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The extrapolation technique of Savin [J. Chem. Phys. 140, 18A509 (2014)], which was initially applied
to range-separated ground-state-density-functional Hamiltonians, is adapted in this work to ghost-
interaction-corrected (GIC) range-separated ensemble density-functional theory (eDFT) for excited
states. While standard extrapolations rely on energies that decay as µ�2 in the large range-separation-
parameter µ limit, we show analytically that (approximate) range-separated GIC ensemble energies
converge more rapidly (as µ�3) towards their pure wavefunction theory values (µ→ +∞ limit), thus
requiring a different extrapolation correction. The purpose of such a correction is to further improve
on the convergence and, consequently, to obtain more accurate excitation energies for a finite (and, in
practice, relatively small) µ value. As a proof of concept, we apply the extrapolation method to He and
small molecular systems (viz., H2, HeH+, and LiH), thus considering different types of excitations
such as Rydberg, charge transfer, and double excitations. Potential energy profiles of the first three
and four singlet Σ+ excitation energies in HeH+ and H2, respectively, are studied with a particular
focus on avoided crossings for the latter. Finally, the extraction of individual state energies from the
ensemble energy is discussed in the context of range-separated eDFT, as a perspective. Published by
AIP Publishing. https://doi.org/10.1063/1.4999825

I. INTRODUCTION

Electronic excitation energies in atoms, molecules, and
solids can in principle be obtained from density-functional
theory (DFT)1,2 by using either time-dependent3–6 or time-
independent7–16 approaches. The Hohenberg–Kohn (HK) the-
orem states that the (time-independent) ground-state density
carries all the information about the system, and hence exci-
tation energies can, in principle, be extracted from it. While
the ground-state energy can be obtained variationally from the
ground-state density, the HK variational principle has no triv-
ial extension to the excited states. This is one of the reasons
why the standard approach for computing excitation energies
is nowadays linear response time-dependent DFT (TD-DFT).
Despite its success and the significant efforts put into its
development over the last two decades, TD-DFT still suf-
fers from some limitations, e.g., the inability to account for
multiconfigurational effects17 (which is inherited from stan-
dard Kohn–Sham DFT), the poor description18,19 of charge-
transfer and Rydberg states with semi-local functionals, and
the absence of double excitations20 from its spectra. These lim-
itations are associated with mainly three aspects of the theory:
its single-determinantal nature, the wrong asymptotic behav-
ior of approximate density-functional exchange-correlation
potentials, and the adiabatic approximation (i.e., the use of
a frequency-independent exchange-correlation kernel in the

a)Also at Department of Chemistry, Universitetet i Tromsø, Tromsø, Norway.
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response equations).4 Some of these limitations can be over-
come by the use of Savin’s idea of range separation21–23 and
double-hybrid kernels.24

The need for time-independent alternatives to TD-DFT
for modeling excited states has attracted increasing attention
over the years.25–33 In this work, we focus on one of them,
namely, ensemble DFT (eDFT), which is an in-principle-exact
approach for the calculation of excitation energies. It was first
formulated by Theophilou et al.11,34 and then developed fur-
ther by Gross, Oliveira, and Kohn.12–14 Since, in eDFT, the
basic variable is the ensemble density (i.e., the weighted sum
of ground- and excited-state densities), the approach is in prin-
ciple well suited for modeling multiconfigurational problems
(like bond dissociations) or multiple excitations.25 A quasi-
local-density approximation and an ensemble exchange poten-
tial was developed, respectively, by Kohn35 and Nagy,36,37 but
no further attempt was taken to develop density-functional
approximations for ensembles. An ensemble is character-
ized by weights that are attributed to the states belonging
to the ensemble. The exchange-correlation ensemble-density-
functional energy depends in principle on these weights. It
still remains a challenge to model this weight-dependence that
actually plays a crucial role in the calculation of excitation
energies.13,30,32,33,38,39

The recent resurgence of eDFT in the literature is partly
due to the fact that when combined with wavefunction the-
ory by means of range separation, for example,31,32 it leads
to a rigorous state-averaged multiconfigurational DFT. Simi-
lar to conventional Kohn–Sham-eDFT, the weight-dependence
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of the complementary short-range exchange-correlation den-
sity functional should be modeled,32 which is of course not
trivial. A standard approximation consists in using (weight-
independent) ground-state short-range functionals,31 thus
leading to weight-dependent excitation energies.40 This prob-
lem can be fixed either by using the ensemble weights as
parameters31 or by performing a linear interpolation between
equiensemble energies.40 Using ground-state functionals also
induces so-called ghost-interaction errors.16,36,41,42 The lat-
ter are induced by the (short-range) Hartree energy that is
quadratic in the ensemble density, hence the unphysical cou-
pling terms between two different state densities. In the context
of range-separated eDFT, this error can be removed either by
constructing individual state energies31,43 or by introducing an
alternative separation of ensemble exchange and correlation
short-range energies.44 The latter approach has the advan-
tage of making approximate range-separated ensemble ener-
gies essentially linear with respect to the ensemble weights.
It also gave very encouraging results for the description of
charge-transfer and double excitations.44 Finally, while using
a relatively small range separation parameter µ value (typi-
cally µ = 0.4-0.545,46 up to 1.0 a.u.31) is preferable in terms
of computational cost, since a significant part of the two-
electron repulsion (including the Coulomb hole47) is modeled
by a density functional in this case, excitation energies might
be underestimated, essentially because (weight-independent)
short-range local or semi-local density functional approxima-
tions are used.48 As initially shown by Savin49 in the context
of ground-state range-separated DFT, the Taylor expansion of
the energy around the pure wavefunction theory limit (i.e.,
µ → +∞) can be used for improving the energy at a given
(finite) µ value. This approach, known as the extrapola-
tion technique, has been extended to excited states by con-
sidering the (µ-dependent) individual excited-state energies
of a ground-state-density-functional long-range-interacting
Hamiltonian.50 An extension to range-separated eDFT has
been recently proposed by Senjean et al.48 One drawback of
the latter approach is that it does not incorporate ghost interac-
tion corrections. The purpose of this work is to show how these
corrections can be combined with extrapolation techniques in
order to obtain accurate excitation energies.

The paper is organized as follows. After an introduction
to range-separated eDFT (Sec. II A) and the ghost-interaction
error (Sec. II B), the calculation of excitation energies by linear
interpolation (Sec. II C) will be briefly reviewed. The central
result of this paper, which is the combination of extrapolation
techniques with ghost-interaction corrections, is presented in
Sec. II D. Higher-order extrapolation corrections will also be
introduced in Sec. II E. Section III contains the computational
details. The results are discussed in Sec. IV followed by a
perspective section (Sec. V) on the construction of individual
state energies in range-separated eDFT. Conclusions are given
in Sec. VI.

