in the exchange-correlation potential:
even with an accurate Kohn-Sham potential, the energy gap
is still different from the true gap by an amount of the de-
rivative discontinuity.5,6 This perspective, however, does not
offer the understanding or the mechanism needed for making
progress for band-gap prediction with DFT.

In this paper, a different perspective is offered: the band-
gap problem is shown to be related to the behavior of ap-
proximate density functionals for fractional numbers of elec-
trons, an issue which has drawn recent interest.7–10 This
enables us to understand the problem with band-gap calcula-
tions and offers ideas to develop functionals which predict
the band gap correctly. Examples will be given for molecules
where the energy gap can be compared with explicit calcu-
lations of systems with fractional charges, however, the same
ideas apply to solids.

The fundamental band gap for an N0-electron system in
an external potential v�r� is given by

Egap
integer = �Ev�N0 − 1� + Ev�N0 + 1� − 2Ev�N0�� = I − A ,

�1�

where Ev�N0� is the ground-state energy of the N0 particle
system, I is the ionization energy, and A is the electron af-
finity. For a system with a fractional number of electrons
N0+�N, with 0��N�1, it has been shown that the energy is
a straight line connecting the total energies at the integers;

namely, Ev�N0+�N�= �1−�N�Ev�N0�+�NEv�N0+1�.11,12

This linear relation means that the energy gap in Eq. �1� can
be given by the derivative difference,

Egap
deriv = lim

�N→0
�� �Ev

�N
�

N0+�N
− � �Ev

�N
�

N0−�N
	 . �2�

If we substitute in the DFT the total energy expression Ev
=Ts���+Vext���+J���+Exc���, we have

Egap
deriv = �LUMO

KS − �HOMO
KS + �xc = Egap

KS + �xc, �3�

where the Egap
KS is the gap in a Kohn-Sham calculation and the

�xc is the derivative discontinuity.5,6

In this work, we identify the problem with calculations
using approximate density functionals by considering the ba-
sic assumption in Eq. �2�, which the energy at N0+1 and at
N0−1 can be given simply from the derivatives at N0. This is
true for exact DFT, but it may or may not be true for ap-
proximate functionals. The key is to investigate the behavior
of the total energy as a function of numbers of electrons. To
do this, we consider a noninteracting ground-state reference
system where we allow the occupation numbers of the orbit-
als to vary the number of electrons smoothly; the first-order
reduced density matrix of the reference system is given by

�s�r,r�� = 

i

ni�i�r��
i
*�r�� , �4�

where ni=1 for i� f , ni=�N for i= f , and ni=0 for i� f , and
f is the index for the frontier orbital. The behavior of three
different exchange-correlation functionals: the local density
approximation �LDA�, Hartree-Fock �HF�, and MCY313 are
compared for self-consistent calculations13 at fractional num-
bers of electrons in Fig. 1. MCY3 was constructed as a func-
tional of �s�r ,r�� to give a much improved description of
fractional numbers of electrons, and it gives a straight line
interpolation between the integers. The interpolation from
the other functionals is far from linear, HF curves in a con-
cave manner, and LDA in a very convex manner. There are
two main problems with approximate density functionals.
First, they can have a remarkably different behavior from the
exact functional in fractional charge systems, compared to
their behavior for the corresponding integer charge systems.
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Second, the error in the integer charge systems can also be
significant. The combined effects lead to the error in the
band-gap prediction from derivative information in finite and
infinite systems.

