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Ensemble density functional theory (DFT) is a theory poten-

tially able to describe electronic states inaccessible to tradi-

tional time-dependent DFT approaches, e.g. Rydberg and

double excitations. When combined with ensemble wavefunc-

tion approaches through a range-separation scheme of Stoll

and Savin (Density Functional Methods in Physics, 1985, 177-

207), a resulting multiconfiguration ensemble DFT is able to

address also such challenging phenomena as bond breaking

in the electronically excited molecules. Ensemble DFT is, how-

ever, crippled by the so-called “ghost interaction” error, analo-

gous to the self-interaction error in the ground-state DFT. We

are exploring ways to alleviate this effect. We also study the

importance of spin polarization in the density functional, the

self-consistency effects and the impact of tunable parameters

on the quality of shapes of potential energy surfaces. VC 2016

Wiley Periodicals, Inc.

DOI: 10.1002/qua.25107

Introduction

Among many methods of computing the electronic excitation

energies of molecules the time-dependent density functional

theory (TD DFT)[1] has become the most popular approach in

the last decades. It happened mainly because of its relatively

low computational cost, characterizing all DFT-based methods,

and its good performance for valence excitations of single char-

acter. With this rise of popularity, however, also the failures of

TD-DFT came to light, such as its inability to describe charge-

transfer states,[2] excitations of multiple character,[3] and

Rydberg excitations. On the other hand, the accurate, but com-

putationally demanding ab initio methods are still limited to

describing only small and medium-size systems. This seemingly

stalemate situation has given an impulse to a certain renais-

sance of time-independent density functional theory-based

methods of obtaining excitations energies. One group of meth-

ods belonging to this category is based on the idea of minimiz-

ing the energy of a single excited state of a certain symmetry[4]

and in a more general approach of a state orthogonal to the

ground state.[5] A related but more sophisticated approach to

the problem of finding excitation energies within DFT is offered

by a constrained-variational DFT.[6,7] Other approaches involve

combining the density functional theory with perturbation

theory[8,9] or with configuration interaction method.[10,11]

The last group of methods, the ensemble DFT, originates

from the ensemble variational principle (EVP),[12] which states

that a weighted sum of m lowest eigenvalues of the Hamilto-

nian is not greater than the weighted sum of m expectation

values of this Hamiltonian with respect to any set of orthogo-

nal wavefunctions, i.e.

Xm

I51

xIEI �
Xm

I51

xIhWIjĤjWIi (1)

provided that the weights fulfill a condition 0 � x1 . . . � xm.

In the most straightforward approach, the EVP can be used to

obtain the best “mean average” approximations of wavefunc-

tions of the states belonging to the ensemble.[13,14] The EVP

gained more attention, when based on it an ensemble density

functional theory was proposed by Theophilou.[12] In the so-

called “subspace density functional theory” equal weights were

assumed and the energy functional was minimized to obtain

the optimal ensemble electron density (i.e. a weighted sum of

electron densities of states forming the ensemble). Introduction

of the ensemble energy as a functional of the ensemble density

was subsequently justified by a proof of an analog of the

Hohenberg-Kohn theorem for the ensemble density.[15,16]

This new theory in principle capable of describing double

excitations and potential energy surfaces became on object of

extensive theoretical research[17–21] and a few numerical imple-

mentations.[21–24] Due to the lack of good approximation of

the ensemble exchange-correlation functionals and the difficul-

ties associated with imposing the orthogonality condition on

the wavefunctions those realizations have been so far rather

scarce and only moderately successful, apart from the prag-

matic approach of Filatov and coworkers.[25,26]

In our previous work[27] we proposed two methods of calcu-

lation, based on the EVP. One method, called Ens-WF, is purely

wavefunction-based and it is closely related to the state-

averaged multiconfigurational self-consistent field (SA-MCSCF)

method of Werner and Mayer.[28] Ens-WF consists in the opti-

mization of the ensemble energy with respect to the orbitals

and a subsequent diagonalization of the Hamiltonian in the

basis of the Slater determinants included in the ensemble. To

include the dynamic correlation in the description of the
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states, we proposed a range-separated method[29] based on

Ens-WF in which the short-range part of the electron-electron

interaction is described by an ensemble density functional.