II. THEORY
A. Range-separated ensemble DFT for excited states

Let Ĥ = T̂ +Ŵee +∫ dr vne(r)n̂(r) be the electronic Hamil-
tonian with nuclear potential vne(r), where T̂ , Ŵ ee, and n̂(r)

are the kinetic energy, two-electron repulsion, and density
operators, respectively. In the following, we consider the
ensemble {Ψk }0≤k≤M−1 of eigenfunctions associated with the
M lowest eigenvalues E0 ≤ E1 ≤ · · · ≤ EM�1 of Ĥ with ensem-
ble weights w ≡ (w0, w1, . . . , wM−1), where w0 ≥ w1 ≥ · · · ≥

wM−1 ≥ 0 and
M−1∑
k=0

wk = 1. (1)

The ensemble energy

Ew =
M−1∑
k=0

wkEk , (2)

which is the weighted sum of ground- and excited-state
energies, is a functional of the ensemble density12–14

nΓ̂w (r) =
M−1∑
k=0

wknΨk (r) = Tr
[
Γ̂wn̂(r)

]
(3)

[where Tr denotes the trace and Γ̂ w =
∑M−1

k=0 wk |Ψk〉〈Ψk |] and
it can be obtained variationally as follows:

Ew = min
n

{
Fw[n] +

∫
drvne(r)n(r)

}
= Fw[nΓ̂w ] +

∫
drvne(r)nΓ̂w (r), (4)

where

Fw[n] = min
γ̂w→n

Tr
[
γ̂w

(
T̂ + Ŵee

)]
(5)

is the ensemble Levy–Lieb (LL) functional. Note that the mini-
mization in Eq. (5) is restricted to trial ensemble density matrix
operators γ̂w =

∑M−1
k=0 wk |Ψ̃k〉〈Ψ̃k | with density n,

nγ̂w (r) = Tr
[
γ̂wn̂(r)

]
=

M−1∑
k=0

wknΨ̃k
(r) = n(r). (6)

A rigorous combination of wavefunction-based and eDFT
methods can be obtained from the separation of the two-
electron interaction into long- and short-range parts,21–23,31,32

Ŵee = Ŵ lr,µ
ee + Ŵ sr,µ

ee ≡
∑
i<j

{
w

lr,µ
ee (rij) + wsr,µ

ee (rij)
}

,

w
lr,µ
ee (r) =

erf(µr)
r

, wsr,µ
ee (r) =

erfc(µr)
r

,
(7)

where erf is the error function, erfc(µr) = 1 � erf(µr), and
µ is the range-separation parameter in [0, +∞[ . As a conse-
quence of Eq. (7), the ensemble LL functional in Eq. (5) can
be rewritten as follows:

Fw[n] = F lr,µ,w[n] + Esr,µ,w
Hxc [n], (8)

where

F lr,µ,w[n] = min
γ̂w→n

Tr
[
γ̂w

(
T̂ + Ŵ lr,µ

ee

)]

= Tr
[
Γ̂
µ,w[n]

(
T̂ + Ŵ lr,µ

ee

)]
(9)

is the long-range ensemble LL functional and, by defi-
nition, Esr,µ,w

Hxc [n]=Fw[n]−F lr,µ,w[n] is the complementary
short-range ensemble Hartree-exchange-correlation (Hxc)
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functional, which is both w- and µ-dependent. Note that
the minimizing ensemble density matrix operator Γ̂µ, w[n] in
Eq. (9) is the long-range-interacting one with density n. The
short-range ensemble Hxc functional is usually decomposed
as follows:31,32

Esr,µ,w
Hxc [n] = Esr,µ

H [n] + Esr,µ,w
xc [n], (10)

where

Esr,µ
H [n] =

1
2

∫ ∫
drdr′n(r)n(r′)wsr,µ

ee (|r − r′ |) (11)

is the w-independent but µ-dependent short-range Hartree
functional and Esr,µ,w

xc [n] is the complementary ensemble short-
range xc functional. Since, according to the first line of Eq. (9),
the following inequality is fulfilled for any trial ensemble
density matrix operator γ̂w,

Tr
[
γ̂w

(
T̂ + Ŵ lr,µ

ee

)]
≥ F lr,µ,w[nγ̂w ], (12)

thus leading to

Tr
[
γ̂w

(
T̂ + Ŵ lr,µ

ee

)]
+ Esr,µ, w

Hxc [nγ̂w ] +
∫

drvne(r)nγ̂w (r)

≥ F lr,µ,w[nγ̂w ] + Esr,µ,w
Hxc [nγ̂w ] +

∫
drvne(r)nγ̂w (r), (13)

or, equivalently, according to Eqs. (4) and (8),

Tr
[
γ̂w

(
T̂ + Ŵ lr,µ

ee + V̂ ne

)]
+ Esr,µ,w

Hxc [nγ̂w ]

≥ Fw[nγ̂w ] +
∫

drvne(r)nγ̂w (r) ≥ Ew, (14)

where V̂ne = ∫ dr vne(r)n̂( r), we finally obtain an exact range-
separated variational expression for the ensemble energy
where the minimization is performed over all possible density
matrix operators (without any density constraint),

Ew = min
γ̂w

{
Tr

[
γ̂w(T̂ + Ŵ lr,µ

ee + V̂ne)
]

+ Esr,µ,w
Hxc [nγ̂w ]

}

= Tr
[
Γ̂
µ,w(T̂ + Ŵ lr,µ

ee + V̂ne)
]

+ Esr,µ,w
Hxc [nΓ̂µ,w ]. (15)

Note that the minimizing long-range-interacting ensemble
density matrix operator

Γ̂
µ,w =

M−1∑
k=0

wk |Ψ
µ,w
k 〉〈Ψ

µ,w
k | (16)

in Eq. (15) reproduces the exact ensemble density of the
physical (fully interacting) system,

Tr
[
Γ̂µ,wn̂(r)

]
= nΓ̂µ,w (r) = nΓ̂w (r). (17)

The (multi-determinantal) wavefunctions {Ψµ,w
k }0≤k≤M−1 are

solutions of the self-consistent equation31,40

*
,
T̂ + Ŵ lr,µ

ee + V̂ne +
∫

dr
δEsr,µ,w

Hxc [nΓ̂µ,w ]

δn(r)
n̂(r)+

-
|Ψ

µ,w
k 〉

= Eµ,w
k |Ψ

µ,w
k 〉 , 0 ≤ k ≤ M − 1, (18)

from which the standard Schrödinger and Kohn–Sham (KS)
eDFT13 equations are recovered in the µ → +∞ and µ → 0
limits, respectively.

