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A new method for extracting ensemble Kohn-Sham potentials from accurate excited state densities
is applied to a variety of two-electron systems, exploring the behavior of exact ensemble density
functional theory. The issue of separating the Hartree energy and the choice of degenerate eigenstates
is explored. A new approximation, spin eigenstate Hartree-exchange, is derived. Exact conditions that
are proven include the signs of the correlation energy components and the asymptotic behavior of
the potential for small weights of the excited states. Many energy components are given as a function
of the weights for two electrons in a one-dimensional flat box, in a box with a large barrier to create
charge transfer excitations, in a three-dimensional harmonic well (Hooke’s atom), and for the He
atom singlet-triplet ensemble, singlet-triplet-singlet ensemble, and triplet bi-ensemble. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4872255]

I. INTRODUCTION AND ILLUSTRATION

Ground-state density functional theory1, 2 (DFT) is a
popular choice for finding the ground-state energy of elec-
tronic systems,3 and excitations can now easily be ex-
tracted using time-dependent DFT4–7 (TDDFT). Despite
its popularity, TDDFT calculations have many well-known
difficulties,8–11 such as double excitations12 and charge-
transfer (CT) excitations.13, 14 Alternative DFT treatments of
excitations15–17 are always of interest.

Ensemble DFT (EDFT)18–21 is one such alternative
approach. Unlike TDDFT, it is based on an energy variational
principle.19, 22 An ensemble of monotonically decreasing
weights is constructed from the M + 1 lowest levels of the
system, and the expectation value of the Hamiltonian over
orthogonal trial wavefunctions is minimized by the M + 1
exact lowest eigenfunctions.19 A one-to-one correspondence
can be established between ensemble densities and potentials
for a given set of weights, providing a Hohenberg-Kohn (HK)
theorem, and application to non-interacting electrons of the
same ensemble density yields a Kohn-Sham (KS) scheme
with corresponding equations.20 In principle, this yields the
exact ensemble energy, from which individual excitations
may be extracted.

But to make a practical scheme, approximations must
be used.23–27 These have been less successful for EDFT than
those of ground-state DFT28–32 and TDDFT,6, 33 and their ac-
curacy is not yet competitive with TDDFT transition frequen-
cies from standard approximations. Some progress has been
made in identifying some major sources of error.34–36

To help speed up that progress, we have developed a nu-
merical algorithm to calculate ensemble KS quantities (or-
bital energies, energy components, potentials, etc.) essentially
exactly,37 from highly accurate excited-state densities. In the

present paper, we provide reference KS calculations and re-
sults for two-electron systems under a variety of conditions.
The potentials we find differ in significant ways from the ap-
proximations suggested so far, hopefully leading to new and
better approximations.

To illustrate the essential idea, we perform calculations
on simple model systems. For example, Sec. VI A presents
two “electrons” in a one-dimensional (1D) box, repelling one
another via a (slightly softened) Coulomb repulsion. In Fig. 1,
we show their ground- and excited-state densities, with I indi-
cating the specific ground or excited state. We also plot the
ensemble exchange-correlation (XC) potentials for equally
weighted mixtures of the ground and excited states, which
result from our inversion scheme. In this lower plot, I = 1
denotes the ground-state exchange-correlation potential, and I
> 1 indicates the potential corresponding to an equal mixture
of the ground state and all multiplets up to and including the
Ith state. Excitation energies for all these states are extracted
using the EDFT methods described below.

The paper is laid out as follows. In Sec. II, we briefly re-
view the state-of-the-art for EDFT, introducing our notation.
Then, in Sec. III, we give some formal considerations about
how to define the Hartree energy. The naïve definition, taken
directly from ground-state DFT, introduces spurious unphys-
ical contributions (which then must be corrected-for) called
“ghost” corrections.34 We also consider how to make choices
among KS eigenstates when they are degenerate, and show
that such choices matter to the accuracy of the approxima-
tions. We close that section by showing how to construct
symmetry-projected ensembles.

In Sec. IV, we prove a variety of exact conditions within
EDFT. Such conditions have been vital in constructing useful
approximations in ground-state DFT.31, 38 Following that, in
Sec. V we describe our numerical methods in some detail.
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FIG. 1. Exact densities and equiensemble exchange-correlation potentials of
the 1D box with two electrons. The third excited state (I = 4) is a double
excitation. See Sec. VI A.

Section VI consists of calculations for quite distinct sys-
tems, but all with just two electrons. The one-dimensional flat
box was used for the illustration here, which also gives rise
to double excitations. A box with a high, asymmetric barrier
produces charge-transfer excitations. Hooke’s atom is a three-
dimensional (3D) system, containing two Coulomb-repelling
electrons in a harmonic oscillator external potential.39 It has
proven useful in the past to test ideas and approximations in
both ground-state and TDDFT calculations.40 We close the
section reporting several new results for the He atom, using
ensembles that include low-lying triplet states. Atomic units
[e = ¯ = me = 1/(4πε0) = 1] are used throughout unless
otherwise specified.

II. BACKGROUND

A. Basic theory

The ensemble variational principle19 states that, for an
ensemble of the lowest M + 1 eigenstates �0, . . . , �M of
the Hamiltonian Ĥ and a set of orthonormal trial functions
�̃0, . . . , �̃M ,

M∑
m=0

wm〈�̃m|Ĥ |�̃m〉 ≥
M∑

m=0

wmEm, (1)

when the set of weights wm satisfies

w0 ≥ w1 ≥ . . . ≥ wm ≥ . . . ≥ 0, (2)

and Em is the eigenvalue of the mth eigenstate of Ĥ . Equal-
ity holds only for �̃m = �m. The density matrix of such an
ensemble is defined by

D̂W =
M∑

m=0

wm|�m〉〈�m|, (3)

where W denotes the entire set of weight parameters. Prop-
erties of the ensemble are then defined as traces of the cor-
responding operators with the density matrix. The ensemble
density nW(r) is

nW(r) = tr{D̂W n̂(r)} =
M∑

m=0

wmnm(r), (4)

and the ensemble energy EW is

EW = tr{D̂WĤ } =
M∑

m=0

wmEm. (5)

nW(r) is normalized to the number of electrons, implying∑M
m=0 wm = 1.

A HK1 type theorem for the one-to-one correspondence
between nW(r) and the potential in Ĥ has been proven,18, 20

so all ensemble properties are functionals of nW(r), includ-
ing D̂W . The ensemble HK theorem allows the definition
of a non-interacting KS system, which reproduces the ex-
act nW(r). The existence of an ensemble KS system assumes
ensemble v-representability. EDFT itself, however, only re-
quires ensemble non-interacting N-representability, since a
constrained-search formalism is available.20, 41 Ensemble N-
and v-representability are not yet proven, only assumed.

