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A theorem is proved stating that in atoms, molecules, and solids, only the set of the spherical parts of
the density around each nucleus determines uniquely the external potential. Therefore, the induced
Kohn and Sham (KS) potential has spherical symmetry around each nucleus, and furthermore, it
has the symmetry of the external potential. In this way, the inconsistencies of standard density func-
tional theory (DFT) concerning the asymmetry of the KS potential are remedied. As a result of
the above, the ground state is uniquely determined by this set of spherical densities. In the case of
a symmetry group G of a Hamiltonian H, the minimizing subspace of the Hamiltonian for each
irreducible representation of G is uniquely determined by this set of spherical densities. Thus, the
present theory opens the way for new density functionals and more accurate molecular calculations
as it exploits local symmetries. Moreover, the theory of “Atoms in Molecules” formulated by Bader,
by using the open quantum mechanics theory, can be explained in terms of DFT [R. F. W. Bader,
Atoms in Molecules. A Quantum Theory (Oxford University Press, Oxford, 1990)]. Published by AIP
Publishing. https://doi.org/10.1063/1.5038262

I. INTRODUCTION

The difficulty in determining the eigenstates of a
many electron Hamiltonian is due to the interaction term
Hint =

1
2

∑
i,j

e2

|ri-rj |
as a result of which the many variable

wave function Ψ(r1, . . ., rN ) cannot be expressed as a single
Slater determinant (SlD). Therefore, Thomas1 and Fermi2 in
1927, the time of the early quantum mechanics, developed a
theory where the energy of a ground state was expressed as
a functional of the density. This theory, however, was based
on intuition until Hohenberg and Kohn3 proved that there is
one to one correspondence between the ground state and its
corresponding density. In this formulation, however, one had
to find an explicit expression of the kinetic energy in terms of
the density and this was not an easy task, as one can see from
the rich literature covering this topic.4

Since the initial rigorous foundation of Density Functional
Theory (DFT), there were many developments, a milestone of
which was the Kohn and Sham, KS, theory,5 where a non-
interacting Slater determinant ��Φ

〉
having the same density

ρΦ(r) = 〈Φ| ρ̂(r)|Φ〉 as the exact ground state ��Ψ
〉

could in
principle give the properties of the actual physical system. In
this way, part of the exact ground state kinetic energy could
be calculated from

〈
Φ��T |Φ

〉
instead from a functional of the

density. The advantage of this formulation is that one could
construct the noninteracting ��Φ

〉
= ��φ1, . . ., φN

〉
by solving a

system of one particle Schrodinger type equations for the spin
orbitals φi(r),

−
1
2
∇2φi(r) + VKS(r)φi(r) = ε iφi(r), (1)

a)a.theophilou@inn.demokritos.gr

where the KS potential VKS(r) = V (r) + Vh(r) + V xc(r) is the
sum of the exact external potential V (r), the Hartree poten-
tial Vh(r), and the exchange and correlation potential V xc(r)
which is derived by the functional derivative δ

δρ(r) Exc(ρ) of the
exchange and correlation energy,

Exc(ρ) = 〈Ψ(ρ)|T +Hint |Ψ(ρ)〉−EH (ρ)−〈Φ(ρ)|T |Φ(ρ)〉, (2)

where ��Ψ
〉

is the state which minimizes
〈
Ψ��T + H int

��Ψ
〉

under
the constraint 〈Ψ| ρ̂(r)|Ψ〉 = ρ(r), and similarly ��Φ(ρ)

〉
is

the state minimizing the kinetic energy
〈
Φ��T |Φ

〉
under the

constraint 〈Φ| ρ̂(r)|Φ〉 = ρΨ(r), where ρΨ(r) is the exact
ground state density of the system under consideration.6 In
this way, at least part of the kinetic energy is determined with
some accuracy, whereas earlier attempts for determining the
kinetic energy directly from the density failed. (Note here
that the exact

〈
Ψ��T + H int

��Ψ
〉

is larger than the KS kinetic
energy since the KS one is the minimum under the density
constraint.)