For molecules, LDA has a very reasonable description of
the integer values �e.g., see Table 1 of Ref. 14� but a much
worse description in between the integers. The use of the first
derivatives for LDA will clearly not give the I and A from
the integer calculations. Because of the convexity of the
curve, LDA will give too small value for I and too large
value for A, meaning that the band-gap I−A will be too
small, as shown by the dotted lines in Fig. 1. The case for HF
is very different as the integer values are not as good because
of the lack of correlation, and also it curves in a concave
manner. These two errors cancel each other to some extent in
the prediction of I but add together in the calculation of A.
For HF, the value of I will be about right and A too small,
meaning that the band-gap I−A will be too large, as shown
in Fig. 1. For MCY3, as it is very straight, the use of the
derivatives will give a prediction very similar to the integer
calculations for I and A, and the band-gap I−A should be
accurate as the integer values are good. For functionals that
have a linear behavior for fractional charge systems �e.g.,
MCY3 and the exact functional�, the initial derivative is all
that is needed to calculate I and A and the band gap as in Eq.
�2�.

We now consider analytic expressions for �Ev /�N, the
initial derivative, for some families of exchange-correlation
functionals. The main ideas and equations are applicable to
both molecules and solids and they are summarized here,
with further details presented in the Appendix. In a noninter-
acting system with fractional charge �Eq. �4��, the orbitals
are the eigenstates of a one-electron potential, either a local
potential vs�r�, in the original Kohn-Sham �KS� method,

�−
1

2
�2 + vs�
�i

KS� = �i
KS
�i

KS� , �5�

or a nonlocal potential vs
NL�r ,r��.

�−
1

2
�2 + vs

NL�
�i
GKS� = �i

GKS
�i
GKS� , �6�

in the case of the generalized Kohn-Sham �GKS� method,16

which has also been called the Hartree-Fock-Kohn-Sham
method.15 For a fixed minimizing potential vs �either local or
nonlocal�, the energy is stationary with respect to the change
in the potential; the corresponding orbitals and eigenvalues
are therefore fixed and only the frontier level occupation nf is
able to change �N=�nf. Thus, we have the key result,

�Ev

�N
= � �Ev

�nf
�

vs

, �7�

where the frontier orbital is either the lowest unoccupied
molecular orbital �LUMO�, nf =nLUMO, if �N�0, or the
highest occupied molecular orbital �HOMO�, nf =nHOMO, if
�N�0.

We now consider three cases for which the analytic de-
rivatives can be obtained.

Case A. Exc��s�r��, an explicit functional of �s �e.g., LDA
or generalized gradient approximation �GGA��,

�Ev

�N
= � f

KS, �8�

where � f
KS is the KS eigenvalue for the frontier orbital in the

local potential vs�r�=v�r�+vJ�r�+vxc�r�. This is exactly the
combination of Eq. �7� with Janak’s theorem for nf.

17

Case B. Exc��s�r ,r���, a functional of the first-order den-
sity matrix minimized with a local potential as in Eq. �5�
�e.g., OEP�HF� and OEP�MCY3��,

�Ev

�N
= � f

KS + �� f
KS
v + vJ + vxc

NL − vs
� f
KS� = � f

KS + �xc
f , �9�

where the nonlocal potential vxc
NL�r ,r��=

�Exc��s�r,r���

��s�r,r��
. Equation

�9� is a key result, showing that for general orbital function-
als, �Ev /�N is not given by the frontier OEP eigenvalue � f

KS,
but, with a correction term, the derivative discontinuity �xc

f .
This general result is related to the results of Ref. 1 in the
case of exact exchange and of Ref. 18 from the self-energy.

Case C. Exc��s�r ,r���, with the energy minimized with
respect to the orbitals �e.g., HF and MCY3�,

�Ev

�N
= � f

GKS, �10�

where � f
GKS is the eigenvalue of the frontier orbital of the

nonlocal potential v+vJ+vxc
NL�r ,r�� as in Eq. �6�.