As in the ground-state case, only the ensemble energy
functional is formally known, which is

EW[n] = FW[n] +
∫

d3r n(r)v(r), (6)

where v(r) is the external potential. The ensemble universal
functional FW is defined as

FW[n] = tr{D̂W[n](T̂ + V̂ee)}, (7)

where T̂ and V̂ee are the kinetic and electron-electron inter-
action potential operators, respectively. The ensemble varia-
tional principle ensures that the ensemble energy functional
evaluated at the exact ensemble density associated with v(r)
is the minimum of this functional, Eq. (5).

The ensemble KS system is defined as the non-interacting
system that reproduces nW(r) and satisfies the following non-
interacting Schrödinger equation:{

−1

2
∇2 + vS,W[nW](r)

}
φj,W(r) = εj,Wφj,W(r). (8)

The ensemble KS system has the same set of wm as the in-
teracting system. This consistency has non-trivial implica-
tions even for simple systems. This will be explored more in
Sec. II B.

The KS density matrix D̂s,W is

D̂S,W =
M∑

m=0

wm|�m〉〈�m|, (9)

where �m are non-interacting N-particle wavefunctions, usu-
ally assumed to be single Slater determinants formed by KS
orbitals φj,W . We find that this choice can be problematic, and
it will be discussed in Sec. III A. The ensemble density nW(r)
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is reproduced by the KS system, meaning

nW(r) =
M∑

m=0

wmnm(r) =
M∑

m=0

wmnS,m(r), (10)

where nm(r) = 〈�m|n̂(r)|�m〉, and nS,m(r) = 〈�m|n̂(r)|�m〉.
The KS densities of the individual states are generally not re-
lated to those of the interacting system; only their weighted
sums are equal, as in Eq. (10).

EW[n] is decomposed as in ground-state DFT,

EW[n] = TS,W[n] + V [n] + EH[n] + EXC,W[n]

= tr{D̂S,W T̂ } +
∫

d3r n(r)v(r)

+EH[n] + EXC,W[n], (11)

where only the ensemble XC energy EXC,W is unknown. The
form of vS,W(r) is then determined according to the variational
principle by requiring δEW[nW]/δnW(r) = 0, resulting in

vS,W[nW](r) = v(r) + vH[nW](r) + vXC,W[nW](r), (12)

where vH[n](r) = δEH[n]/δn(r), and vXC,W[n](r) = δEXC,W[n]
/δn(r). EH is generally defined to have the same form as the
ground-state Hartree energy functional. Although this choice
is reasonable, we find that it is more consistent to consider
EHX, the combined Hartree and exchange energy. This point
will be discussed in Sec. III A.

The ensemble universal functional FW[n] depends on the
set of weights wm. Reference 20 introduced the following set
of weights, so that only one parameter w is needed:

wm =
{ 1−wgI

MI −gI
m ≤ MI − gI ,

w m > MI − gI ,
(13)

where w ∈ [0, 1/MI ]. In this ensemble, here called GOK for
the authors Gross, Oliveira, and Kohn,34 I denotes the set of
degenerate states (or “multiplet”) with the highest energy in
the ensemble, gI is the multiplicity of the Ith multiplet, and MI

is the total number of states up to the Ith multiplet. GOK en-
sembles must contain full sets of degenerate states to be well-
defined. The weight parameter w interpolates between two en-
sembles: the equiensemble up to the Ith multiplet (w = 1/MI )
and the equiensemble up to the (I − 1)th multiplet (w = 0).
All previous studies of EDFT have been based on this type of
ensemble.

The purpose of EDFT is to calculate excited-state prop-
erties, not ensemble properties. With the GOK ensemble, the
excitation energy of multiplet I from the ground state, ωI, is
obtained using ensembles up to the Ith multiplet as

ωI = 1

gI

∂EI,w

∂w

∣∣∣∣
w=wI

+
I−1∑
i=0

1

Mi

∂Ei,w

∂w

∣∣∣∣
w=wi

, (14)

which simplifies to

ω1 = ωs,1,w + ∂EXC,w[n]

∂w

∣∣∣∣
n=nw

(15)

for the first excitation energy. Equation (14) holds for any
valid wi’s if the ensemble KS systems are exact, despite ev-
ery term in Eq. (14) being w-dependent. No existing EXC,w

approximations satisfy this condition.21, 24

Levy42 pointed out that there is a special case for w → 0
of bi-ensembles (I = 2, with all degenerate states within a
multiplet having the same density),


vXC = lim
w→0

∂EXC,w[n]

∂w

∣∣∣∣
n=nw

=
[

lim
w→0

vXC,w[nw](r)

]
− vxc,w=0[nw=0](r) (16)

for finite r, where 
vXC is the change in the KS highest-
occupied-molecular-orbital (HOMO) energy between w = 0
(ground state) and w → 0+.43 
vXC is a property of electron-
number-neutral excitations, and should not be confused with
the ground-state derivative discontinuity 
XC, which is related
to ionization energies and electron affinities.44

B. Degeneracies in the Kohn-Sham system

Taking the He atom as our example, the interacting sys-
tem has a non-degenerate ground state, triply degenerate first
excited state, and a non-degenerate second excited state. How-
ever, the KS system has a fourfold degenerate first excited
state (corresponding to four Slater determinants), due to the
KS singlet and triplet being degenerate (Fig. 2). Consider an
ensemble of these states with arbitrary, decreasing weights, in
order to work with the most general case. Represent the en-
semble energy functional Eq. (5) as the KS ensemble energy,
ES,W , plus a correction, GW . This correction then must encode
the switch from depending only on the sum of the weights of
the excited states as a whole in the KS case to depending on
the sum of triplet weights and the singlet weight separately.

For the interacting system, the ensemble energy and
density take the forms

EW = E0 + wTω1 + wSω2,

nW(r) = n0(r) + wT
n1(r) + wS
n2(r),
(17)

where ωi = Ei − E0, and so on, wT is the sum of the triplet
weights, and wS is the singlet weight. On the other hand, for
the KS system we have

ES,W = ES,0 + (wT + wS) 
ε1,w,
(18)

nW(r) = 2|φ1s |2 + (wT + wS)(|φ2s |2 − |φ1s |2).