In this paper, we shall show that much less information
is necessary in order to determine the exact ground state of
atoms, molecules, and solids—namely, instead of the density
ρ(r), the ground state is determined by the spherical parts of
the set of densities ρ0

i (r) = ∫ dΩρ(r+Ri); i.e., ρ0
i (r) is the

density ρ(r) with the 0 of the coordinate axes positioned at the
nucleus at Ri. Thus, e.g., for an atom, ρ0(r) is the spherical
part of the density. The advantage of using the set of ρ0

i (r)
is that the KS potential in a molecule or solid is a sum of
potentials V i(r), Vh ,i(r), and V xc ,i(r) which are spherically
symmetric with centers in the atomic nuclei at Ri, and thus,
numerical calculations are easier relative to those which ignore
local symmetry. This property is also useful in the search of the
mapping of the external potential V (r) to VKS ,i(r), using the
Gidopoulos-Davidson variational principle,7,8 and its further
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developments9 since, instead of the universal density map-
ping, one can search for the maps of the Vi(r) = −Zi

e2

|r-R i |

to VKS ,i(r) which is also spherically symmetric with center
Ri. Obviously, this mapping is affected by the total potential
V (r).

DFT can also give excited states when the external
potential is invariant under a geometric symmetry described
by a group G, like in the case of crystals, because as
one can easily show, there is one to one correspondence
between the external potential and the subspace density
ρΓ(r) =

∑
γ〈Ψ

Γ
γ | ρ̂(r)|ΨΓγ 〉 of the subspace SΓ which minimizes

the energy EΓ =
∑
γ〈Ψ

Γ
γ |H |Ψ

Γ
γ 〉. (Here by Γwe denote an irre-

ducible representation, Irrep, of the group G.) In developing
a KS theory for this case, one has to search for a KS poten-
tial VΓKS(r) invariant under the same group G as that of the
external potential. This property is satisfied because the sub-
space density is invariant under G and thus the same holds
for the Hartree potential which satisfies Poisson’s equation
∇2VΓH (r) = −4πρΓ(r) because ∇2 is an operator invariant
under translations and rotations. The same holds for VΓxc(r).
Contrarily, a single state density ρΓγ(r) is not invariant under G
and so is the Hartree potential. Thus, the exact density ρΓγ(r),
for Irreps of dimension larger than one cannot be reproduced
by the KS equation. However, the spherical part ρΓ0,γ(r) of

ρΓγ(r) determines unique SΓ, and from this, one can determine
the single states |ΨΓγ 〉 from their transformation properties, i.e.,
from the equation g|ΨΓγ 〉 =

∑
β DΓβγ(g)|ΨΓβ〉, where DΓβγ(g) are

the matrix elements of the Irrep Γ of the group G. In order
to show the advantage of using ρ0(r) instead of the whole
density, let us consider the case of an atom where its ground
state |Ψl

m〉 is an eigenstate of the angular momenta L2 and
Lz due to the spherical symmetry of the external potential. In
this case, the density ρ(r) = 〈Ψl

m | ρ̂(r)|Ψl
m〉 is not spherically

symmetric unless l = 0. Then, the resulting Hartree poten-
tial is not spherically symmetric either because, by Poisson’s
equation ∇2Vh(r) = −4πρ(r), any asymmetry of the density
will be transferred to the Hartree potential. The same holds
for the exchange and correlation potential since the total KS
potential must be spherically symmetric. Thus, the Kohn and
Sham potential, calculated by the whole density and not by
its spherical part, has no spherical symmetry, and therefore,
the orbitals φi(r) of the KS equation are not eigenfunctions of
L2 and Lz. Therefore, the exact density ρ(r) cannot be repro-
duced by the sum of |φi(r)|2.10 Then, one must be satisfied
with only an approximation of the KS density to that of the
actual physical system. An example is given by Fertig and
Kohn who tried to determine the KS potential for a given den-
sity,11 comprising nonspherical parts, where the asymmetry
of the density forced them to impose a spherical symmetry
constraint. However, in using only the spherical part of the
density, no such constraint is necessary.12 Furthermore, in the
case of degeneracy, one can show that the space of degeneracy
is determined uniquely by ρ0(r) and all states with different
m have the same ρ0(r), as shown in Appendix A. Then the
subspace density ρ(r, S) =