In practice, long-range-interacting wavefunctions are usu-
ally computed (self-consistently) at the configuration interac-
tion (CI) level31,40,43 within the weight-independent density
functional approximation (WIDFA), which simply consists in
substituting in Eqs. (15) and (18) the ground-state (w0 = 1)
short-range xc functional Esr,µ

xc [n] (which is approximated by
a local or semi-local functional51,52) for the ensemble one.
The (approximate) WIDFA range-separated ensemble energy
reads

Ẽµ,w = min
γ̂w
{Tr

[
γ̂w(T̂ + Ŵ lr,µ

ee + V̂ ne)
]

+ Esr,µ
Hxc[nγ̂w ]}

= Tr
[
γ̂µ,w(T̂ + Ŵ lr,µ

ee + V̂ ne)
]

+ Esr,µ
Hxc[nγ̂µ,w ], (19)

where Esr,µ
Hxc[n] = Esr,µ

H [n]+Esr,µ
xc [n]. The minimizing ensemble

density matrix operator γ̂µ,w =
∑M−1

k=0 wk |Ψ̃
µ,w
k 〉〈Ψ̃

µ,w
k |, which

is an approximation to Γ̂µ,w, fulfills the following self-
consistent equation:40

*
,
T̂ + Ŵ lr,µ

ee + V̂ne +
∫

dr
δEsr,µ

Hxc[nγ̂µ,w ]

δn(r)
n̂(r)+

-
|Ψ̃

µ,w
k 〉

= Ẽµ,w
k |Ψ̃

µ,w
k 〉 , 0 ≤ k ≤ M − 1. (20)

Let us finally mention that, in the case of near degeneracy,
a state-averaged multiconfigurational self-consistent field is
preferable to CI for the description of long-range correlation
effects. Work is currently in progress in this direction.

B. Ghost interaction correction

As readily seen from Eqs. (10), (11), and (15)–(17),
the short-range Hartree density-functional contribution to the
exact range-separated ensemble energy can be written as
follows:

Esr,µ
H [nΓ̂µ,w ] =

M−1∑
k=0

w2
kE

sr,µ
H [nψµ,w

k
] +

1
2

M−1∑
j,k

wjwk

×

∫ ∫
drdr′nψµ,w

j
(r)nψµ,w

k
(r′)wsr,µ

ee (|r − r′ |) ,

(21)

where the individual-state contributions [first term in the right-
hand side of Eq. (21)] are quadratic in the ensemble weights,
while the exact total ensemble energy is of course linear [see
Eq. (2)], and the second term describes the unphysical interac-
tion, known as ghost interaction (GI),41 between two different
states belonging to the ensemble. Both errors should of course
be compensated by the exact ensemble short-range xc func-
tional, but, in practice (i.e., when the WIDFA is applied),
this is not the case.40,44,48 In order to correct for GI errors,
one can either construct individual state energies31,43 or use
an alternative separation of short-range ensemble exchange
and correlation energies, as proposed recently by some of
the authors.44 The first approach will be discussed further in
Sec. V. For now, we focus on the second one that relies on the
following exact decomposition of the ensemble short-range xc
functional:

Esr,µ,w
xc [n] = Esr,µ,w

x,md [n] + Esr,µ,w
c,md [n], (22)

where
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Esr,µ,w
x,md [n] = Tr

[
Γ̂µ,w[n]Ŵ sr,µ

ee

]
− Esr,µ

H [n] (23)

is the analog for ensembles of the ground-state multi-
determinantal [hence the subscript “md” in the functionals
of Eq. (22)] short-range exact exchange functional introduced
by Toulouse et al.,53 and Esr,µ,w

c,md [n] is the complementary
short-range ensemble correlation functional adapted to the
multi-determinantal definition of the short-range ensemble
exchange energy. Combining Eqs. (15), (22), and (23) leads to
the following exact ensemble energy expression:44

Ew = Tr
[
Γ̂µ,wĤ

]
+ Esr,µ,w

c,md [nΓ̂µ,w ], (24)

where, as readily seen, the GI error arising from the short-
range Hartree energy has been removed. Note that the energy
expression in Eq. (24) is not variational with respect to the
ensemble density matrix operator. A straight minimization
over all possible density matrix operators would lead to a fully
interacting solution and therefore to double counting problems
since the exact solution Γ̂µ,w is long-range-interacting only. In
practice, we use the WIDFA solution γ̂µ,w introduced in Eq.
(19) in conjunction with the complementary ground-state func-
tional Esr,µ

c,md[n], for which a local density-functional approx-

imation has been developed by Paziani et al.,54 thus lead-
ing to the approximate GI-corrected (GIC) range-separated
energy,44

Ẽµ,w
GIC = Tr

[
γ̂µ,wĤ

]
+ Esr,µ

c, md[nγ̂µ,w ]

=

M−1∑
k=0

wk〈Ψ̃
µ,w
k |Ĥ |Ψ̃µ,w

k 〉 + Esr,µ
c,md[nγ̂µ,w ], (25)

which is, in principle, both µ- and weight-dependent. Note
that Ẽµ,w

GIC converges towards the exact ensemble energy when
µ→ +∞.

C. Extraction of excitation energies
by linear interpolation

Following the seminal work of Gross et al.,13 we con-
sider an ensemble consisting of the (I + 1) lowest multi-
plets in energy. This ensemble contains MI states in total
(degeneracy is included) and is characterized by the following
weights:

wk =




1 − wgI

MI−1
, 0 ≤ k ≤ MI−1 − 1,

w, MI−1 ≤ k ≤ MI − 1,

(26)

where gK is the degeneracy of the K th multiplet with energy
EK and MK =

∑K
L=0 gL is the total number of states with ener-

gies lower than or equal to EK . Note that all the weights are
controlled by a single weight w in the range 0 ≤ w ≤ 1

MI
.