FIG. 2. Diagram of the interacting and KS multiplicity structure for He. De-
generacy of the Ith multiplet is g(I); tildes denote KS values. For instance,
Ĩ = 2 refers to the KS multiplet used to construct the second (singlet) multi-
plet of the real system (I = 2), as is described in Sec. III B.
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Each of the weights must be the same for the non- interact-
ing and interacting systems, in order to define an adiabatic
connection, but wT may differ from wS. If they are equal as
in some ensemble treatments, variational principles for en-
sembles may be connected to statistical mechanics and one
another more readily.45

The functional GW = EW − ES,W in this case is

GW[nW] = E0 − Es,0 + wT (ω1 − 
ε1) + wS (ω2 − 
ε1) ,

(19)
showing that, in its most general form, the exact ensem-
ble energy functional (which can also be decomposed as in
Eq. (11)) has to encode the change in the multiplet structure
between non-interacting and interacting systems, even for a
simple system like the He atom. Such information is unknown
a priori for general systems, and can be very difficult to incor-
porate into approximations. In light of this difficulty, some re-
searchers opt to use single-Slater-determinant states and equal
weights for degenerate states.45 However, we show that this
problem can be alleviated if the degeneracies are the result of
symmetry. This will be discussed in Sec. III C.

C. Approximations

Available approximations to the ensemble EXC in-
clude the quasi-local-density approximation (qLDA)
functional21, 46 and the “ghost”-corrected exact exchange
(EXX) functional.24, 34 The qLDA functional is based on
the equiensemble qLDA,46 and it interpolates between two
consecutive equiensembles21

EqLDA
XC,I,w [n] = (1 − MIw)EeqLDA

XC,I−1 [n]

+MIwEeqLDA
XC,I [n], (20)

where E
eqLDA
XC is the equiensemble qLDA functional defined

in terms of finite-temperature LDA in Ref. 46.
The ensemble Hartree energy is defined analogously to

the ground-state Hartree energy as shown in Eq. (11). Simi-
larly, Nagy24 provides a definition of the exchange energy for
bi-ensembles

ENagy
X,w [n↑, n↓] = −1

2

∑
σ

∫
d3rd3r ′ |nσ (r, r′)|2

|r − r′| , (21)

where nσ (r, r′) is the reduced density matrix defined anal-
ogously to its ground-state counterpart, assuming a spin-up
electron is excited in the first excited state

nσ,w(r, r′) =
Nσ∑
j=1

nj,σ (r, r′) + δσ,↑w
(
nL↑(r, r′) − nH↑(r, r′)

)
,

(22)
with nj,σ (r, r′) = φj,σ (r)φ∗

j,σ (r′), L↑ = N↑ + 1, and
H↑ = N↑, the spin-up lowest-unoccupied-molecular-orbital
(LUMO) and HOMO, respectively. Both EH in Eqs. (11) and
(21) contain “ghost” terms,34 which are cross-terms between
different states in the ensemble due to the summation form
of nw(r) in Eq. (4) and nw(r, r′) in Eq. (22). An EXX func-
tional is obtained after such spurious terms are corrected. As
an example of the GPG X energy functional34 (named for its
creators Gidopoulos, Papaconstantinou, and Gross), take two-

TABLE I. First non-triplet excitation energies (in eV) of various atoms and
ions calculated with qLDA, EXX, GPG, and SEHX functionals. qLDA calcu-
lations were performed upon LDA (PW92)58 ground states; EXX24 ground
states were used for the rest. Asterisks indicate use of spin-restricted ground
states. qLDA relies on ground-state LDA orbital energy differences; it can-
not be used with the single bound orbital of LDA He. GPG is used with
single-determinant states and performs well, though GPG allows the choice
of multi-determinant states.

He Li Li+ Be Be+ Mg Ca Ne Ar

Exp. 20.62 1.85 60.76 5.28 3.96 4.34 2.94 16.7 11.6
qLDA ... 1.93 53.85 3.71 4.30 3.58 1.79 14.2 10.7
EXX 27.30 6.34 72.26 10.22 12.38 8.25 9.89 26.0 18.2
GPG 20.67 1.84 60.40 3.53 4.00 3.25 3.25 18.2 12.1
SEHX 21.29 2.08* 61.64 5.25 4.06* 4.39 3.55 18.4 12.2

state ensembles constructed as in the Nagy example above.
For this simplified case, the GPG X energy functional is

EGPG
X,w [n↑, n↓]=

∫
d3rd3r ′

|r − r′|
{
−1

2
(nσ (r, r′))2

+ww[nH↑(r, r′)nL↑(r, r′)−nH↑(r′)nH↑(r′)]
}
,

(23)

where w = 1 − w. These “ghost” corrections are small com-
pared to the Hartree and exchange energies. However, they
are large corrections to the excitation energies, as Eq. (14)
contains energy derivatives instead of energies. Table I shows
a few examples.

With the help of the exact ensemble KS systems to be
presented in this paper, we construct a new approximation,
the motivation and justification of which will be explained in
Secs. III A and III B.

III. THEORETICAL CONSIDERATIONS

In this section, we review important definitions and ex-
tend EDFT to improve the consistency and generality of the
theory.

A. Choice of Hartree energy

The energy decomposition in Eq. (11) is analogous to
its ground-state counterpart. However, unlike TS and V , the
choices for EH and EX and EC are ambiguous; only their sum
is uniquely determined. As shown in Eqs. (11) and (21), def-
initions for EH and EX can introduce “ghost” terms. Correc-
tions can be considered either a part of EH and EX or a part of
EC. Such correction terms also take a complicated form when
generalized to multi-state ensembles.

A more natural way of defining EH and EXC for ensembles
can be achieved by considering the purpose of this otherwise
arbitrary energy decomposition. In the ground-state case, the
electron-electron repulsion reduces47 to the Hartree energy for
large Z, which is a simple functional of the density. The re-
maining unknown, EXC (and its components EX and EC), is a
small portion of the total energy, so errors introduced by ap-
proximations to it are small.
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For ensembles, we review a slightly different energy de-
composition proposed by Nagy.26, 48 Instead of defining EH

and EX in analogy to their ground-state counterparts, first
define the combined Hartree-exchange energy EHX, which is
the more fundamental object in EDFT. EHX can be explicitly
represented as the trace of the KS density matrix

EHX,W = tr{D̂S,WV̂ee} =
M∑

m=0

wm〈�m|V̂ee|�m〉. (24)

For the ground state, both Hartree and exchange contributions
are first-order in the adiabatic coupling constant, while cor-
relation consists of all higher-order terms. According to the
definition above, this property in the ensemble is retained.
Equation (24) contains no “ghost” terms by definition, elimi-
nating the need to correct them.48 As a consequence, the cor-
relation energy, EC, is defined and decomposed as

EC,W = EHXC,W − EHX,W = TC,W + UC,W, (25)

where EHXC,W = EW − TS,W − V , TC,W = TW − TS,W and
UC,W = EC,W − TC,W .