∑
〈Ψl

m | ρ̂(r)|Ψl
m〉 is connected with

ρ0(r) by the relation ρ(r, S) = (2l + 1)ρ0(r).
Before closing this section, it is worth recalling that spher-

ical potentials were intuitively introduced within the muffin tin

approximation for the purpose of making easier band struc-
ture calculations for crystals by Korringa in 194713 and by
Kohn and Rostoker in 1953.14 Thus, they considered that the
potential was spherically symmetric within a sphere of radius
R from each atomic nucleus and constant outside. The same
approximation was also used in several applications after the
advent of DFT. In particular, the Exact Muffin Tin Orbitals
(EMTO) method was introduced, where the single electron
equations were solved exactly for the optimized overlapping
muffin tin potential. This theory was applied successfully by
Szunyogh et al. for deriving the density and other proper-
ties of surfaces and interfaces.15 In a paper by Asato,16 full
self-consistency calculations were carried out for metals and
semiconductors and compared with the EMT0 approximation.
The EMTO results, although much easier to calculate, com-
pared well with the full DFT calculations.16 It is interesting
therefore to find how good these approximations are compared
to the results of the present theory. A detailed presentation of
the EMTO method and its further developments can be found
in the book by Vitos “Computational Quantum Mechanics for
Material Engineers.”17

The new formulation of DFT is presented in Sec. II.
In Sec. III, the theoretical and numerical advantages are
discussed, and in Sec. IV, we summarize our conclusions.

II. THE NEW DFT THEORY FOR MOLECULES
AND SOLIDS

The external potential of a molecule or a solid is a sum

of potentials Vi(r) = − Zie2

|r−Ri |
, each one of which is spherically

symmetric about the nucleus of charge Z i at Ri. Thus,

V (r) =
∑

Vi(r) = −
k∑

i=0

Zie2

|r − Ri |
. (3)

Let us take R0 = 0. Then since V0(r) = −Z0e2

|r | is spherically
symmetric and

ρ(r) = ρ0(r) +
∑
l〉0,m

ρlm)Y l
m(Ω), (4)

where Y l
m(Ω) is the spherical harmonic which is an eigenstate

of L2 with eigenvalue l(l + 1) and Lz = m, it follows that∫
d3rV0(r)ρ(r) =

∫
d3rV0(r)ρ0

0(r) (5)

because for l larger than 0,∫
Y l

m(Ω)dΩ) = 0. (6)

In this notation,∫
F(Ω)dΩ =

∫ π

0
dθ sin θ

∫ 2π

0
dφF(θ, φ). (7)

For the potential V j(r), we can change variables so that
r′j = r − Rj. Then as shown in Appendix B,∫

d3rVj(r)ρ(r) = −
∫ ∞

0
drjr

2
j

Zje2

rj
ρ0

j (rj), (8)

rj = r − Rj, and

ρ0
j (rj) =

∫
dΩρ(r+Rj). (9)
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We shall now prove the basic inequality concerning the
present version of DFT.

Theorem 1. The set of densities ρ0
i (r) determine

uniquely the external potential.

The proof is limited to the case that the ground state is not
degenerate. The case of degeneracy is given in Appendix C.

Proof. From the lowest energy states ��Ψ
〉

and ��Ψ′
〉

of the
Hamiltonians H and H ′,

H = T + Hint + V , H ′ = T + Hint + V ′ (10)

corresponding to the external nonequivalent potentials V and
V ′, the following inequalities hold by the Rayleigh-Ritz
variational principle:

〈Ψ|T + Hint |Ψ〉 +
∫

d3rV (r)ρΨ(r)

< 〈Ψ′ |T + Hint |Ψ
′〉 +

∫
d3rV (r)ρΨ′(r) (11)

and

〈Ψ′ |T + Hint |Ψ
′〉 +

∫
d3rV ′(r)ρΨ′(r)

< 〈Ψ|T + Hint |Ψ〉 +
∫

d3rV ′(r)ρΨ(r). (12)