Consequently, the ensemble energy becomes a function of w
and reads, according to Eq. (2),

EwI =
1 − wgI

MI−1

*
,

I−1∑
K=0

gK EK
+
-

+ wgI EI . (27)

The Ith excitation energy ωI = EI � E0 can be extracted from
EwI and the lower excitation energies as follows:13,40

ωI =
1
gI

dEwI
dw

+
1

MI−1

I−1∑
K=1

gKωK (28)

or, alternatively,

ωI =
MI

gI

(
E1/MI

I − E1/MI−1
I−1

)
+

1
MI−1

I−1∑
K=1

gKωK

=
1
gI

(
MI E

1/MI
I −MI−1E1/MI−1

I−1

)
− E0, (29)

where we used the linearity of the ensemble energy in w and
the equality Ew=0

I = E1/MI−1
I−1 in the first line and, in the sec-

ond line, the fact that E1/M0
0 equals the ground-state energy

E0. While the first expression in Eq. (28) involves the deriva-
tive of the ensemble energy, the second expression in Eq. (29)
uses the linear interpolation between equiensemble energies.
In the exact theory, both expressions are of course equivalent.
However, as soon as approximate wavefunctions and function-
als are used, this is not the case anymore. For example, at the
WIDFA level, approximate range-separated ensemble ener-
gies exhibit curvature with respect to the ensemble weight.40

Consequently, Eq. (28) will provide weight-dependent excita-
tion energies, which means that the ensemble weight must be
used as a parameter, in addition to the range separation one. On
the other hand, the linear interpolation method (LIM) sketched
in Eq. (29) gives, by construction, weight-independent approx-
imate excitation energies, which is preferable. Let us stress
that even when approximate ensemble energies are used,
the two expressions in Eq. (29) remain equivalent. Note
also that the LIM applies to any approximate ensemble
energies (WIDFA or GIC, with or without range separa-
tion44). Let us finally mention that other approaches can
be used for extracting excitation energies from an ensem-
ble, in particular by making another choice for the ensemble
weights and by using derivatives of the ensemble energy for
a direct extraction.30 In the latter case, weight-dependence
of the xc functional must be introduced, which is not triv-
ial. Even though the LIM is not direct, in a sense that two
equiensemble calculations are necessary to obtain the excita-
tion energy of interest (in addition to the ground-state calcu-
lation), standard (weight-independent) ground-state density-
functional approximations can be used.40 In Sec. IV, the LIM
will be applied to non-degenerate states. In the latter case, the
excitation energy expression in Eq. (29) can be simplified as
follows:

ωI = (I + 1)E1/(I+1)
I − IE1/I

I−1 − E0. (30)

D. Range-separated GIC ensemble energy
in the large µ limit and extrapolation technique

Following the seminal work of Savin,49 Senjean et al.48

have shown that, when µ → +∞, the approximate range-
separated WIDFA ensemble energy [see Eq. (19)] converges
towards the exact ensemble energy Ew as follows:

Ẽµ,w = Ew +
1
2

Ẽ(−2), w

µ2
+ O

(
1

µ3

)
, (31)

thus leading to
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Ẽµ,w +
µ

2
∂Ẽµ,w

∂µ
= Ew + O

(
1

µ3

)
, (32)

and the corresponding expansion for the combined
WIDFA/LIM (just referred to as the LIM in the following)
approximate and µ-dependent Ith excitation energy,

ω̃
µ
LIM,I +

µ

2

∂ω̃
µ
LIM,I

∂µ
= ωI + O

(
1

µ3

)
, (33)

since, according to Eq. (29), the latter is a linear combination
of WIDFA (equi-)ensemble energies. As a result, the deviation
of the extrapolated LIM (ELIM) excitation energy,48

ω̃
µ
ELIM,I = ω̃

µ
LIM,I +

µ

2

∂ω̃
µ
LIM,I

∂µ
, (34)

from the exact result ωI varies as µ�3, while, according to
Eq. (31), it varies as µ�2 in the case of the LIM. Therefore,
in practice, the extrapolation correction [the second term in
the right-hand side of Eq. (34)] will make the LIM converge
faster in µ towards the pure wavefunction theory (µ → +∞)
result.48

Let us now consider the approximate range-separated GIC
ensemble energy in Eq. (25) which is also µ-dependent. As
shown in the Appendix, it varies as follows for large µ values:

Ẽµ,w
GIC = Ew +

1
6

Ẽ(−3), w
GIC

µ3
+ O

(
1

µ4

)
(35)

and therefore converges faster in µ than the WIDFA ensemble
energy, thus leading to

Ẽµ,w
GIC +

µ

3

∂Ẽµ,w
GIC

∂µ
= Ew + O

(
1

µ4

)
(36)

and, for the combined GIC-LIM approximate excitation
energy,

ω̃
µ
GIC-LIM,I +

µ

3

∂ω̃
µ
GIC-LIM,I

∂µ
= ωI + O

(
1

µ4

)
. (37)

Equations (36) and (37) are the central result of this paper. As
readily seen, the standard extrapolation correction in Eq. (34)
is not relevant anymore when ghost-interaction errors are
removed. The factor 1/2 should be replaced by 1/3, thus leading
to the extrapolated GIC-LIM (EGIC-LIM) excitation energy
expression

ω̃
µ
EGIC-LIM,I = ω̃

µ
GIC-LIM,I +

µ

3

∂ω̃
µ
GIC-LIM,I

∂µ
, (38)

which converges as µ�4 towards the pure wavefunction the-
ory result while the GIC-LIM converges as µ�3, as expected
from Eqs. (29) and (35) and illustrated in Fig. 1 for He, H2 (R
= 1.4a0), and HeH+ (R = 8.0a0).

E. Higher-order extrapolation corrections

As pointed out in Ref. 55, higher-order energy derivatives
can be used in the extrapolation correction in order to further
improve on the convergence of ELIM and EGIC-LIM exci-
tation energies towards the full CI (FCI) results in the large

FIG. 1. Asymptotic behavior of the GIC-LIM excitation energy in the large
µ limit for He, the stretched HeH+ molecule, and H2 at equilibrium. The
excitations considered are {11S → 21S} in He, {11Σ+ → 21Σ+} in HeH+,
and {11Σ+

g → 21Σ+
g } in H2. See text for further details.

µ limit. From the Taylor expansion of the WIDFA ensemble
energy through third order

Ẽµ,w = Ew +
1
2

Ẽ(−2),w

µ2
+

1
6

Ẽ(−3),w

µ3
+ O

(
1

µ4

)
, (39)

we obtain

Ẽµ,w + µ
∂Ẽµ,w

∂µ
+
µ2

6
∂2Ẽµ,w

∂µ2
= Ew + O

(
1

µ4

)
, (40)
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thus leading, after linear interpolation, to the following second-
order ELIM (ELIM2) excitation energy expression:

ω̃
µ
ELIM2,I = ω̃

µ
LIM,I + µ

∂ω̃
µ
LIM,I

∂µ
+
µ2

6

∂2ω̃
µ
LIM,I

∂µ2
, (41)

which is exact through third order in 1/µ, similar to the EGIC-
LIM excitation energy. Similarly, from the Taylor expansion
of the GIC ensemble energy through fourth order (see the
Appendix),

Ẽµ,w
GIC = Ew +

1
6

Ẽ(−3),w
GIC

µ3
+

1
24

Ẽ(−4),w
GIC

µ4
+ O

(
1

µ5

)
, (42)

becomes

Ẽµ,w
GIC +

2
3
µ
∂Ẽµ,w

GIC

∂µ
+

1
12
µ2
∂2Ẽµ,w

GIC

∂µ2
= Ew + O

(
1

µ5

)
, (43)

thus leading to the second-order EGIC-LIM (EGIC-LIM2)
excitation energy expression

ω̃
µ
EGIC-LIM2,I = ω̃

µ
GIC-LIM,I +

2
3
µ
∂ω̃

µ
GIC-LIM,I

∂µ

+
1

12
µ2
∂2ω̃

µ
GIC-LIM,I

∂µ2
, (44)

which is exact through fourth order in 1/µ.