Such a method, while describing well the lowest states in

small molecules like LiH, was hampered by lack of spin polar-

ization in the density-functional part, a so-called “ghost inter-

action,” a well-known problem in the ensemble DFT,[19,21,30,31]

and, in more general sense, the use of the ground-state den-

sity functionals for the description of excited states.[32] In Ref.

[33], we proposed a solution to the first two problems and we

explore this idea further in the present paper.

Theory

Throughout the article, a number of states will be denoted

with m, the capital letters I and J will refer to states while i, j

to orbitals. There exist two main approaches to obtaining exci-

tation energies originating from the ensemble variational

theory: (1) the purely wavefunction-based methods, exempli-

fied by the ensemble Hartree-Fock (eHF) method or the afore-

mentioned Ens-WF method, (2) the ensemble density

functional theory in its different realizations. The Ens-WF

method consists in a two-step minimization of the ensemble

energy

E5
Xm

I51

xIhwIjĤjwIi : (2)

In the first step the ensemble energy is minimized with

respect to orbitals after assuming wavefunctions wI’s to be in a

form of single-determinants fUIg. This leads to obtaining

single-determinantal wavefunctions with optimal orbitals,

fUopt
J g. In the second step, a diagonalization of the Hamilto-

nian in the basis of those determinants is performed to obtain

multiconfiguration wavefunctions

wI5
Xm

J

CIJU
opt
J ; (3)

which are employed to find the final ensemble energy (2).

Such an approach is known to capture the static correlation

and to produce fairly correct shapes of dissociation curves of

small molecules. If an ensemble consisting of all possible con-

figurations was used, Ens-WF would be equivalent to a Full

Configuration Interaction method and the resulting ensemble

energy (2) would be exact. For small ensembles, however, Ens-

WF almost completely lacks the description of the dynamic

correlation. On the other hand, approximate density functional

methods based on a single-determinant description of states,

while they usually account for the dynamic correlation, can

only be used to describe molecules in their equilibrium geo-

metries and excitations of single character.

For obtaining potential energy surfaces and capturing states

of different characters, a multiconfigurational approach is

needed. To retain the modest cost of the Ens-WF method, a

range-separated scheme can be employed, within which long-

range part of the electron-electron interaction is described by

the wavefunction method, and the short-range part—by a den-

sity functional. Such an approach was proposed in Ref. [27]. In

the Ens-lrWF 1 srDF method the electron-electron interaction

operator is separated into a short- and a long-range part, i.e.[29]

1

r
5tSR

eeðrÞ1tLR
eeðrÞ ; (4)

such that lim r!1 r tLR
eeðrÞ51 and lim r!0 r tSR

eeðrÞ51. Then, the

universal functional of the ensemble density qens5
Pm

I51 xIqI

(where qI represents density of the I-th state) defined as

Fm;x½qens�5 min
wIf g ! qens

8IJ hwIjwJi5dIJ

Xm

I51

xIhwIjT̂ 1V̂ eejwIi ; (5)

can be partitioned into a long-range

FLR
m;x½qens�5 min

wIf g ! qens

8IJ hwIjwJi5dIJ

Xm

I51

xIhwIjT̂ 1V̂
LR

eejwIi (6)

and a short-range

FSR
m;x½qens�5Fm;x½qens�2FLR

m;x½qens� ; (7)

part. The ensemble energy expression then reads

Em;x½ wIf g�5
Xm

I51

xIhwIjT̂ 1V̂
LR

ee1V̂ extjwIi1FSR
m;x½qens� : (8)

