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ABSTRACT m 
The approach of Gross, Oliveira, and Kohn for fractionally occupied states of ensembles 
is applied to determine ensemble exchange potentials for multiplets. A recently proposed 
method of the author is used to construct exact ensemble exchange potentials of 
multiplets. 0 1995 John Wiley & Sons, Inc. 

Introduction 

T he density functional theory was originally 
developed for the ground state [l]. It can be 

applied only for the lowest-energy state in each 
symmetry class. The extension of the theory to 
excited states was proposed by Theophilou [21 as a 
subspace theory. A more general treatment was 
suggested by Gross, Oliveira, and Kohn [ 3 ] .  In this 
article, this method is applied to determine the 
exact exchange potential for ensembles of low-lying 
multiplets. 

The multiplet structure has already been treated 
using the density functional theory. The most im- 
portant approaches have been proposed by Bagus 
and Bennett [4], Ziegler, Rauk, and Baerends [5], 
and von Barth [6]. All these methods have the 
same feature of not being completely within the 
frame of the density functional theory. 

The method of fractionally occupied states can 
also be used to treat the multiplet problem. How- 

ever, the exchange energy and potential are not 
known even for the ground state. They are also 
unknown for the ensemble of excited states. 

Recently, a method determining the exact ex- 
change or exchange-correlation potential in the 
knowledge of the density was proposed [7].  (Simi- 
lar approaches were introduced by Almbladh and 
Pedroza [81, Stott et al. [91, and Zhao and Parr 
[lo].) This method is now applied to calculate the 
ensemble exchange potential. 

Fractional Approach of Multiplets 

First, the theory of Gross, Oliveira, and Kohn [3] 
is summarized. Let us consider the lowest M 
eigenstates of the Hamiltonian: 

f? Ii, k )  = E ,  l i , k )  ( k  = 1,2 ,..., g I ) .  (1) 

The energies are labeled as 

El  I E, I 1. .  . (2) 
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gi is the degeneracy of the ith multiplet. The 
ensemble energy is defined by 

while the ensemble density is given by 

gi 

+ w c ( I ,  k l i W  II, k).  (4) 

;(r) is the density operator. I is the total number 
of multiplets included in the Ml-state ensemble, 
where 

k= 1 

1 

MI = c gi. (5) 
i =  1 

The parameter w interpolates between the 
equiensembles of M, and M, - 1: 

0 5 w I 1/M, (6) 

Kohn-Sham equations can also be derived: 

[ -+v' + v,,(r>]ui(r> = qu i ( r ) ,  (7) 

where 

vgr  g( w, p; r) is the exchange-correlation potential 
of the ensemble characterized by the parameters 
M, g ,  and w. 

Exact Ensemble Exchange Potential 

There is a growing interest in determining the 
exact exchange, exchange-correlation, and Kohn- 
Sham potential in the knowledge of the density 
[7-10]. The present author has also proposed a 
method that enables one to calculate these poten- 
tials if the density is known [7]. All these efforts 
have been concentrated to the ground state. How- 
ever, it can be generalized to ensemble states with- 
out any difficulty. 

Here, the method proposed earlier to the ground 
state [7] is applied to the ensemble state. The 
outline of the method is as follows: The ensemble 
density 

i 

can be calculated with one-particle wave functions 
u i  of the Kohn-Sham equations (7). The occupa- 
tion numbers can be determined from gi and w 
[31. If the ensemble density p i  is known, the 
ensemble exchange and the exchange-correlation 
potentials are calculated as follows: Starting out 
from an appropriate (e.g., a local density) poten- 
tial, the Kohn-Sham equations are solved and the 
density of the first iteration is calculated. The po- 
tential of the ith iteration can be given by 

(10) 

and an appropriate damping is applied to obtain a 
stable convergence. Then, the Kohn-Sham poten- 
tial of the second iteration is constructed. The 
process goes on until the density equals the input 
density. (Here, the difference between the input 
and the output radial densities was taken to be 
less than which can be achieved in 400-500 
iterations.) If the input density is the exact density, 
the exact Kohn-Sham potential and the exact 
exchange-correlation potential are obtained. If 
the input density is the Hartree-Fock density, the 
exact exchange potential is gained. Here, the 
ensemble exchange potentials for multiplets are 
calculated from the Hartree-Fock densities [ 111. 

Results and Discussion 

The ensemble exchange potentials are studied 
for the following multiplets: 3P, '0, and IS, for the 
atoms 0 and S and 4S, '0, and 'P for the atoms N 
and P. The ensemble exchange potentials are writ- 
ten in the form 

The factors a M f g ( w >  are functions of the radial 
distance r .  The exchange factors aM,g(w)  for the 
atoms 0 and S are presented in Figures 1 and 2 vs. 
the square of the radial distance. For comparison, 
the ground-state functional 01 is shown (solid line). 
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The upper line is for 3P. The exchange factor a of 
the ensemble obtained from 3P and ' D  is the 
middle (point) line. The lower function corre- 
sponds to the ensemble arising from 3P, ID, and 'S 
(dashed line). In these calculations, the maximum 
possible value of w is used, i.e., the ensemble 
density is given by 

(12) P = (g ,  PI + g, P2)/(81 + 9 2 )  

for the middle and 

P = ( 8 ,  P1 + 82 P2 + 8 3 P 3 ) / ( 8 1  + 8 2  + 8 3 )  (13) 

:::I , . , , I  
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I f 2  

FIGURE 1. (4 The exchange factors (Y of the 0 atom 
for the ground state (3P),  ( ... ) the ensemble obtained 
from 3P and 'D,  and (- - -) the ensemble gained from 3P, 
' D ,  and ' S  as a function of the square of the radius 
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FIGURE 2. (-) The exchange factors (Y of the S atom 
for the ground state (3P), ( ... the ensemble obtained 
from 3P and ' D ,  and (- - -1 the ensemble gained from 3P,  
' D ,  and ' S  as a function of the square of the radius. 
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FIGURE 3. (-1 The exchange factors (Y of the 0 atom 
for the ground state (3P), ( ... ) the ensemble obtained 
from 3P and ' D ,  and (- - -1 the ensemble gained from 3P, 
'D ,  and 'S as a function of the density. 

for the lower line, respectively. It corresponds to 
the subspace theory of Theophilou [2 ] .  