III. COMPUTATIONAL DETAILS

WIDFA [Eq. (19)] and GIC [Eq. (25)] range-separated
ensemble energies as well as LIM and GIC-LIM excitation
energies [see Eq. (30)], with [Eqs. (34) and (38)] and without
extrapolation, have been computed with a development ver-
sion of the DALTON program package56,57 for a small test
set consisting of He, H2(R = 1.4a0, 3.7a0), HeH+, and LiH.
The extrapolated LIM and GIC-LIM (ELIM and EGIC-LIM)
excitation energies have been calculated using finite differ-
ences with ∆µ= 0.005a−1

0 . The long-range-interacting wave-
functions have been calculated using the FCI level of
theory in combination with the spin-independent ground-state
short-range local density approximation of Toulouse et al.51,58

The short-range multi-determinantal correlation functional of
Paziani et al.54 has been used for calculating GIC range-
separated ensemble energies and GIC-LIM excitation ener-
gies. For all systems but LiH, aug-cc-pVQZ basis sets59,60 have
been used. For LiH, the aug-cc-pVTZ basis set with frozen
1s orbital has been used. For calculating the first excitation
energy, a two-state ensemble is considered in all the cases,
whereas for the higher excitation energies, larger ensembles
(three-, four-, and five-state ensembles), consisting of sin-
glet states only, are considered. The corresponding two-state
ensembles are {11Σ+, 21Σ+} for HeH+ and LiH, {11Σ+

g , 21Σ+
g }

for H2, and {11S, 21S} for He. The larger ensembles have been
used for calculating the {11Σ+

g → 31Σ+
g }, {1

1Σ+
g → 41Σ+

g }, and
{11Σ+

g → 51Σ+
g } excitation energies in H2 and {11Σ+→ 31Σ+}

and {11Σ+ → 41Σ+} excitation energies in HeH+.

IV. RESULTS AND DISCUSSION
A. Basis set convergence in He

The performance of the LIM and GIC-LIM (with and
without extrapolation) has already been discussed for He in
Ref. 44. The purpose of this section is to extend the dis-
cussion of Franck et al.47 on the basis set convergence of
range-separated ground-state energies to ensembles. In Fig. 2,
the convergence of WIDFA/GIC ground-state (w = 0) and
equiensemble (w = 1/2) range-separated energies obtained
with aug-cc-pVnZ (n = 2,3,4,5) basis sets is shown for the
two-state ensemble {11S, 21S} in He with the range-separation
parameter set to the typical31,45 µ = 0.4a−1

0 and µ = 1.0a−1
0

values. In comparison to the FCI values, the WIDFA/GIC
range-separated energies show faster convergence, especially
the ground-state ones. The latter converge at the same rate
with both methods, whereas for the equiensemble energies,
WIDFA values converge faster than GIC values (which are
actually relatively close to the FCI ones). The µ dependence
is not the same for the two energies. Equiensemble energies
are less sensitive to the range-separation parameter µ than the
ground-state energy. In fact, the GIC equiensemble energies

FIG. 2. Variation of ground-state energy (top panel) and equi-ensemble
energy (bottom panel) with basis set in He. For clarity, the energies relative
to aug-cc-pV5Z values are plotted. Basis sets used are aug-cc-pVnZ, where
n = 2-5. GIC and WIDFA values are represented by solid and dashed-dotted
lines, respectively. Results for µ = 0.4a−1

0 and µ = 1.0a−1
0 are represented by

the red and blue lines, respectively. For comparison, FCI values (black curve)
are also plotted.
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for the two µ values overlap. The difference between WIDFA
and GIC equiensemble energies as well as their slower conver-
gence with the basis set (when comparison is made with the
ground-state energy) is due to the facts that (i) long-range cor-
relation effects are negligible in the ground state but significant
in the equiensemble because of the Rydberg character of the
excited state and (ii) the GIC energy is less density-dependent
than the WIDFA one. Indeed in the former case, only short-
range correlation effects are described by a density functional.

B. LiH

The effect of extrapolation on the two-state ensemble
energy of LiH in the large-w region is shown in Fig. 3 for
µ = 0.4a−1

0 (top panel) and 1.0a−1
0 (bottom panel). It is obvious

from these plots that the WIDFA energy and its extrapolation
are slightly curved, which is more visible for µ = 0.4a−1

0 , and
that they deviate significantly from the CI straight line. This is
a consequence of using an approximate (weight-independent)
ground-state local short-range xc functional, as discussed in
Sec. II B and Refs. 40 and 48. On going from µ = 0.4a−1

0
to µ = 1.0a−1

0 , although curvature is reduced, the WIDFA

FIG. 3. Effect of the extrapolation on the range-separated energy of the two-
state

{
11Σ+, 21Σ+

}
ensemble with weightw in LiH (R = 3.0a0) for µ = 0.4a−1

0

(top) and 1.0a−1
0 (bottom). Red and blue curves with point type “+” represent

the GIC and WIDFA ensemble energies, respectively, whereas the same col-
ored lines with point type “×” represent the corresponding extrapolated values.
The dashed lines connecting the two extreme points (i.e., for w = 0.0 and
w = 0.5) are drawn to show the deviation from linearity.

FIG. 4. Variation of the firstΣ+ singlet excitation energy with the inter-atomic
distance in LiH, for µ = 0.5a−1

0 (red lines) and µ = 1.0a−1
0 (blue lines). LIM

and GIC-LIM values are represented by� and×, respectively. For comparison,
TD-LDA (©) and CI results (�) are also plotted.

energies (with or without extrapolation) still differ from the
CI result. In a previous study,44 we have shown that the
GIC scheme could almost restore the linearity of the ensem-
ble energy, which is also reflected in Fig. 3. Note that for
µ = 0.4a−1

0 , the extrapolation enlarges the deviation of the
WIDFA ensemble energy from the accurate CI result. It only
leads to an improvement when the larger µ = 1.0a−1

0 value is
used. On the other hand, GIC energies are always improved
after extrapolation. For µ = 1.0a−1

0 , the extrapolated GIC
ensemble energy is almost on top of the CI one.