Adding by parts and transferring all terms to the left hand site,
we get the inequality∫

d3r[V ′(r) − V (r)][ρΨ′(r) − ρΨ(r)]〈0. (13)

Assume now that V (r) =
∑

V i(r), V ′(r) =
∑

i,jV i(r) +
V ′j (r), where V i(r), V ′j (r) are spherically symmetric potentials
with centers Ri, Rj, respectively. Then, the above inequality
becomes ∫

d3r[V ′j (r) − Vj(r)][ρΨ′(r) − ρΨ(r)]〈0. (14)

But since∫
d3r[V ′(r) − V (r)][ρΨ′(r) − ρΨ(r)]

=

∫
drr2[V ′j (r) − Vj(r)][ρ0

jΨ′(r) − ρ0
jΨ(r)], (15)

our inequality becomes∫
drr2[V ′j (r) − Vj(r)][ρ0

jΨ′(r) − ρ0
jΨ(r)]〈0. (16)

Obviously, when we make a simultaneous change to all V j(r),
by our basic inequality, we get∑

i

∫
dr ′i r2

i [V ′i (ri) − Vi(ri)][ρ
0
iΨ′(ri) − ρ

0
iΨ(ri)]〈0. (17)

Thus the set of densities ρ0
iΨ(r ′i ) = ∫ dΩ ρΨ(r + Ri) determine

uniquely the ground state of a system which is the sum of
spherically symmetric potentials with centers Ri since, if the
opposite is true, i.e., ρ0

iΨ′(r) − ρ0
iΨ(r) = 0 for all i, the above

inequality is violated. Q.E.D.

Since the energy is a functional of the set of densities
ρ0

i (r), it follows that the Hartree and the exchange and corre-
lation energies are also functionals of the set of densities ρ0

i (r).
Then, the total energy is a functional of this set of densities
and so is the exchange and correlation potential. Thus we can
define the Hartree potential at Ri as

V ′ih(r) =
Zi

N

∫
r ′2dr ′

∫
dΩ

e2

|r′ − r|
ρ0

i (r ′). (18)

This is a spherically symmetric potential with axes
at Ri. Going back to the original axes, this becomes
V ih(r) = V ′ih(r − Ri).

In the same way, the exchange and correlation energy
defined here as

Exc(ρ0, . . . ρi . . .)

= 〈Ψ(ρ0, . . . ρi . . .)|T + Hint |Ψ(ρ0, . . . ρi . . .)〉

− 〈Φ(ρ0, . . . ρi . . .)|T |Φ(ρ0, . . . ρi . . .)〉 (19)

is a functional of ρ0
i . Then the exchange and correlation

potential is V i
xc(r, ρ0

i ) = d
dρ0

i (r)
Exc(ρ0, . . . ρi . . .).

Since the total KS potential with center at Ri must be
spherically symmetric, it follows that the exchange and cor-
relation potential is also spherically symmetric with axes
positioned at Ri. Then using the initial coordinates, we have
V i

xc(r, ρ0
i ) = V i

xc(|r−Ri |, ρ0
i ). Then V i

xc(r, ρ0
i ) = d

dρ0
i (r)

Exc(ρi),

and thus Exc(ρ0, . . ., ρi . . .) =
∑

Exc(ρi).
Thus we have

Theorem 2. The total KS potential is a sum of potentials,
each one of which is spherically symmetric with respect to
rotations about the corresponding nuclei, i.e.,

VKS(r) =
∑

i

[Vi(|r−Ri |)+Vi,h(|r−Ri |)+Vi,xc (|r−Ri |)]. (20)

It then follows that in addition to symmetries with respect to
translations and rotations, one has local spherical symmetries
in the vicinity of each nucleus preserving thus the symmetry of
the local KS potential. At the first site, one may conclude that
the Hartree and exchange and correlation energies depend only
on the local densities. This is not so since the KS equations for
the orbitals depend on all VKS ,i(r).

As a final remark, the reason that the total Hartree poten-
tial is equal to the sum of the spherically local ones is due
to the linear relation between the Hartree potential and the
density.