These figures show a shell structure. (For the 
ground state, the shell structure has already been 
demonstrated [ 71). Though the ensemble exchange 
potentials are different from the ground state one, 
the difference is not too much and the factors 01 

show a very similar behavior. 
The fact that the exact exchange potential has 

similar behavior for the ensemble of multiplets 
suggests that approximations might also be simi- 
lar. Probably, a small change in the ground-state 
exchange functionals might lead to a good approx- 
imation for ensembles of multiplets. 

Figures 3-6 present the factors 01 as functions of 
the density. The shell structure can also be clearly 
seen. If the ensemble exchange potential were a 
unique function of the ensemble density alone (for 
different ensembles), the curves a would be ex- 
actly the same. However, we can also see that the 
ensemble exchange potential is not the same func- 
tion of the ensemble density. Though the curves 
are very close together, they are not exactly the 
same. So, the ensemble exchange potential has a 
different dependence on the ensemble densities for 
different ensembles. Moreover, comparing Figures 
3 and 4 or 5 and 6, one can also observe that it is 
not a local function of p, but some kind of func- 
tional of the ensemble density. 

Figures 5-8 present exchange factors for atoms 
N and P. The upper lines correspond again to the 
ground state. The ensemble density leading to the 
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FIGURE 4. (4 The exchange factors a of the S atom 
for the ground state (3f 1, ( ) the ensemble obtained 
from 3P and 'D, and (- - -1 the ensemble gained from 3P,  
'D, and 'S as a function of the density. 
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FIGURE 5. (-4 The exchange factors a of the N atom 
for the ground state (4S), ( ... ) the ensemble obtained 
from 4S and 2D, and (- - -) the ensemble gained from 4S, 
D, and 2P as a function of the density. 2 

middle line is obtained from Eq. (121, while the 
lower curve arises from the ensemble density of 
Eq. (13). 

Figures 1-8 show the exchange factors for en- 
sembles of maximum weighting factors w. Figure 
9 presents the exchange factor for ensembles ob- 
tained from 4S and ' 0  with different weighting 
factors: w = 0, 0.238, 0.476, and 0.714. The ensem- 
ble density is defined by 
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FIGURE 6. (-) The exchange factors a of the P atom 
for the ground state (4S), ( ... ) the ensemble obtained 
from 4S and 2D, and (- - -) the emsemble gained from 4S, 
' D ,  and 2P as a function of the density. 
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FIGURE 7. (-1 The exchange factors a of the N atom 
for the ground state ("S), ( ... ) the ensemble obtained 
from 4S and '0, and (- - -) the ensemble gained from 4S, 
'DD, and 2P as a function of the square of the radius. 

where pI and p2 are the 4S and ' 0  densities, 
respectively. The ensemble exchange potential can 
be given by Eq. (11). The ensemble exchange fac- 
tors are presented in Figure 9. According to the 
theory of Gross, Oliveira, and Kohn 131, any value 
of w satisfying the condition (6) can be used to 
generate an ensemble. Figure 9 shows that the 
ensemble exchange factor is different for different 
values of w. It was emphasized in the theory of 
Gross, Oliveira, and Kohn [3]  that the ensemble 
exchange potential depends on w. 
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FIGURE 8. (-1 The exchange factors CY of the P atom 
for the ground state (4S), ( ..' 1 the ensemble obtained 
from 4S and ' 0 ,  and (- - -1 the ensemble gained from 4S, 
D ,  and ' P  as a function of the square of the radius 2 
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FIGURE 9. The exchange factors CY of the N atom for 
the ensembles obtained from 4S and '0  states for w = 
(-10, ( ' ' ' 1  0.238, (---) 0.476, and (--) 0.714. 

Figure 9 demonstrates the dependence of the 
ensemble exchange potential on w. There is a slight 
monotonic dependence on w. We can conclude 
again that a slight change in the ground-state func- 
tionals might lead to adequate approximations for 
ensembles of different weighting factors. 

The method described in the third section makes 
it possible to calculate the ensemble energy. (De- 
tails can be found in [7]) Table I presents the 
results for the atoms N, 0, P, and S. The calcula- 
tions were done for the ensemble densities given 
in Eqs. (12) and (13) with the maximum possible 
weighting factors. For comparison, the Hartree- 
Fock values obtained from [ll] are also included 

TABLE I 
Hartree - Fock and exchange-only density functional 
ensemble energies (in Ry). 

Atom 

N 4S,2D 

0 3P,1D 

P 4S, ' 0  

S 3P, 'D  

4S, '0 ,  'P 

3P, ID, *S 

4S, ' 0 ,  ' P  

3P, ' D ,  ' S  

HF 

- 108.652 
- 108.593 

- 149.561 
- 149.539 

- 681.337 
- 681.298 

- 794.972 
- 794.957 

DF 

- 108.650 
- 108.591 

- 149.559 
- 149.536 

- 681.292 
- 681.255 

- 794.920 
- 794.906 

in Table I. The exchange-only density functional 
and the Hartree-Fock ensemble are very close 
together, the latter being somewhat lower, as ex- 
pected. 
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