In Fig. 4, we show the variation of the first Σ+ singlet
excitation energy of LiH with the inter-atomic distance, for
µ = 0.5 and 1.0a−1

0 . The comparison is made with the CI
and time-dependent local density approximation (TD-LDA)
results. Note that in contrast to the TD-LDA, both the LIM
and GIC-LIM reproduce relatively well the shape of the CI
curve. As expected, the GIC-LIM is closer to CI than the
LIM for the two µ values. For µ= 1.0a−1

0 , the agreement is
actually excellent beyond the equilibrium distance (R > 3a0).
At equilibrium (R = 3a0), the TD-LDA underestimates the
excitation energy by 0.0229 a.u. (if comparison is made with

FIG. 5. Comparison of EGIC-LIM excitation energy with that obtained from
other schemes in LiH. See text for further details.
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the CI result), which was expected since the 21Σ+ state has a
charge-transfer character (from H to Li). On the other hand, the
GIC-LIM (µ = 0.5a−1

0 ) slightly overestimates (by 0.004 a.u.)
the excitation energy. For larger bond distances, the failure of
the TD-LDA might be related to the multiconfigurational char-
acter of the 21Σ+ state. The multi-determinantal treatment of
the long-range interaction in range-separated eDFT enables
a proper description of the excitation energy in the strong
correlation regime.

The performance of the extrapolation scheme is now
investigated at the fixed inter-atomic distance R = 3a0 when
varying the range-separation parameter. Results are shown in
Fig. 5. One can easily see that the EGIC-LIM exhibits the
fastest convergence in µ towards the CI result, as expected.
While GIC-LIM and ELIM excitation energies are almost con-
verged at about µ = 2.0a−1

0 , the EGIC-LIM reaches the CI
result already for the relatively small µ = 0.75a−1

0 value.

C. HeH+

We show in Fig. 6 the convergence of the 11Σ+ → 21Σ+

charge-transfer excitation energy with the µ parameter in the
stretched HeH+ (R = 8.0a−1

0 ) molecule. As already observed
for LiH, the EGIC-LIM converges faster (at about µ = 1.0a−1

0 )
than the other methods.

FIG. 6. Comparison of EGIC-LIM excitation energy with that obtained from
other schemes in the stretched HeH+ molecule. See text for further details.

We also studied the variation of the 11Σ+ → n1Σ+ (n
= 2, 3, 4) excitation energies with the bond length for µ
= 0.4 and 1.0a−1

0 values. Results are shown in Fig. 7 and
comparison is made with FCI and TD-LDA. In contrast to
the TD-LDA, which significantly underestimates the (charge-
transfer) excitation energies, as expected, both the LIM and
GIC-LIM (with or without extrapolation) are much closer to

FIG. 7. Variation of the first (red curves; 11Σ+ → 21Σ+), second (blue curves; 11Σ+ → 31Σ+), and third (orange curves; 11Σ+ → 41Σ+) excitation energies
with the interatomic distance in HeH+. The following markers are used to distinguish results obtained from different methods: LIM (or GIC-LIM): �, ELIM (or
EGIC-LIM): ×, TD-LDA: •, and FCI: N.
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FCI for all interatomic distances. Interestingly, for µ = 0.4a−1
0 ,

the LIM underestimates the first excitation energy and overes-
timates the second and third excitation energies, whereas for
µ = 1.0a−1

0 , it overestimates all the three excitation energies.
After extrapolation, the corresponding ELIM (µ = 0.4a−1

0 )
excitation energies increase, which is an improvement only
for the first excited state. As expected, the GIC-LIM per-
forms better than the LIM and ELIM. It slightly overestimates
all excitation energies for both µ values. The impact of the
extrapolation correction on the curves is hardly visible. Note
that for µ = 1.0a−1

0 , EGIC-LIM and FCI curves are almost
on top of each other. Finally, even for the relatively small
range-separation parameter value µ = 0.4a−1

0 , the avoided
crossing between the second and third excited states at about
R = 4.0a0 is well reproduced by the GIC-LIM (with or without
extrapolation).

D. Convergence in µ of higher-order
extrapolation schemes

The variation of the excitation energies with µ obtained
for He and HeH+ with second-order extrapolation schemes
[see Eqs. (41) and (44)] is shown in Fig. 8. As expected, the
ELIM2 and EGIC-LIM decay similarly in the large µ limit.
Nevertheless, the GIC still ensures a faster convergence in µ

towards the FCI result. Regarding the GIC-LIM results, we
observe a systematic improvement on the excitation energies
when adding higher-order extrapolation corrections in the typ-
ical range 0.4 ≤ µ ≤ 1.0. Note that the EGIC-LIM2 reaches the
FCI result for µ ∼ 0.9a−1

0 , which is remarkable. This clearly
demonstrates that GIC ensemble energies can give very accu-
rate excitation energies after extrapolation for relatively small
range-separation parameter values. Since the EGIC-LIM is
already accurate for typical µ values, second-order extrap-
olation corrections will not be considered in the rest of the
discussion.

E. H2

Excitation energies have been computed for the first and
second (see Fig. 9) as well as third and fourth (see Fig. 10) 1Σ+

g
excited states of H2 along the bond breaking coordinate with µ
= 0.4 and 1.0a−1

0 . Comparison is made with FCI. Recently, the
first and second excitation energies obtained with the LIM and
ELIM have been reported and discussed in detail by Senjean
et al. in Ref. 48. Note that around the equilibrium distance
(R = 1.4a0), they are both relatively close to the FCI value,
especially when µ = 1.0a−1

0 . Substantial differences appear
when stretching the bond. The LIM underestimates the four
excitation energies when R > 3a0, in particular for µ = 0.4a−1

0 .

FIG. 8. Variation of excitation energies (top panels: ELIM, ELIM2, and EGIC-LIM and bottom panels: GIC-LIM, EGIC-LIM, and EGIC-LIM2) with µ for He
(left panels) and HeH+ (right panels).
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FIG. 9. Variation of the 11Σ+
g → n1Σ+

g excitation energy in H2 for n = 2 and 3 with the interatomic distance. Results are shown for µ = 0.4a−1
0 (top panels) and

µ = 1.0a−1
0 (bottom panels).

The extrapolation improves on the results significantly, but for
µ = 0.4a−1

0 , the ELIM excitation energies are still too low.
The overall performance of the GIC-LIM, when compared to
the LIM and ELIM, is far better. Still for µ = 0.4a−1

0 , the
GIC-LIM overestimates the excitation energies in the large-
R region. The extrapolation slightly improves on the results.
With the larger µ = 1.0a−1

0 value, GIC-LIM and FCI potential
curves are almost on top of each other. Small differences are
visible at large distances where the extrapolation correction
actually brings some improvement.