All three cases can be unified in the expression

�Ev

�N
= �� f
Heff
� f� , �11�

with � f as the corresponding orbital �� f
KS or � f

GKS� and
Heff=− 1

2�2+v+vJ+vxc�r� for case A, where Exc=Exc���r��,
and Heff=− 1

2�2+v+vJ+vxc
NL�r ,r�� for cases B and C, where

Exc=Exc��s�r� ,r��. In cases A and C, �Ev /�N is equal to the
corresponding eigenvalue, but not in case B. The only differ-
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FIG. 1. �Color online� Difference energy of the carbon atom
��E=E�N0+�N�−E�N0�� against number of electrons �N0+�N ,N0

=6� with several different functionals using OEP and GKS. Dotted
line follows the initial slope for the nonstraight functionals. The
inset shows 6�N�7 range in more detail.
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ence between cases B and C is the orbitals used to evaluate
Eq. �11�.

Combining Eqs. �2� and �11� thus leads to the general
expression for the band gap from derivatives for an
N0-electron system,

Egap
deriv = ��N0+1
Heff
�N0+1� − ��N0


Heff
�N0
� . �12�

We consider a few illustrative atomic and molecular sys-
tems for which we have performed self-consistent calcula-
tions using a cc-pVQZ basis set in a modified version of
CADPAC. We compare −�HOMO

GKS with the experimental I,
−�LUMO

GKS with the experimental A, and also their correspond-
ing differences. The results for LDA, HF, and MCY3 are
given in Table I. MCY3 gives very good agreement between
−�HOMO

GKS and I, which is to be expected from its straight line
behavior. We should emphasize that this has not been seen
before for calculations with approximate exchange-
correlation functionals. The error is relatively small, 0.5 eV,
and is roughly similar in I, A, and also the difference I−A.
LDA eigenvalues have a large error, with a consistent under-
estimation of I by about 5 eV, overestimation of A by about
4 eV, and a poor prediction of the gap. LDA does well for
the explicit calculation of the N+1 and N−1 systems; it is
just the use of the derivatives at N that leads to large errors.
This is now clearly understood from the fractional charge
picture. The HF −�HOMO

GKS is often close to I, however, there
are larger errors for A and also for the gap.

The band-gap issue is well understood for calculations
with local density functionals �case A� or orbital functionals
�case C�. We now consider case B, orbital functionals in an
OEP calculation, using the Yang-Wu direct minimization
method.19,20 In Fig. 1, the OEP minimized energy is remark-
ably similar to the GKS minimized energy in both integer
and fractional charge systems. We would therefore expect
�Ev /�NN0	�N to be the same as the GKS derivatives.

Table II shows the eigenvalues from an OEP calculation
using a Fermi-Amaldi base potential, which has the correct
asymptotic behavior. The asymptotic form of the potential
has a large effect on the OEP eigenvalues, but not on the
eigenvalue differences or the energy derivatives. The OEP-
�MCY3� −�HOMO

KS � I �as is proven for the exact functional21�;
however, the Egap

KS is much smaller than the exact gap. The
inclusion of �xc

f gives a much better agreement between the
derivatives and the GKS eigenvalues. This brings us on to
the nature of this term; it is only the difference between KS
and GKS calculations and is needed to correctly give the
derivative at N0. It does not, however, address the question of
whether the functional used for the calculation has the cor-
rect straight line behavior for fractional numbers of elec-
trons, which is the key question in the evaluation of the band
gap.

Figure 2 shows the behavior of the eigenvalues for carbon
with different numbers of electrons using MCY3. The GKS
frontier eigenvalues for a fractional system are almost con-
stant between integers due to the straight line behavior of

TABLE I. Comparison of � f
GKS against corresponding experimental numbers for LDA, HF, and MCY3. MAE is mean absolute error and

more details can be found in �Ref. 14�.