This form of EHX reveals a deeper problem in EDFT. As
demonstrated in Sec. II B, the multiplet structure of real and
KS He atoms is different. Real He has a triplet state and a
singlet state as the first and second excited states, but KS He
has four degenerate single Slater determinants as the first ex-
cited states. Worse, the KS single Slater determinants are not
eigenstates of the total spin operator Ŝ2, so their ordering is
completely arbitrary. The KS system is constructed to yield
only the real spin densities, not other quantities. KS wave-
functions that are not eigenstates of Ŝ2 do not generally af-
fect commonly calculated ground-state DFT properties,49 but
things are clearly different in EDFT. Consider the bi-ensemble
of the ground state and the triplet excited state of He. Then
EHX,w[nw] depends on which three of the four KS excited-state
Slater determinants are chosen, though it must be uniquely de-
fined. Therefore, we choose the KS wavefunctions in EDFT to
be linear combinations of the degenerate KS Slater determi-
nants, preserving spatial and spin symmetries and eliminating
ambiguity in EHX. We note here that GPG allows use of spin
eigenstates34 as in their own atomic calculations, but we re-
quire it from our approximation. Such multi-determinant, spin
eigenstates are also required for construction of symmetry-
projected ensembles, as described in Sec. III C.

With EHX fixed, the definitions of EH and EX depend on
one another, but EC does not. Defining a Hartree functional in
the same form as the ground-state

U [n] = 1

2

∫
d3r

∫
d3r ′ n(r)n(r)

|r − r′| , (26)

we can examine different definitions for the GOK ensemble.
A “ghost”-free ensemble Hartree, Eens

H , can be defined as

Eens
H,w =

M∑
m=0

wmU [nm], (27)

i.e., the ensemble sum of the Hartree energies of the interact-
ing densities, or as the slightly different

EKS ens
H,w =

M∑
m=0

wmU [ns,m], (28)

i.e., the ensemble sum of the Hartree energies of the KS den-
sities. The traditional Hartree definition,

Etrad
H,w = U [nw], (29)

introduces “ghost” terms through the fictitious interaction of
ground- and excited-state densities. Traditional and ensemble
definitions differ in their production of “ghosts,” as well as in
their w-dependence. The “ghost”-corrected EH in Ref. 34

EGPG
H,w =

M∑
m=0

w2
mU [ns,m] (30)

has a different form from Eq. (28), which is also “ghost”-free.
Each of these definitions of EH reduces to the ground-state EH

when w0 = 1 and satisfies simple inequalities such as EH > 0
and EX < 0. However, this ambiguity in the definition of EH

requires that an approximated ensemble EXC be explicit about
its compatible EH definition.

The different flavors of EH,w are compared for the He sin-
glet ensemble37 in Fig. 3. Even though Eens

H,w and EKS ens
H,w do

not contain “ghost” terms by definition, their magnitude is
slightly bigger than that of Etrad

H , which is not “ghost”-free.
This apparent contradiction stems from Eens

H,w and EKS ens
H,w de-

pending linearly on w, while Etrad
H,w depends on w quadrati-

cally. The quadratic dependence on w is made explicit with
the “ghost”-corrected EGPG

H,w of Ref. 34. Comparing with the
“ghost”-free Eens

H,w and EKS ens
H,w , it is clear that EGPG

H overcor-
rects in a sense, and is compensated by an over-correction of
the opposite direction in EGPG

X .
The traditional definition of Eq. (29) has the advantage

that vH(r) is a simple functional derivative with respect to the
ensemble density. Any other definition requires solving an op-
timized effective potential (OEP)50, 51-type equation to obtain
vH. On the other hand, an approximated EXC compatible with
Etrad

H requires users to approximate the corresponding “ghost”
correction as part of EXC. Since the ghost correction is usually
non-negligible, this is a major source of error for the qLDA
functional.
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FIG. 3. Behaviors of the different ensemble Hartree energy definitions for
the singlet ensemble of He.
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B. Symmetry-eigenstate Hartree-exchange (SEHX)

We have now identified EHX as being more consistent
with the EDFT formalism than EH and EX. Having also justi-
fied multi-determinant ensemble KS wavefunctions, we now
derive a spin-consistent EXX potential, the SEHX. Define the
two-electron repulsion integral

(μν | κλ) =
∫

d3rd3r ′

|r − r′|φ
∗
μ(r)φ∗

ν (r′)φκ (r)φλ(r′) (31)

and

Lμνκλ = (μν | κλ)δσμ,σκ
δσν ,σλ

. (32)

φμ(r) denotes the μth KS orbital and σμ its spin state. If the
occupation of the pth Slater determinant of the μth KS orbital
of the ĩth multiplet of the KS system is f (ĩ)

pμ, define

α
(i,k)
μ,ν,κ,λ =

g̃(ĩ)∑
p=1

C(i,k)
p f (ĩ)

p,μf (ĩ)
p,ν

g̃(ĩ)∏
η =μ,ν,κ,λ

δf ĩ
ρ,η,f

ĩ
q,η

(33)

for the q-dependent kth state of the ith multiplet of the exact
system. g̃(ĩ) is the KS multiplicity of the ith multiplet, and
C’s are the coefficients of the multi-determinant wavefunc-
tions defined by

�(i,k)
s (r1, . . . , rN ) =

g̃(ĩ)∑
p=1

C(i,k)
p �̃ĩ

s,p(r1, . . . , rN ). (34)

�̃s is a KS single Slater determinant. Note the numbering of
the KS multiplets, ĩ, depends on i, the numbering of the exact
multiplet structure. The C coefficients are chosen according to
the spatial and spin symmetries of the exact state. Now, with
p and q KS single Slater determinants of the KS multiplet,
define

h
(i,k)
μνκλ =

g̃(ĩ)∑
q=1

(
α

(i,k)
μ,ν,κ,λα

(i,k)
κ,λ,μ,ν − (

C(i,k)
q

)2
f (ĩ)

q,μf (ĩ)
q,νf

(ĩ)
q,κf

(ĩ)
q,λ

)
,

(35)
in order to write

H (i,k) =
∑

μ, ν >μ

κ, λ >κ

(Lμνκλ − Lμνλκ )h(i,k)
μνκλ. (36)