If an exact short-range functional FSR
m;x½qens� was used, the

resulting ensemble energy would be also exact. In the method

Ens-lrWF 1 srDF, however, FSR
m;x½qens� is approximated by a

ground-state short-range Hartree-exchange-correlation functional

ESR
Hxc qens½ �. To account for both dynamic and static correlation the

Ens-lrWF 1 srDF method assumes (similarly to the Ens-WF

approach presented earlier) two steps. First, the ensemble energy

ElGOK-DFT
ens 5

Xm

I51

XM

i

xIn
I
ihii1

1

2

Xm

I51

XM

i;j

xIn
I
in

I
jhijjjiji

LR
1ESR

Hxc qens½ �

(9)

is minimized with respect to the orbitals. In Eq. (9), M stands

for a dimension of the spin orbital space, hijjjijiLR
n o

are anti-

symmetrized long-range two-electron integrals employing the

interaction operator erf lrð Þ
r with a range-separation parameter l,

and nI
i is the occupation number of the ith orbital in the Ith

single-determinant state, i.e.

nI
i5

1 i 2 I

0 i 62 I
:

(
(10)

In the second step an effective Hamiltonian is diagonalized

to obtain optimal wavefunctions. Such a simple approach is

possible owing to employing short-range density functionals

ESR
Hxc qens½ � dependent explicitly on the ensemble density which
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ensures the existence of a short-range potential VSR
m;x qens½ �

common to all the orbitals and allows for the construction of

an effective Hamiltonian. The final ensemble energy follows

from taking the sum
Pm

I51 xIhwIjĤ
LRjwIi, computed with the

multireference wavefunctions and adding a short-range

ensemble energy ESR
Hxc qens½ �.

While Ens-lrWF 1 srDF has been shown to correctly describe

dissociation curves of some small molecules (even using a small

set of configurations), it has two major drawbacks. First is the

obvious lack of spin polarization in the short-range part, which

results in underestimating gaps between singlet and triplet

states of the same spatial configurations. The other drawback is

the “ghost-interaction” problem, that plagues the ensemble den-

sity functionals explicitly dependent on the ensemble density.

To resolve the first of the mentioned problems, namely the

lack of spin polarization, the range-separated ensemble func-

tional of the form (9) can be substituted by a functional

ElspGOK-DFT
ens 5

Xm

I51

XM

i

xIn
I
ihii1

1

2

Xm

I51

XM

i;j

xIn
I
in

I
jhijjjiji

LR
1ESR

Hxc qa
ens;q

b
ens

� �
;

(11)

with spin ensemble densities qr
ens5

P
I xIqr

I ; r5a; b computed

by adding spin densities corresponding to each state qr
I ðxÞ5PM

i nI
i juirðxÞj2. In Eqs. (9) and (11), hij

� �
denote one-electron

integrals that contain contributions from the kinetic and exter-

nal potential energy operators. It is worth noting that the

range-separated functional of the form (9) contains already

some spin polarization in its long-range (i.e. Hartree-Fock) part.

This observation, together with large values of the range-

separation parameter l used in work[27] (corresponding to

large contributions of the Hartree-Fock exchange) can explain

relatively good results obtained by the method Ens-

lrWF 1 srDF which employs the functional given in Eq. (9).

However, to fully take into account the spin polarization, it is

necessary to rather use the functional of the form (11).

Unfortunately, there is a computational disadvantage related

to such a choice. Namely, a short-range potential common to

all states in the ensemble cannot be constructed so the opti-

mization of the functional (11) cannot proceed via diagonaliza-

tion of the effective Hamiltonian.

On the other hand, also the elimination of the “ghost inter-

action” error[19,30,31] has been shown to be best achieved by

employing orbital-dependent functionals of the form

El-eDFT
ens 5

Xm

I51

XM

i

xIn
I
ihii1

1

2

Xm

I51

XM

i;j

xIn
I
in

I
jhijjjiji

LR
1
Xm

I51

xIE
SR
Hxc qI½ �

(12)

and taking into account the spin polarization:

El-speDFT
ens 5

Xm

I51

XM

i

xIn
I
ihii1

1

2

Xm

I51

XM

i;j

xIn
I
in

I
jhijjjiji

LR
1
Xm

I51

xIE
SR
Hxc qa

I ;q
b
I

h i
:

(13)

The above form of the functional can be also seen as origi-

nating from the ensemble Hartree-Fock (eHF) functional, i.e.