Mol

�LUMO
GKS −�HOMO

GKS

I−A
Expt

−�HOMO
GKS

I
Expt

−�LUMO
GKS

A
ExptLDA HF MCY3 LDA HF MCY3 LDA HF MCY3

C 0.08 12.76 10.03 10.00 6.09 11.94 11.12 11.27 6.01 −0.82 1.09 1.27

O 0.23 16.80 11.57 12.16 7.28 14.11 13.01 13.62 7.05 −2.70 1.44 1.46

F2 3.38 20.44 13.75 14.40 9.53 18.13 15.17 15.70 6.15 −2.31 1.42 1.30

OH 0.10 16.56 11.23 11.40 7.21 13.90 12.70 13.20 7.11 −2.67 1.47 1.80

MAE 11.043 4.650 0.360 5.920 1.073 0.448 5.123 3.583 0.163

Errors from the explicit calculation of I and A �Ref. 14�
MAE 1.360 1.433 0.738 1.065 1.660 0.383 0.380 1.758 0.355

TABLE II. Comparison of GKS and OEP eigenvalues and OEP energy derivative, �E /�nf =� f
KS+�xc

f , for
HF and MCY3 �see Ref. 14 for more examples�.

Mol
MCY3

�KS
MCY3

�KS+�xc

MCY3
�GKS

HF
�KS

HF
�KS+�xc

HF
�GKS Expt

C I−A 0.70 10.16 10.03 1.47 13.49 12.76 10.00

I 10.58 11.11 11.12 11.97 11.94 11.94 11.27

A 9.88 0.96 1.09 10.50 −1.55 −0.82 1.27

F2 I−A 4.06 13.74 13.75 5.62 20.49 20.44 14.40

I 14.67 15.16 15.17 15.94 18.11 18.13 15.70

A 10.61 1.42 1.42 10.32 −2.37 −2.31 1.30
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MCY3. The OEP eigenvalues are markedly different to the
GKS eigenvalues, but they become almost identical upon
inclusion of �xc

f , which can be understood from comparing
Eqs. �9� and �10�. The LUMO at N0−�N is connected to the
HOMO at N0+�N. This is clear from Eq. �7� as the change in
the number of electrons N is only through the frontier occu-
pation numbers nf and the potential and, therefore, eigen-
functions remain fixed; i.e., there is no mysterious disconti-
nuity in the eigenvalues.

In conclusion, we have carried out analysis and calcula-
tions on systems with fractional numbers of electrons to gain
understanding of the band-gap problem in DFT. We show
that the band gap is only given by the eigenvalue difference
if the functional has the correct linear behavior for systems
with a fractional charge. We have recently developed a func-
tional with this linear behavior giving −�HOMO

GKS � I and
−�LUMO

GKS �A and a good prediction of the band gap in mol-
ecules. We have also considered OEP calculations and
showed that the derivative of the energy with respect to num-
ber of electrons is not given by the OEP eigenvalue. When
the derivative is correctly evaluated, it gives practically the
same as in GKS calculations. Our work thus provides the
insight that it is possible to have a functional which gives the
correct band gap from the eigenvalues or derivative informa-
tion, so long as it has the correct fractional charge behavior
and accurate energies for integer systems. Such possible
functionals include explicit functionals of the electron den-
sity Exc���r��. We have only considered the explicit calcula-
tion of molecules but the same ideas are undoubtedly of key
importance in solids. The understanding gained in this paper
offers a different perspective and way forward for accurate
calculations of the band gap in DFT.
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APPENDIX: DETAILS OF THE DERIVATION OF �E
�N

EQUATIONS

To investigate the behavior of the total energy as a func-
tion of numbers of electrons, we consider a noninteracting

ground-state reference system where we allow the occupa-
tion numbers of the orbitals to vary the number of electrons
smoothly; the first-order reduced density matrix of the refer-
ence system is given by

�s�r�,r� = 

i

ni�i�r���i
*�r� , �A1�

where ni=1 for i� f , ni=�N for i= f , and ni=0 for i� f , and
f is the index for the frontier orbital. The electron density is
just its diagonal, �s�r�=�s�r ,r�.