Then, if

G(i,k) =
∑

μ,ν>μ

(Lμμνν − �Lμνμν)
g̃(ĩ)∑
p=1

∣∣C(i,k)
p

∣∣2
f ĩ

p,μf ĩ
p,ν,

(37)
the Hartree-exchange energy for up to the Ith multiplet is

ESEHX
HX,W =

I∑
i=1

g(i)∑
k=1

w(i,k){G(i,k) + H (i,k)}, (38)

where g(i) is the exact multiplicity of the ith multiplet. The
vHX,W potential is then

vSEHX
HX,W,σ

(r) = δEHX,W

δnW,σ (r)

=
∫

d3r ′ ∑
j

δEHX,W

δφj,σ (r′)
δφj,σ (r′)
δnW,σ (r)

+ c.c., (39)

which yields an OEP-type equation for vHX,W(r).
The vHX,W(r) of Eq. (39) produces no “ghost” terms. For

closed-shell systems, Eq. (39) yields vHX,W,↑(r) = vHX,W,↓(r).
An explicit vHX,W(r) can be obtained by applying the usual
Krieger-Li-Iafrate (KLI)52 approximation. Here, we provide
the example of the singlet bi-ensemble studied in our previ-
ous paper.37 EHX for a closed-shell, singlet ensemble is

ESEHX
HX,w =

∫
d3rd3r ′

|r − r′|
{
norb

1 (r)norb
1 (r′)

+w[
norb

1 (r)
(
norb

2 (r′) − norb
1 (r′)

)
+φ∗

1 (r)φ∗
2 (r′)φ1(r′)φ2(r)

]}
, (40)

where norb
j (r) = |φj (r)|2 is the KS orbital density. Spin is not

explicitly written out because the system is closed-shell. After
applying the KLI approximation, we obtain

vHX,w(r) = 1

2nw(r)

{
(2 − w)norb

1 (r)[v1(r) + v̄HX1 − v̄1

+wnorb
2 (r)[v2(r) + v̄HX2 − v̄2]

}
, (41)

with

v1(r) = 1

(2 − w)

∫
d3r ′

|r − r′|
[
2(1 − w)norb

1 (r′)

+w(
norb

2 (r′) + φ∗
1 (r′)φ∗

2 (r)φ2(r′)/φ∗
1 (r)

)]
, (42)

v2(r) =
∫

d3r ′

|r − r′|
[
norb

1 (r′) + φ∗
1 (r)φ∗

2 (r′)φ1(r′)
φ∗

2 (r)

]
, (43)

and

v̄j =
∫

d3r vj (r)norb
j (r). (44)

Equation (41) is an integral equation for vHX(r) that can be
easily solved.

To fully understand the performance of vHX(r), self-
consistent EDFT calculations would be needed at different
values of w, which is beyond the scope of this paper. Ideally,
these self-consistent calculations would be compared to the
symmetry-eigenstate form of GPG used in Table I of Ref. 34.
In this work, we demonstrate the performance of SEHX at
w = 0 in Sec. IV C.

C. Symmetry-projected Hamiltonian

The ensemble variational principle holds for any Hamil-
tonian. If the Hamiltonian Ĥ commutes with another operator
Ô, one can apply to Ĥ a projection operator formed by the
eigenvectors of Ô. One obtains a new Hamiltonian, and the
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ensemble variational principle holds for this subspace of Ĥ ,
allowing an EDFT to be formulated.

An example would be the total spin operator Ŝ2, where

S2 =
∞∑

S=0

(2S + 1)|S〉〈S| (45)

and |S 〉 are its eigenvectors. Define a new Hamiltonian Ĥ1 as

Ĥ1 = |S〉〈S|Ĥ . (46)

Ĥ1 has the same set of eigenvectors as Ĥ , but the eigenvalues
are 0 for the eigenvectors not having spin S. Since one can
change the additive constant in Ĥ arbitrarily, it is always pos-
sible to make the eigenvalues of any set of spin-S eigenvectors
negative and thus ensure that they are the lowest energy states
of Ĥ1. The ensemble variational principle holds for ensem-
bles of spin-S states. We have employed this symmetry ar-
gument in our previous paper37 for a purely singlet two-state
ensemble of the He atom.

A similar statement is available in ground-state DFT,
allowing direct calculation of the lowest state of a certain
symmetry.53, 54 The differences between the subspace and
full treatments are encoded in the differences in their corre-
sponding EXC. Thus, the lowest two states within each spa-
tial and spin symmetry category can be treated in EDFT in a
two-state-ensemble fashion, which is vastly simpler than the
multi-state formalism.

Since the multiplet structures of the interacting system
and the KS system must be compatible, a symmetry-projected
ensemble also requires a symmetry-projected KS system,
which is impossible if KS wavefunctions are single Slater
determinants, as discussed in Sec. III A.

IV. EXACT CONDITIONS

Here, we prove some basic relations for the signs of var-
ious components of the KS scheme and construct an energy
density from the virial. We describe a feature of the ensemble
derivative discontinuity and extraction of excited properties
from the ground state.

A. Inequalities and energy densities

Simple exact inequalities of the energy components (such
as EC < 0) have been proven in ground-state DFT.44 If these
are true in EDFT, experiences designing approximated EXC

in ground-state DFT may be transferrable to EDFT. Here, we
show that inequalities related to the correlation energy are still
valid in EDFT.

Due to the variational principle,19 the wavefunctions that
minimize the ensemble energy Eq. (5) are the interacting
wavefunctions �m. Thus,

EC,W = tr{D̂WĤ } − tr{D̂S,WĤ } ≤ 0. (47)

The existence of a non-interacting KS system20 means TS,W is
the smallest possible kinetic energy for a given density nW(r),
resulting in

TC,W = TW − TS,W ≥ 0. (48)

From Eqs. (47) and (48), we immediately obtain

UC,W = EC,W − TC,W ≤ 0, (49)

and

|UC,W | ≥ |TC,W |. (50)

These inequalities are later verified with exact ensemble KS
calculations.