EeHF
ens 5

Xm

I51

xIhUIjĤjUIi5
Xm

I51

XM

i

xIn
I
ihii1

1

2

Xm

I51

XM

i;j

xIn
I
in

I
jhijjjiji

(14)

where the dynamical correlation is accounted for by replacing

two-electron integrals with their long-range counterpart and

by adding the short-range Hartree-exchange-correlation func-

tional. Similarly, the Ens-WF method described in Ref. [27] con-

sisting in the minimization of the Eq. (14) with respect to the

orbitals and then the diagonalization of the Hamiltonian in the

basis of the determinants building the ensemble, can be

viewed as the eHF method with static correlation added on

top. The goal of creating a multiconfiguration ensemble

method is to include all of the aforementioned features—the

spin polarization, lack of the ghost-interaction error, and the

description of the dynamic and static correlation. This is not a

trivial task, especially if one wants to retain the favorable cost

of the method, comparable to that of the ground-state DFT. In

the next paragraphs we will show the route to constructing

such a method, by building step by step more sophisticated

methods based on Ens-WF. Later, on a few examples, we will

show how each step of this sophistication influences the

results.

First, and the most naive way to include the dynamic corre-

lation is to use the range-separated expression for energy

Eens5
Xm

I

xI

X
JK

C�IJCIKhUJjĤ
LRjUKi1ESR

Hxc qa
I ;q

b
I

h i)(
(15)

with the dynamical correlation included through replacing the

full-range electron interaction operator r12ð Þ21 with its long-

range counterpart and adding the short-range functional ESR
Hxc.

Notice that the difference with the functional used in the Ens-

lrWF 1 srDF method is in the SR functional, which is now

employed in a spin-polarized variant. The excitation energies

can be extracted computing the ensemble energy derivatives

with respect to the weights (or b parameter, see Ref. [32]), but

in practice it is not a viable method. Instead, the approximate

energy of the I-th state obtained with the Ens-WF method will

be approximated using the optimal wavefunctions and the

corresponding densities, as

EI5
X

JK

C�IJCIKhUJjĤ
LRjUKi1ESR

Hxc qa
I ;q

b
I

h i
; (16)

where qa
I ; q

b
I are spin densities computed for a multi-

determinant wavefunction WI5
P

JCIJUJ . We will discuss and

test three computational algorithms based on Eqs. (15) and

(16). The algorithms vary in a way how orbitals and the expan-

sion coefficients CIJ are obtained. In the first algorithm (called

here Algorithm 1, vide infra for more detailed description) spin

orbitals resulting from minimization of the eHF functional Eq.

(14) are used and the expansion coefficients are obtained from

diagonalization of the full-range Hamiltonian matrix. Such an

approach has a modest computational cost and partly

accounts for dynamical correlation, but neglects the influence

of the correlation on the orbitals.
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To include the influence of the correlation on the orbitals, it

is possible to minimize the energy (13) with respect to the

orbitals. The subsequent diagonalization of the Hamiltonian

matrix H no longer then minimizes the energy, but it provides

one with pure-spin guesses for multiconfiguration wavefunc-

tions. This method will be referred to as Algorithm 2.

The expansion coefficients fCIJg can be also obtained by a

direct optimization of the ensemble energy functional (15),

under the constraint that the wavefunctions are orthogonal.

Although it allows one to find a set of the optimal coefficients

for a fixed set of the orbitals, such a minimization, without

additional constraints, can lead to obtaining spin-

contaminated wavefunctions. The corresponding method will

be called Algorithm 3 in the rest of the work.

An obvious ultimate step—and as we will show later, an

important one for the quality of the results—would be to per-

form the minimization of the ensemble energy with respect to

the orbitals and the expansion coefficients self-consistently,

while keeping the wavefunctions orthogonal and spin-

adapted. This is, however, a complex computational task and

has not been performed yet.

In short, in the Algorithm 1 the dynamic correlation is taken

into account through the functional ESR
Hxc only in the energy

expression (16) for a given state but not in the optimization

steps. In the Algorithm 2, on the other hand, some additional

part of the correlation is recovered through the self-consistent

optimization of the orbitals with the short-range functional

present in the energy expression. In addition, the Algorithm 3

should also offer a better description of the static correlation

than the two simpler methods, because it leads to finding the

optimal expansion coefficients fCIJg (for the fixed orbitals).