In the fractional charge noninteracting system, the orbitals
�
�i�� are the eigenstates of a one-electron local potential
vs�r�,

�−
1

2
�2 + vs�
�i

KS� = �i
KS
�i

KS� , �A2�

or a nonlocal potential vs
NL�r ,r��,

�−
1

2
�2 + vs

NL�
�i
GKS� = �i

GKS
�i
GKS� . �A3�

The former is the original KS reference system and the latter
has been called the Hartree-Fock-Kohn-Sham �HFKS�15 or
the GKS method.16

For the Kohn-Sham reference system with local potential
vs�r�, we here use the potential functional formulation.22 The
electron density �s�r� can be represented as the set of orbitals
and occupation numbers ��i ,ni� or equivalently as the local
potential and total particle number �vs�r� ,N�. Thus, the total
energy functional, formally in terms of the density as
Ev��s�r��, can be expressed as Ev�vs�r� ,N�.

The ground-state energy is the minimum of the KS energy
functional, expressed �explicitly or implicitly� in terms of the
local potential vs�r�,

Ev�N� = min
vs

Ev�vs,N� = Ev�vs
gs,N� , �A4�

where the minimizer vs
gs is the OEP, as established recently.22

The variational nature of vs
gs means 


�Ev�vs,N�

�vs�r� 
vs
gs=0, simpli-

fying the calculation of the derivative,

�Ev

�N
=� dr��Ev�vs,N�

�vs�r�
�

vs
gs

�vs
gs�r�
�N

+ � �Ev�vs
gs,N�

�N
�

vs
gs

= � �Ev�vs
gs,N�

�N
�

vs
gs

. �A5�

We now would like to express the result of Eq. �A5� in
terms of ��i ,ni�. Consider a change in the total number of
electrons N=N0+�N, where N0 is an integer and 
�N
�1. At

fixed vs
gs, all the orbitals ��i

vs
gs

�, as its eigenstates, are fixed.
Since �s�r� is the ground-state density of the reference po-
tential vs

gs, only the frontier level occupation nf is allowed to
change �N=�nf, thus,
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FIG. 2. �Color online� Comparison of MCY3 eigenvalues from
GKS and OEP calculations and also including �xc

f for the carbon
atom.
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�Ev�N�
�N

= � �Ev���i
vs

gs

,ni��
�nf

�
��

i
vs

gs
�
, �A6�

where the frontier orbital is either the LUMO or the HOMO,

nf = nLUMO if �N � 0

nf = nHOMO if �N � 0. �A7�

Now, we apply Eq. �A6� to the KS energy,

Ev���i
KS,ni�� = 


i

−
1

2
ni��i

KS
�2
�i
KS� + J��� + Exc���

+� v�r���r�dr , �A8�

and obtain

�Ev

�N
= −

1

2
�� f

KS
�2
� f
KS� +� �� f

KS�r��*�v�r�

+ vJ�r��� f
KS�r�dr + � �Exc

�nf
�

��
i
vs

gs
�
. �A9�

That is the general result. There are two common types of
Exc functionals where we can obtain further details.

Case A. Exc is Exc��s�r��, an explicit functional of �s �e.g.,
LDA or GGA�. Then,

� �Exc��s�r��
�nf

�
��

i
vs

gs
�
=� �Exc��s�r��

��s�r�
� ��s�r�

�nf
�

��
i
vs

gs
�
dr

=� �� f
KS�r��*vxc�r�� f

KS�r�dr ,

�A10�

where we use the conventional local exchange-correlation
potential,

vxc�r� =
�Exc���
���r�

. �A11�

From Eq. �A9�, we have

�Ev

�N
= −

1

2
�� f

KS
�2
� f
KS� +� �� f

KS�r��*�v�r� + vJ�r�

+ vxc�r��� f
KS�r�dr = 
 f

KS, �A12�

where 
 f
KS is the KS eigenvalue for the frontier orbital in the

local potential vs�r�=v�r�+vJ�r�+vxc�r�. This is exactly the
combination of Eq. �A6� with Janak’s theorem for nf.