III. DISCUSSION

Obviously, one would argue that the present approach is
numerically more complicated. Thus, for a crystal, one has to
calculate the density with respect to each nucleus and obtain its
spherical part and from this the Hartree and exchange and cor-
relation potential. This is not so since the initial translational
symmetry is preserved and therefore the KS wave functions
are of the form φk(r) = ek ·ruk(r), where uk(r + ai) = uk(r),
and ai are the lattice constants. Then the density is of the
form ρ(r) =

∑
k |uk(r)|2 and ρ(r + ai) = ρ(r). Then

ρ0
i (ri) = ρ0(|r − Ri |) and V i ,h(|r|) = V i ,h(|r − Ri |). Thus
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in the case of one nucleus per unit cell, one has to calcu-
late ρ0(r) and from this all the Hartree and exchange and
correlation potentials. In the case of a molecule without any
symmetry, one has to define ρi(r′) = ρ(r + Ri) and calcu-
late the integral ∫ ρi(r′)dΩ′. The calculation of such integrals
is not a time consuming numerical procedure. Moreover, the
calculation of the Hartree and exchange and correlation poten-
tials is much easier since one has to deal with spherically
symmetric densities with only one variable. The calculated
Vh ,i(r ′) becomes Vh,i (|r − Ri | when one goes back to the
initial coordinates, and this computation does not take much
time either. Furthermore the numerical calculations can be
easily performed, e.g., with Gaussians at Ri. Then, if we
take the simplest case that ρ(r) =

∑
cie−λi(r−Ri)2

, only the
Gaussian centered at R0 = 0 is significant for ρ0(r) since

∫ e−λi(r2+Ri
2−2rRi cosω)dΩ = 2π 1

2λirRi
[e−λi(r−Ri

2) − e−λi(r+Ri
2)].

Thus, maximum is approximately when r = Ri, .i.e., for Ri ,
0, it is significant in a spherical shell surrounding the nucleus
at 0. Thus, the main contribution to ρ0(r) comes from the
local density at 0. In the same way, the main contribution to
ρ0

j (r′) comes from cje−λj(r−Rj)2
. Then, the exchange and corre-

lation potentials are practically local potentials at each atomic
nucleus Rj. Thus, in the numerical applications, one has to
deal mainly with potentials which are spherically symmetric
in the vicinity of the atomic nuclei.

Applications for atoms have been carried out by Nagy and
Bene18 and also by the present author and Papaconstantinou19

in the framework of the subspace theory, which for this case
coincides with the present theory since the subspace density
normalized to N particles is the same as the spherical part of the
density of a single state. Applications for atoms and molecules
were carried out using the direct mapping theory,20 where the
optimized effective potential Voe(r) was expressed as a direct
mapping of the external potential, namely,

Voe(r, C0, λ0, . . .Ci, λi . . .)= −
∑

[
Zi

|r − Ri |
+ Ci

1 − eλj |r−Rj |

|r − Ri |
].

(21)

The parameters Ci and λi of Voe(r) are determined by
minimizing the Hartree-Fock energy

〈φ1, . . . φN |H |φ1, . . . φN 〉 (22)

with orbitals φi(r) determined by the one particle Schrodinger
equation with potential Voe(r). As shown by Gidopoulos,8 the
optimized effective potential is an approximation to the KS
potential when it includes only the exchange potential with the
correlation potential ignored. Although the above expression
for Voe(r) is mostly intuitive, it gave quite good numerical
results for atoms and molecules in calculations carried out by
Glushkov20 and co-workers21,22

IV. CONCLUSIONS

The density functionals for atoms, molecules, and solids
are functionals of a set of densities centered at the atomic
nuclei and the same holds with the KS potentials. The use of
the present formulation may facilitate numerical calculations
because of the local spherical symmetry of the KS potential.

Moreover, the present theory does not involve symmetry incon-
sistencies as it happens with standard DFT. We hope that, using
this approach, DFT calculations may improve a lot, as unnec-
essary data like the nonspherical parts of the local densities
are ignored. It may also initiate improvements of the explicit
forms of the exchange and correlation functionals. Further-
more, it may lead to an advancement of the direct mapping
theories where the external potential is mapped to the KS
one8,9,23 as one has to find as a first approximation only the
direct mapping of each potential V i(r) to V ks ,i(r) which is
determined mainly by the spherical density about the nucleus
at Ri.