Since EDFT is a variational method, one expects that
the virial theorem holds. This was first proven by Nagy48, 55

and later extended to excited states.56 Here, we use the the-
orem to construct energy densities, which have been impor-
tant interpretation tools in ground-state DFT. The virial theo-
rem provides an expression for kinetic correlation in terms of
HXC,

TC,W[n] = −EHXC,W[n] −
∫

d3r n(r)r · ∇vHXC,W(r), (51)

for Hartree-exchange in terms of its potential,

EHX,W[n] = −
∫

d3r n(r)r · ∇vHX,W(r), (52)

and one relating correlation energies through the correlation
potential

TC,W[n] = −EC,W[n] −
∫

d3r n(r)r · ∇vC,W(r). (53)

The integrand of Eq. (51) can be interpreted as an energy den-
sity, since integrating over all space gives

EHXC,W + TC,W =
∫

d3r(eHXC,W + tC,W)

= −
∫

d3rn(r)r · ∇vHXC,W(r), (54)

which can easily be converted to an “unambiguous” energy
density.57

B. Asymptotic behavior

Reference 42 derived the ensemble derivative disconti-
nuity of Eq. (16) for bi-ensembles, in the limit of w → 0. For
finite w of an atomic system, as shown in our previous paper,37


vXC is close to a finite constant for small r, and jumps to 0 at
some position denoted by rC. We provide the derivation of the
location of rC as a function of w here.

For atoms, the HOMO wavefunction and LUMO wave-
functions have the following behavior:

φHOMO(r) ∼ Arβe−αr ,

φLUMO(r) ∼ A′rβ ′
e−α′r ,

(55)

with α ≥ α′. For the bi-ensemble of the ground state and the
first excited state, the ensemble density is

nw(r) ∼ 2
HOMO∑
n=1

|φn(r)|2

+w(A′2r2β ′
e−2α′r − A2r2βe−2αr ), r → ∞, (56)
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assuming that the HOMO is doubly occupied. The behavior
of the density at large r is dominated by the density of the
doubly occupied HOMO and the second term. In order to see
where the density decay switches from that of the HOMO to
the LUMO, we find the r-value at which the two differently
decaying contributions are equal

(2 − w) A2r2βe−2αr = wA′2r2β ′
e−2αr . (57)

As w → 0, rC is then

rC → − lnw

2
α
, (58)

with 
α = α − α′.
The ionization energies are available for the He ground

state and singlet excited state. Since

n(r) ∼ e−2αr ≈ e−2
√

2Ir , (59)

we obtain

rC → −0.621 lnw, w → 0 (60)

for the He singlet bi-ensemble with w close to 0.

C. Connection to ground-state DFT

With weights as in Eq. (13), calculation of the excita-
tion energies is done recursively: for the Mth excited state,
one needs to perform an EDFT calculation with the Mth state
highest in the ensemble, and another EDFT calculation with
the (M − 1)th as the highest state, and so on. Thus, for the Mth
state, one needs to perform M separate EDFT calculations for
its excitation energy.

For bi-ensembles, however, the calculation of the exci-
tation energy can be greatly simplified. Equation (14) holds
for w = 0, so one can work with ground-state data only and
obtain the first-excited state energy, without the need for an
explicit EDFT calculation of the two-state ensemble.

We calculate the first excitation energies of various atoms
and ions with Eq. (14) at w = 0 with both qLDA21, 46 (based
on LDA ground states), EXX,24 GPG,34 and SEHX, with the
last three based on OEP-EXX (KLI) ground states.52 In or-
der to ensure the correct symmetry in the end result, SEHX
must be performed on spin-restricted ground states. However,
for closed-shell systems, these results coincide with those of
spin-unrestricted calculations. We use these readily available
results when possible in this paper. The w-derivatives of the
EXC’s for qLDA and GPG required in Eq. (14) are (consider-
ing Eq. (65))

lim
w→0

∂E
qLDA
XC,w [n]

∂w

∣∣∣∣∣
n=nw

= MI

(
EeqLDA

XC [I = 2, n] − ELDA
XC [n]

)
,

(61)

where ELDA
XC is the ground-state LDA functional, and

lim
w→0

∂EGPG
X,w [n]

∂w

∣∣∣∣∣
n=nw

=
∫ ∫

d3rd3r ′

|r − r′|

⎧⎨
⎩

⎡
⎣ NH∑

j=1

nj (r, r′)

⎤
⎦ [nH(r, r′) − nL(r, r′)]

− nH(r)nL(r′) + nH(r, r′)nL(r, r′)

⎫⎬
⎭

+
∫

d3r vXC(r)[nH(r) − nL(r)], (62)

where j sums over the spin-up densities. Only ground state
properties are needed to evaluate Eq. (62). The results are
listed in Table I. Note that the single-determinant form of
GPG performs well here, despite not being designed for this
method. SEHX improves calculated excitation energies for
systems where single-determinant GPG has large errors with
this method, such as Be and Mg atoms.

V. NUMERICAL PROCEDURE

We invert the ensemble KS equation with exact densities
to obtain the exact KS potential. We describe the numerical in-
version procedure in Ref. 37. For ease in obtaining the Hartree
potential, EH is always chosen to be Etrad

H . The resulting KS
potential, being exact, does not depend on the choice of EH,
but EXC and vXC(r) reported in later sections are those compat-
ible with Etrad

H and vtrad
H (r), respectively. For simplicity, only

GOK-type ensembles [Eq. (13)] are considered, though there
is no difficulty adapting the method to other types of ensem-
bles. With this numerical procedure, vXC,w(r) is determined up
to an additive constant.

We implemented the numerical procedure on a real-space
grid. The ensemble KS equation (8) is solved by direct diag-
onalization of the discrete Hamiltonian. The grid is in general
nonuniform, which complicates the discretization of the KS
kinetic energy operator. We tested two discretization schemes,
details of which are available in the supplementary material.66

Based on these tests, all results presented in this paper have
been obtained using the finite-difference representation

−1

2

d2φ(x)

dx2
≈ φ(xi)

(xi − xi−1)(xi+1 − xi)

− φ(xi−1)

(xi − xi−1)(xi+1 − xi−1)

− φ(xi+1)

(xi+1 − xi)(xi+1 − xi−1)
. (63)

A. Derivative corrections

Exactness of the inversion process can be verified by cal-
culating the excitation energies with Eq. (14) at different w
values. Equation (14) requires calculating EXC,w of the exact
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ensemble KS system,

EXC,w[nw] = Ew − Es,w

+
∫

d3r nw(r)

[
vH[nw](r)

2
+ vXC,w[nw](r)

]
. (64)

Since we do not have a closed-form expression for the
exact EXC, its derivative can only be calculated numerically.
However, the numerical derivative of EXC, ∂EXC,w[nw]/∂w, is
not the quantity required in Eq. (14). It is related to the true
derivative through

∂EXC,w[n]

∂w

∣∣∣∣
n=nw

= ∂EXC,w[nw]

∂w

−
∫

d3r vXC,w[nw](r)
∂nw(r)

∂w
. (65)

The correction to the numerical derivative of EXC,w adjusts for
the w-dependence of the ensemble density, which is not in-
herent to EXC,w. All our calculations show that the two terms
on the right hand side of Eq. (65) are of the same order of
magnitude. This shows that the exact EXC,w[n] changes more
slowly than nw(r) as w changes. Though the calculations of
EXC,w and ∂EXC,w[n]/∂w|n=nw both involve integrations con-
taining vXC,w(r), they are independent of the additive constant.