17

Case B. Exc is Exc��s�r� ,r��, a functional of the first-order
noninteracting density matrix �e.g., OEP exact exchange�.
These functionals are often referred to as orbital functionals.
Then,

� �Exc��s�r,r���
�nf

�
��

i
vs

gs
�
=� �Exc

��s�r,r��
� ��s�r,r��

�nf
�

��
i
vs

gs
�
drdr�

=� �� f
KS�r��*vxc

NL�r,r��� f
KS�r��drdr�,

�A13�

where we define the nonlocal exchange-correlation potential
as

vxc
NL�r,r�� =

�Exc

��s�r,r��
. �A14�

From Eq. �A9�, we have

�Ev

�N
= −

1

2
�� f

KS
�2
� f
KS�

+� �� f
KS�r��*�v�r� + vJ�r��� f

KS�r�dr

+� �� f
KS�r��*vxc

NL�r,r��� f
KS�r��drdr�

= �� f
KS�−

1

2
�2 + v + vJ + vxc

NL�� f
KS� �A15a�

=� f
KS + �� f

KS
v + vJ + vxc
NL − vs
� f

KS� , �A15b�

which is a key result of this work, showing that for general
orbital functionals,

�Ev

�N is not given by the frontier OEP ei-
genvalue � f

KS, but with a correction term. This general result
agrees with Ref. 1 in the case of the exact exchange func-
tional and is related to the results of Ref. 18 from the self-
energy.

We next consider the HFKS or GKS reference systems
with nonlocal potential vs

NL�r ,r��. In this case, like in
Hartree-Fock theory, the ground-state energy is just the fol-
lowing minimum:

Ev�N� = min
��i

GKS�
Ev���i

GKS,ni�� = Ev���i
gs,ni�� , �A16�

where the minimizer �i
gs is the eigenstate of vs

NL�r ,r�� as in
Eq. �A3�. The variational nature of the orbitals �i

gs also sim-
plifies the derivative,

�Ev

�N
= 


i
� dr� �Ev���i

GKS,ni��
��i

GKS�r�
�

��i
gs�

��i
gs�r�
�N

+ � �Ev���i
gs,ni��

�N
�

��i
gs�

= � �Ev���i
gs,ni��

�N
�

��i
gs�

�A17a�

=� �Ev���i
gs,ni��

�nf
�

��i
gs�

, �A17b�

which is similar to Eq. �A6�. Then, we have the third sce-
nario.

Case C. Exc is Exc��s�r� ,r��, with the orbitals �i
GKS being
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the minimizer in Eq. �A17a� and thus eigenstates of vs
NL �Eq.

�A3��. Then,

�Ev

�N
= −

1

2
�� f

GKS
�2
� f
GKS�

+� �� f
GKS�r��*�v�r� + vJ�r��� f

GKS�r�dr

+� �� f
GKS�r��*vxc

NL�r,r��� f
GKS�r��dr = � f

GKS,

�A18�

where � f
GKS is the eigenvalue of the frontier orbital of the

nonlocal potential v+vJ+vxc
NL�r ,r��, as � f

GKS is its eigenstate.
All three cases can be unified in the expression for the

derivative of the total energy with N as

�Ev

�N
= �� f
Heff
� f� , �A19�

with � f as the corresponding orbital �� f
KS or � f

GKS� and
Heff=− 1

2�2+v+vJ+vxc�r� for case A, when the exchange-
correlation energy is known as an explicit functional of den-
sity as Exc=Exc���r��, and Heff=− 1

2�2+v+vJ+vxc�r ,r�� for
cases B and C, when the exchange-correlation energy is
known as an explicit functional of the density matrix as
Exc=Exc��s�r� ,r��, or as orbital functionals are often called.

In cases A and C,
�Ev

�N is equal to the corresponding eigen-
value and not in case B. The only difference in the overall
expression between cases B and C is the orbitals used to
evaluate the expression.
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