The present formulations of DFT give an interpretation of
the atoms in molecules theory of Bader24,25 for which there is
a revived interest26 since all properties of the molecules can
be determined by the set of the spherical parts of the densities
around each atomic nucleus.27
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APPENDIX A: PROOF THAT THE LOCAL
SPHERICAL DENSITIES DO NOT DEPEND
ON THE EIGENVALUE m OF Lz

For spherically symmetric external potentials, ρ0,l
m (r) is

independent of the eigenvalue m of Lz.

Proof. The operator ρ̂0(r) = ∫ dΩ ρ̂r) is spherically
symmetric since

ρ̂0(R$r) =
∫

dΩ ρ̂(R$r), (A1)

and by changing variables to r′ = R$r where Ω′ = R$Ω, we
have ∫

dΩ ρ̂(R$r) =
∫

dΩ′ ρ̂(r′) = ρ̂0(r). (A2)

Thus ρ̂0(r) is an irreducible tensor operator with l = 0,
and therefore, the relations [L+, ρ̂0(r)] = [L−, ρ̂0(r )] = 0
hold. Using the relation L+ |Ψl

m〉 = Cl
m |Ψ

l
m+1〉 where

Cl
m =
√

l(l + 1) − m(m + 1), we find

〈Ψl
m+1 | ρ̂

0(r)|Ψl
m+1〉 =

1

|Cl
m |

2
〈L+
Ψ

l
m | ρ̂

0(r)L+ |Ψl
m〉

=
1

|Cl
m |

2
〈Ψl

m |L
− ρ̂0(r)L+ |Ψl

m〉,

and since

〈Ψl
m |L

− ρ̂0(r)L+ |Ψl
m〉 = 〈Ψ

l
m | ρ̂

0(r)L−L+ |Ψl
m〉,

it follows that L−L+ |Ψl
m >= |Cl

m |
2 |Ψl

m > and therefore

〈Ψl
m+1 | ρ̂

0(r)|Ψl
m+1〉 = 〈Ψ

l
m | ρ̂

0(r)|Ψl
m〉. (A3)

Then by induction it follows that for all m′,

〈Ψl
m′ | ρ̂

0(r)|Ψl
m′〉 = 〈Ψ

l
m | ρ̂

0(r)|Ψl
m〉, (A4)

Q.E.D.
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As a corollary, we conclude that the subspace density of
the states |Ψl

m〉 is

ρ(r, S) = (2l + 1)〈Ψl
m | ρ̂

0(r)|Ψl
m〉. (A5)

APPENDIX B: PROOF THAT ONLY THE SPHERICAL
PARTS OF THE LOCAL DENSITIES DETERMINE
UNIQUELY THE EXTERNAL POTENTIAL

The relation∫
d3rV (r)ρ(r) =

k∑
j=1

∫
drjr

2
j

Zje2

rj
ρ0

j (rj)
M (B1)

holds.

Proof.

V (r) =
∑

Vi(r) = −
k∑

i=0

Zie2

|r − Ri |
. (B2)

Since ∫ d3rV (r)ρ(r) =
∑k

j=1 ∫ d3rVi(r)ρ(r), we can
calculate each term separately. Then for the potential

Vj(r) = − Zie2

|r−Rj |
, we can change variables so that r′j = r − Rj.

Then since under rotations RΩj with center Rj, RΩj Rj = Rj and

|RΩj r′j | = |r
′
j |, we have

−
Zie2

|r − Rj |
= −

Zje2

|r′j |
= Vj(r′j ). (B3)

The V j(r′j ) is spherically symmetric in the new coordinate
system under rotations with center Rj and thus∫

d3rVj(r)ρ(r) = −
∫

d3r
Zje2

|r − Rj |
ρ(r)

= −

∫
d3rj

Zje2

|r′j |
ρ(r′j + Rj). (B4)