VI. RESULTS

We apply the numerical procedure described in Sec. V
to both 1D and 3D model systems in order to further demon-
strate our method for inverting ensemble densities.

A. 1D flat box

The external potential of the 1D flat box is

v(x) =
{

0, 0 < x < L,

∞, x ≤ 0 or x ≥ L.
(66)

The exact wavefunctions can be solved numerically for two
electrons with the following soft-Coulomb interaction:

vSC(x, x ′) = 1√
(x − x ′)2 + a2

, (67)

where we choose a = 0.1.
Table II shows the total and kinetic energies of the exact

ground state and first four excited states for L = 1 a.u., calcu-
lated on a 2D uniform grid with 1000 points for each position

TABLE II. Total and kinetic energies in a.u. for a unit-width box, including
a doubly excited state (I = 3).

I E T

0 (singlet) 15.1226 10.0274
1 (triplet) 27.5626 24.7045
2 (singlet) 30.7427 24.7696
3 (singlet) 43.9787 39.6153
4 (triplet) 52.8253 49.3746

TABLE III. Excitation energies of the 1D box calculated at different w val-
ues using the exact ensemble KS systems and Eq. (14). The double excitation
(4-multiplet) shows accuracy comparable to that of the single excitation (2-
multiplet). All energies are in Hartree. See the supplementary material66 for
the full table.

2-multiplet: ω1 = 12.4399 hartree
w2 0.25 0.125 0.03125
EKS

1,w2
− EKS

0,w2
13.9402 13.9201 13.8932

∂Exc,w2[I = 2, n]/∂w2|n=nw2
− 4.5010 − 4.4407 − 4.3598

(E1 − E0)w2 12.4399 12.4399 12.4399

3-multiplet: ω2 = 15.6202 hartree

w3 0.2 0.1 0.025
EKS

2,w3
− EKS

0,w3
14.2179 14.0757 13.9735

∂Exc,w3[I = 3, n]/∂w3|n=nw3
2.7358 2.7713 2.7969

(E2 − E0)w2,w3 15.6202 15.6201 15.6202

4-multiplet: ω3 = 28.8561 hartree (double)

w4 0.166666 0.083333 0.020833
EKS

3,w4
− EKS

0,w4
28.7534 28.5826 28.4706

∂Exc,w4[I = 4, n]/∂w4|n=nw4
1.1061 1.1186 1.1858

(E3 − E0)w2,w3,w4 28.8561 28.8561 28.8561

5-multiplet: ω4 = 37.7028 hartree

w5 0.111111 0.055555 0.013888
EKS

4,w5
− EKS

0,w5
38.8375 38.8602 38.8746

∂Exc,w5[I = 5, n]/∂w5|n=nw5
− 1.1279 − 1.2205 − 1.2787

(E4 − E0)w2,w3,w4,w5 37.7028 37.7027 37.7028

variable. The third excited state is a doubly excited state cor-
responding to both electrons occupying the second orbital of
the box. Fig. 1 shows the exact densities of the ground state
and first four excited states, together with the XC potential of
equiensembles containing 1–5 multiplets. Table III lists calcu-
lated excitation energies, showing that the excitation energy is
independent of w, no matter how many states are included in
the ensemble. This is a non-trivial exact condition for the en-
semble EXC.

Double excitations are generally difficult to calculate. It
has been shown that adiabatic TDDFT cannot treat double or
multiple excitations.12 Table III shows that there is no fun-
damental difficulty in treating double excitations with EDFT.
Fig. 1 shows that vXC,w(r) for the 4-multiplet equiensemble
resembles the potentials of other ensembles. The exact two-
multiplet ensemble XC potentials at different w are plotted
in Fig. 4. The bump up near the center of the box in these
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 0  0.25  0.5  0.75  1

v x
c,

w
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w=1/4
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w=1/8
w=1/16

w=0

FIG. 4. Exact ensemble XC potentials of the 1D box with two electrons. The
ensemble contains the ground state and the first (triplet) excited state.
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potentials ensures that the ensemble KS density matches that
of the real ensemble density. Increasing the proportion of the
excited state density (see Fig. 1) included in the ensemble
density requires a corresponding increase in the height of this
bump (see the supplementary material66). With no asymptotic
region, there is no derivative discontinuity for the box, and
vXC,w→0(r) is equal to the ground-state vXC(r). Energy compo-
nents for the bi-ensemble of the 1D box satisfy the inequali-
ties shown in Sec. IV A and are reported in the supplementary
material.66

B. Charge-transfer excitation with 1D box

Charge-transfer excitations are difficult to treat with
approximate TDDFT, due to the lack of overlap between
orbitals.59 With common approximations, the excitation en-
ergy calculated by TDDFT is much smaller than experimen-
tal values.7 Here, we provide a 1D example of an excited state
with CT character, showing that there is no fundamental diffi-
culty in treating CT excitations with EDFT. Since EDFT cal-
culations do not involve transition densities, they do not suffer
from the lack-of-orbital-overlap problem in TDDFT.

The external potential for the CT box is

v(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x ∈ [0, 1] ∪ [2, 4]

20 x ∈ (1, 2)

∞ x < 0 or x > 4,

(68)

with the barrier dimensions chosen for numerical stability of
the inversion process. The lowest two eigenstate densities are
given in the top of Fig. 5. The ground-state and first-excited-
state total and kinetic energies of the CT system described are

E0 = 138.254 eV, T0 = 63.4617 eV (singlet),

E1 = 140.652 eV, T1 = 112.141 eV (triplet).
(69)

This significant increase in kinetic energy together with a
small total energy change designate the CT character of the
first excited state. The electrons become distributed between
the two wells of the potential, instead of being confined in one
well.

The ground- and first-excited-state densities and ensem-
ble XC potentials are plotted in Fig. 5. The potentials show
the characteristic step-like structures of charge-transfer ex-
citations, which align the chemical potentials of the two
wells.60, 61 Table IV lists the ensemble energies of the CT box.
Excitation energies have larger errors than those for the 1D
flat box due to greater numerical instability, but they are still
accurate to within 0.01 eV.