Let us now focus on the avoided crossing between the first
and second excited states at ∼ 3.5a0. Beyond this distance, the
first excited state corresponds to a double excitation. This is the
reason why, in contrast to any eDFT-based method, standard
(adiabatic) TD-LDA does not exhibit any avoided crossing.61

We note that for µ = 0.4a−1
0 , the GIC-LIM improves on the

individual excitation energies when compared to the LIM, but
then the two states are too close in energy. The extrapola-
tion slightly improves on the GIC-LIM in this respect while
making, when applied to the LIM, the two states even closer
in energy as already shown in Ref. 48. For µ = 1.0a−1

0 ,
the extrapolation brings larger improvement on the LIM val-
ues than the GIC-LIM ones. Regarding the third and fourth
excitation energies, two avoided crossings are found at ∼2.4a0

and ∼5.0a0. Note that at the second avoided crossing, the two

FCI curves are closer to each other than at the first avoided
crossing. Noticeably, for µ = 0.4a−1

0 , this behavior is repro-
duced by the GIC-LIM but not by the LIM. At the second
avoided crossing, the two GIC-LIM curves are closer to each
other than the FCI curves. In contrast to EGIC-LIM results,
the two ELIM curves cross at R ∼ 2.4a0. For µ = 1.0a−1

0 ,
both the ELIM and EGIC-LIM are able to reproduce the two
avoided crossings. Note that for the second avoided crossing,
the EGIC-LIM is substantially improved by increasing µ from
0.4 to 1.0a−1

0 .

V. PERSPECTIVE: EXTRACTING INDIVIDUAL STATE
ENERGIES FROM RANGE-SEPARATED
ENSEMBLE ENERGIES

Having access to state energies rather than ensemble ener-
gies or excitation energies is important for modeling prop-
erties such as equilibrium structures in the excited states.
While the extraction of individual energies from the ensem-
ble energy is trivial in pure wavefunction theory,62 it is still
unclear how this can be achieved rigorously and efficiently
(in terms of computational cost) in the context of eDFT. As
readily seen from Eq. (29), the individual state energy EI

can be obtained (in principle exactly) from two equiensemble
energies,
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FIG. 10. Variation of the 11Σ+
g → n1Σ+

g excitation energy in H2 for n = 4 and 5 with the interatomic distance. Results are shown for µ = 0.4a−1
0 (top panels)

and µ = 1.0a−1
0 (bottom panels).

EI =
1
gI

(
MI E

1/MI
I −MI−1E1/MI−1

I−1

)
, (45)

the two equiensembles containing up to and including the
multiplets with energies EI and EI�1, respectively. The disad-
vantage of such a formulation is that it is not straightforward to
calculate the energy of any state belonging to the ensemble of
interest. Following the idea of Levy and Zahariev,63 we pro-
pose to rewrite the exact range-separated density-functional
ensemble energy in Eq. (15) as a weighted sum of individ-
ual long-range-interacting energies. This can be achieved by
introducing a density-functional shift

Cµ,w[n] =
Esr,µ,w

Hxc [n] − ∫ dr
δEsr,µ,w

Hxc [n]

δn( r)
n(r)

∫ dr n(r)
(46)

to the ensemble short-range potential in Eq. (18), thus leading
to the “shifted” eigenvalue equation

*
,
T̂ + Ŵ lr,µ

ee + V̂ne +
∫

dr


δEsr,µ,w
Hxc [nΓ̂µ,w ]

δn(r)

+ Cµ,w[nΓ̂µ,w ]

]
n̂(r)

)
|Ψ

µ,w
k 〉 = Eµ,w

k |Ψ
µ,w
k 〉 , (47)

where

Eµ,w
k = Eµ,w

k + Cµ, w[nΓ̂µ,w ]
∫

dr nΨµ,w
k

(r) (48)

so that, according to Eqs. (15), (18), and (46), the exact range-
separated ensemble energy can be rewritten as follows:

Ew =
M−1∑
k=0

wkEµ,w
k + Cµ,w[nΓ̂µ,w ]

∫
dr nΓ̂µ,w (r)

=

M−1∑
k=0

wkE
µ,w
k . (49)

It then becomes natural to interpret each (weight- and
µ-dependent) individual shifted energy Eµ,w

k as an approxi-
mation to the exact individual state energy Ek which is actu-
ally recovered for any ensemble weight when µ → +∞. If
we now expand the short-range Hxc energy and potential
around each individual state density through first order in
δnµ,w

k = nΓ̂µ,w − nΨµ,w
k

, we get

Eµ,w
k =

〈
Ψ
µ,w
k

���T̂ + Ŵ lr,µ
ee + V̂ne

���Ψ
µ,w
k

〉
+ Esr,µ,w

Hxc [nΓ̂µ,w ]

−

∫
dr
δEsr,µ,w

Hxc [nΓ̂µ,w ]

δn(r)
δnµ,w

k (r)

=
〈
Ψ
µ,w
k

���T̂ + Ŵ lr,µ
ee + V̂ne

���Ψ
µ,w
k

〉
+ Esr,µ,w

Hxc [nΨµ,w
k

] + O
[(
δnµ,w

k

)2
]

, (50)

where we used the fact that both ensemble and individual den-
sities integrate to the number of electrons, according to the
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normalization condition in Eq. (1). Interestingly, when the
WIDFA approximation is used, the individual state energy
expression proposed by Pastorczak et al.31 for computing
approximate excitation energies is recovered from Eq. (50)
through first order in δnµ,w

k . In the latter case, the use of individ-
ual densities automatically removes ghost interaction errors.43

The implementation and calibration of the first line of Eq.
(50) within the WIDFA is currently in progress and will be
presented in a separate paper.