Let now ρ(r′ + Rj) = ρj(rj); i.e., ρj(rj) is the same
density expressed in the new coordinate system. Then,
ρj(rj)= ρ0

j (rj) +
∑l

m ρl
m(rj)Y l

j,m(Ω), where ρ0
j (r ′j )= ∫ dΩ′ρj(r)

and Y l
j,m(Ω) are the spherical harmonics with center at Rj. Thus

∫
∞

0 r ′2dr ′ρ0
j (r′) = ∫ r ′2dr ′ ∫ dΩ′ρ(r′) = ∫ d3r ′ρ(r′) = N ,

where N is the number of electrons of our molecule. Then∫
d3rVj(r)ρ(r) = −

∫
d3r

Zje2

|rj |
ρj(rj)

= −

∫ ∞
0

drjr
2
j

Zje2

|rj |

∫
dΩj ρj(rj), (B5)

i.e., ∫
d3rVj(r)ρ(r) = −

∫ ∞
0

drjr
2
j

Zje2

rj
ρ0

j (rj), (B6)

where rj = r − Rj.
Finally, by using the definitions of the ρ0

j (rj), we find

∫
d3rV (r)ρ(r) =

k∑
j=1

∫
drjr

2
j

Zje2

rj
ρ0

j (rj), (B7)

Q.E.D.

APPENDIX C: DFT FOR DEGENERATE STATES

In case that the external potential is invariant under a
group of geometric transformations, then the Hamiltonian is
also invariant under the same group G and one can search for
the minima for each irreducible representation Γ of G. Then,
instead of the single state density, one has to take the density
ρΓ(r) = TrSΓ ρ̂(r) corresponding to the subspace of degeneracy
SΓ,

ρΓ(r) =
∑
γ

〈ΨΓγ | ρ̂(r)|ΨΓγ 〉. (C1)

This quantity has the symmetry of the Hamiltonian. Thus if Γ is
an Irrep of dimension M of the geometric symmetry group G of
the external potential, then the whole Hamiltonian is invariant
under this group since the kinetic T̂ and interaction operator
Ĥint are invariant under all rotations and translations. Then for
any g belonging to the group G,

ρ̂(̂gr) = g−1 ρ̂(r)g, (C2)

ρΓ(gr) =
∑
γ

〈ΨΓγ |g
−1 ρ̂(r)g|ΨΓγ 〉 = TrSΓ (g

−1 ρ̂(r)g), (C3)

where by TrSΓ (A) we denote the trace of the operator A for the
subspace SΓ, i.e.,

TrSΓ (A) =
∑
γ

〈ΨΓγ |A|Ψ
Γ
γ 〉. (C4)

Then, since Tr(AB) = Tr(BA), it follows that

TrSΓ (g
−1 ρ̂(r)g) = TrSΓ ({ ρ̂(r)gg−1}). (C5)

Thus ρΓ(gr) = ρΓ(r), i.e., the subspace density has the sym-
metry of the external potential. The subspace SΓ minimizing
the subspace energy E(V, SΓ) is defined by the equation

E(V , SΓ) = min(T (S′′Γ) + Eint(S
′′Γ) + M

∫
d3rρS′′Γ (r)V (r)).

(C6)

Thus, if S
′Γ is the space minimizing the Hamiltonian

H ′ = T + Hint + ∫ d3r ρ̂(r)V ′(r) when V ′(r) is not equal to
V (r) + C, we have the inequalities

E(V , SΓ) < E(V , S
′Γ) and E(V ′, S′Γ) < E(V ′, SΓ), (C7)

and by adding the inequalities by parts and transferring all
terms to the left-hand side, we get an inequality similar to that
of the single state case, namely,∫

d3r[ρΓs′(r) − ρΓs (r)][V ′(r) − V (r)] < 0. (C8)

Thus two different potentials correspond to different subspace
densities and different minimizing subspaces. Then one can
prove in the same way as in the case of the single ground state
that the set of the spherical part of the densities with axes at
Ri determine uniquely the minimizing subspace and the KS
potential is again a sum of potentials

Vi,ks(r) = −
Zie2

|r − Ri |
+ Vi,h(|r − Ri |) + Vi,xc(|r − Ri |). (C9)
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