C. Hooke’s atom

Hooke’s atom is a popular model system39, 62 with the fol-
lowing external potential:

v(r) = k

2
|r|2 . (70)

For our calculation, k = 1/4. Though the first excited state has
cylindrical symmetry, we use a spherical grid, as it has been
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FIG. 5. Exact densities and ensemble xc potentials of the 1D charge-transfer
box.

shown that the error due to spherical averaging is small.63 As a
closed-shell system, the spatial parts, and therefore the densi-
ties, of the spin-up and spin-down ensemble KS orbitals have
to be the same, so we treat this system as a bi-ensemble.

The magnitude of the external potential of the Hooke’s
atom is smallest at r = 0, and becomes larger as r in-
creases. This is completely different from the Coulomb po-
tential of real atoms. Since the electron-electron interaction is
still coulombic, vXC(r) can be expected to have a −1/r behav-
ior as r → ∞, which is negligibly small compared to v(r).
Combined with a density that decays faster than real atomic
densities, n(r) ∼ exp (−ar2) versus n(r) ∼ exp (−br), conver-
gence of the Hooke’s atom vXC(r) is difficult in the asymp-
totic region. Additionally, vXC(r) � v(r) for small r, so larger
discretization errors in this region also contribute to poorer in-
version performance. Despite these challenges, we still obtain
highly accurate excitation energies.

A logarithmic grid with 550 points ranging from r = 10−5

a.u. to 10 a.u. is used for all the Hooke’s atom calculations. On
this grid, the exact ground- and first excited-state energies are

E1 = 54.42 eV, E2 = 64.19 eV. (71)

Calculated ω2 was 9.786 eV for all values of w tested (see
the supplementary material66). Unlike the He atom and the
1D flat box, the nw(r) and vXC,w(r) show little variation with

TABLE IV. First excitation energy and energy decomposition of the two-
multiplet ensemble of the 1D charge-transfer box at different w values, calcu-
lated using Eq. (14). All energies are in eV. The exact first excitation energy
is E1 − E0 = 2.3983 eV. See the supplementary material66 for additional
data.

3w 0.5 0.1 0.02

EKS
1,w − EKS

0,w 2.2048 2.4092 2.4317
∂EXC,w[n]/∂n|n=nw/3 0.1993 − 0.0108 − 0.0334
ω1,w 2.4042 2.3983 2.3983
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TABLE V. He atom excitation energies, calculated using Eq. (14) and var-
ious ensemble types: singlet-triplet (2-multiplet), singlet-triplet-singlet (3-
multiplet), and strictly triplet. All energies are in eV. w2 dependency of the
3-multiplet excitation energies is noted explicitly, though w2 = (1 − w3)/4
for the GOK ensemble. See the supplementary material66 for additional data
and figures.

2-multiplet ensemble: ω1 = 19.8231 eV
w2 0.25 0.125 0.03125
EKS

1,w2
− EKS

0,w2
25.1035 22.4676 21.6502

∂Exc,w2 [n]/∂w2|n=nw2
− 15.8099 − 7.9358 − 5.4351

(E1 − E0)w2 19.8336 19.8224 19.8385

3-multiplet ensemble: ω2 = 20.6191 eV

w3 0.2 0.1 0.025
EKS

2,w3
− EKS

0,w3
26.8457 25.8895 25.2853

∂Exc,w3 [n]/∂w3|n=nw3
− 0.9596 − 0.7207 − 0.5696

(E2 − E0)w2,w3 20.6270 20.6184 20.6306

Triplet ensemble: ω1 = 2.8991 eV

w 0.16667 0.08333 0.02083
EKS

1 − EKS
0 2.8928 2.8956 2.8967

∂EXC,w[n]/∂w|n=nw 0.0187 0.0104 0.0074
(E1 − E0)w 2.8990 2.8990 2.8992

w (see the supplementary material66). The second KS orbital
of the Hooke’s atom is a p-type orbital, which has no radial
node and a radial shape similar to that of the first KS orbital.
Consequently, the changes in the KS and xc potentials are also
smaller.

D. He

Using the methods in Ref. 37, we employ a Hylleraas ex-
pansion of the many-body wavefunction64 to calculate highly
accurate densities of the first few states of the He atom. We
report the exact ensemble XC potentials for He singlet ensem-
ble in that paper. Table V shows accurate excitation energies
calculated from mixed symmetry, three-multiplet, and strictly
triplet ensembles, demonstrating the versatility of EDFT.

Fig. 6 compares vXC,w(r) for four types of He equiensem-
bles, highlighting their different features. The characteristic
bump up in these potentials is shifted left in the 2-multiplet
case, relative to the others shown. This shift has little impact
on the first “shell” of the ensemble density’s shell-like struc-
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ture, but the second is shifted left and has sharper decay, no-
ticeably different from that of the singlet ensemble.37

The inequalities shown in Sec. IV A and the virial the-
orem Eq. (53) are verified by the exact results. Behaviors of
the energy components for the singlet ensemble versus w are
plotted in Fig. 7. Correlation energies show strong nonlinear
behavior in w. According to Eq. (14), the excitation energies
are related to the derivative of EXC versus w. Therefore, EC is
crucial for accurate excitation energies, even though its abso-
lute magnitude is small.

VII. CONCLUSION

This paper is an in-depth exploration of ensemble DFT,
an alternative to TDDFT for extracting excitations from DFT
methodology. Unlike TDDFT, EDFT is based on a variational
principle, and so one can expect that the failures and successes
of approximate functionals should occur in different systems
than those of TDDFT.

Apart from exploring the formalism and showing several
new results, the main result of this work is to apply a new
algorithm to highly accurate densities of eigenstates to ex-
plore the exact EDFT XC potential. We find intriguing char-
acteristic features of the exact potentials that can be compared
against the performance of old and new approximations. We
also extract the weight-dependence of the KS eigenvalues,
which are needed to extract accurate transition frequencies,
and find that a large cancellation of weight-dependence oc-
curs in the exact ensemble. Many details of these calculations
are reported in the supplementary material.66

From the original works of Gross, Oliveira, and Kohn,34

ensemble DFT has been slowly developed over three decades
by a few brave pioneering groups, most prominently that of
Nagy.24 We hope that the insight these exact results bring will
lead to a plethora of new ensemble approximations and cal-
culations and, just possibly, a competitive method to treating
excitations within DFT.
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