VI. CONCLUSION

The extrapolation technique introduced by Savin49 in
the context of ground-state range-separated DFT has been
extended to ghost-interaction-corrected (GIC) ensemble ener-
gies of ground and excited states. While the standard extrap-
olation correction relies on a Taylor expansion of the range-
separated energy that decays as µ�2 in the µ → +∞ limit,
where µ is the range-separation parameter, the GIC ensemble
energy was shown to decay more rapidly as µ�3, thus requir-
ing a different extrapolation correction. The approach has been
combined with a linear interpolation (between equiensembles)
method in order to compute excitation energies. Promising
results have been obtained for singlet excitations (including
charge transfer and double excitations) on a small test set
consisting of He, H2, HeH+, and LiH. In particular, avoided
crossings could be described accurately in H2 by setting the
range-separation parameter to µ = 1.0a−1

0 , which is a typical
value in range-separated eDFT calculations.31,43 Interestingly,
convergence towards the pure wavefunction theory result (µ
→ +∞ limit) is essentially reached for µ = 1.0a−1

0 thanks
to both ghost-interaction and extrapolation corrections. As
expected, the results can be further improved for smaller µ val-
ues with higher-order extrapolation corrections. The method
is currently applied to the modeling of conical intersections,
which is still challenging for TD-DFT. Finally, the extraction
of individual state energies from range-separated ensemble
energies has been discussed as a perspective. Approximate
energies have been constructed by introducing an ensemble-
density-functional shift in the exchange-correlation potential.
We could show that by expanding these energies around the
individual densities, the ghost-interaction-free expressions of
Pastorczak et al.31 are recovered through first order. The imple-
mentation and development of this approach for the calculation
of excited-state molecular gradients, for example, are left for
future work.
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APPENDIX: TAYLOR EXPANSION OF THE
RANGE-SEPARATED GIC ENSEMBLE ENERGY
FOR LARGE µ VALUES

Let η = 1/µ so that the range-separated GIC ensemble
energy can be Taylor expanded as follows for large µ values:

Ẽ1/η,w
GIC = Ew + Ẽ(−1),w

GIC η +
1
2

Ẽ(−2),w
GIC η2 +

1
6

Ẽ(−3),w
GIC η3 + O(η4),

(A1)

where

Ẽ(−1),w
GIC =

∂Ẽ1/η ,w
GIC
∂η

�����η=0
,

Ẽ(−2),w
GIC =

∂2Ẽ1/η ,w
GIC
∂η2

�����η=0
.

(A2)

We will show that these two derivatives vanish, and hence the
first η-dependence of Ẽ1/η,w

GIC appears at third order. According
to Eq. (25), we have (using real algebra)

∂Ẽ1/η,w
GIC

∂η
=

M−1∑
k=0

2wk

〈
∂Ψ̃

1/η,w
k

∂η

������
Ĥ

������
Ψ̃

1/η,w
k

〉

+
∂Esr,1/η

c,md [nγ̂1/η ,w ]

∂η
,

∂2Ẽ1/η,w
GIC

∂η2
=

M−1∑
k=0

2wk




〈
∂2Ψ̃

1/η,w
k

∂η2

������
Ĥ

������
Ψ̃

1/η,w
k

〉

+

〈
∂Ψ̃

1/η,w
k

∂η

������
Ĥ

������

∂Ψ̃
1/η,w
k

∂η

〉


+
∂2Esr,1/η

c,md [nγ̂1/η ,w ]

∂η2
.

(A3)

Since53

Esr,1/η
c,md [n] = E(−3)

c,md[n] η3 + O(η4), (A4)

the last term in the right-hand side of both equalities in Eq. (A3)
vanishes when η = 0. Furthermore, according to Eq. (20),〈

∂Ψ̃
1/η,w
k

∂η

������
Ĥ

������
Ψ̃

1/η,w
k

〉������η=0

= Ek

〈
∂Ψ̃

1/η,w
k

∂η

������
Ψk

〉������η=0

(A5)

and〈
∂2Ψ̃

1/η,w
k

∂η2

������
Ĥ

������
Ψ̃

1/η,w
k

〉������η=0

= Ek

〈
∂2Ψ̃

1/η,w
k

∂η2

������
Ψk

〉������η=0

.

(A6)
Since the long-range-interacting wavefunction is normalized
for any value of the range-separation parameter,

∀η
〈
Ψ̃

1/η,w
k

��� Ψ̃
1/η,w
k

〉
= 1, (A7)

it becomes 〈
∂Ψ̃

1/η,w
k

∂η

������
Ψk

〉������η=0

= 0 (A8)

and〈
∂2Ψ̃

1/η,w
k

∂η2

������
Ψk

〉������η=0

= −

〈
∂Ψ̃

1/η,w
k

∂η

������

∂Ψ̃
1/η,w
k

∂η

〉������η=0

. (A9)

Combining Eqs. (A2), (A3), (A5), (A6), (A8), and (A9) leads
to

Ẽ(−1),w
GIC = 0 (A10)

and

Ẽ(−2),w
GIC =

M−1∑
k=0

2wk

〈
∂Ψ̃

1/η,w
k

∂η

������
Ĥ − Ek

������

∂Ψ̃
1/η,w
k

∂η

〉������η=0

.

(A11)
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By applying first-order perturbation theory to Eq. (20), we
obtain

∂
���Ψ̃

1/η,w
k

〉
∂η

=

+∞∑
l,k

〈
Ψ̃

1/η,w
l |Ŵ1/η

|Ψ̃
1/η,w
k

〉
Ẽ1/η,w

k − Ẽ1/η,w
l

���Ψ̃
1/η,w
l

〉
, (A12)

where the perturbation operator reads

Ŵ1/η
=
∂Ŵ lr,1/η

ee

∂η
+
∫

dr
∂

∂η

δEsr, 1/η
Hxc [nγ̂1/η ,w ]

δn(r)
n̂(r). (A13)

Note that the second term in the right-hand side of Eq. (A13)
vanishes when η = 0 since51,64

Esr,1/η
Hxc [n] = E(−2)

Hxc [n] η2 + O(η3), (A14)

thus leading to〈
∂Ψ̃

1/η,w
k

∂η

������
Ĥ − Ek

������

∂Ψ̃
1/η,w
k

∂η

〉������η=0

= −

+∞∑
l,k

1
Ek − El

������

〈
Ψl

������

∂Ŵ lr, 1/η
ee

∂η

������
Ψk

〉������

2�������η=0

. (A15)

Finally, using48

∂Ŵ lr, 1/η
ee

∂η
= −8

√
π

∫ +∞

0
dr12

r2
12

η2
e
−

r2
12
η2 f̂ (r12), (A16)

where r12 = |r1 � r2| is the interelectronic distance and f̂ (r12)
is the intracule density operator, we obtain〈
Ψl

������

∂Ŵ lr, 1/η
ee

∂η

������
Ψk

〉
= −8

√
π

∫ +∞

0
dr12

r2
12

η2
exp *

,
−

r2
12

η2
+
-

×
〈
Ψl

���f̂ (r12)���Ψk

〉
. (A17)

Since
r2

12
η2 exp

(
−

r2
12
η2

)
→ 0 when η → 0 for all values of r12,

we conclude from Eqs. (A11) and (A15) that

Ẽ(−2),w
GIC = 0 (A18)

so that Eq. (A1) can be simplified as follows:

Ẽ1/η,w
GIC = Ew +

1
6

Ẽ(−3),w
GIC η3 + O(η4), (A19)

thus leading to the expansion in Eq. (35).
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