The expression (16) used to extract the energies of particu-

lar states is only rigorous in certain cases, e.g. for the range-

separation parameter l!1 the short-range functional tends

to zero and the remaining part of the expression (16) provides

a CI-type approximation to the excited state energy in ques-

tion. For finite values of l, Eq. (16) is just a practical and com-

putationally efficient way of computing energies of states

within a multiconfiguration ensemble DFT method which

should serve as a reasonable approximation. While Franck and

Fromager[32] proposed an expression involving a derivative of

the ensemble energy with respect to a parameter defining the

ensemble weights, this formula poses a difficult computational

problem itself and it has not been yet used directly in any

numerical implementation (although interpolation[34] and

extrapolation[35] schemes were proposed to ease this task).

What is more, the use of Eq. (16) lets one interpret the result-

ing wavefunctions as approximations to the true wavefunc-

tions of the systems, which in turn allows for the

interpretation of the character of particular excitations (e.g. if

they are of single, double, valence or charge-transfer charac-

ter). Such an interpretation means also, regrettably, that the

quality of the resulting energies depends very strongly on the

quality of obtained wavefunctions and their certain properties,

like e.g. the spin symmetry.

Tests and Illustrative Examples

Computational details

The short-range exchange-correlation functional used for all

presented computations is (restricted open-shell) short-range

PBE.[36,37] Used benchmark values, basis sets and included con-

figurations vary for different systems and are described within

the text, but each time the set of configurations used was

equal to the set of determinants corresponding to the states

included in the ensemble (i.e. m 5 M). Boltzmann weights

Algorithm 1

1. Build an ensemble of m Slater determinants (SD);

2. Assign fixed Boltzmann weights of the form

xI5
exp 2bEI½ �Xm

K51

exp 2bEK½ �
(17)

with approximate energies EI computed for the

equilibrium geometry to each SD.

3. Constrained (with orthogonality condition imposed on

determinants) minimization of eHF energy Eq. (14) with

respect to the orbitals;

4. Diagonalization of the full-range Hamiltonian matrix H

(equivalent to minimizing the Ens-WF energy with

respect to the CIJ coefficients);

5. Computation of the state energies from Eq. (16).

Algorithm 2

1. Build an ensemble of m Slater determinants;

2. Assign Boltzmann weights to each SD;

3. Minimization of the ensemble energy (13) with respect to

the orbitals;

4. Diagonalization of the full-range Hamiltonian H to obtain

a guess for C matrix;

5. Computation of the states energies from Eq. (16).

Algorithm 3

1. Build an ensemble of m Slater determinants;

2. Assign Boltzmann weights to each SD;

3. Minimization of the ensemble energy (13) w.r.t. the

orbitals;

4. Diagonalization of the full-range Hamiltonian to obtain a

guess for C matrix;

5. Full optimization of the ensemble energy (15) w.r. t. the

elements of C;

6. Computation of the states energies from Eq. (16).
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were computed with approximate state energies resulting

from an eHF computation.

Homolytic dissociation

Dissociation curves of small molecules make particularly good

models for studying the properties of computational methods

for excited states, as they combine problems of bond break-

ing, single and double excitations and static correlation. At the

same time, for small molecules such as presented here LiH,

BH, H2O, and N2, accurate benchmark values of energies are

available for comparison.

To analyze the influence of an inclusion of correlation at dif-

ferent levels (Ens-WF and Algorithms 1–3) on the energies of

states of molecules, let us look at the energies of states of LiH

molecule—11R1 (the ground state, Fig. 1) and 13R1 (Fig. 2)

along the dissociation curves. The ensemble used here con-

tains configurations f1r22r2, 1r22r3r; 1r23r2g with all perti-

nent spin configurations. Calculations were performed in Aug-

cc-pVDZ[38] basis set with b50:5 [a parameter which deter-

mines the weights of states, see Ref. [27] and Eq. (17)] and

l 5 1 (the range-separation parameter). Reference energies

were obtained with the LR-CCSD[39] method by employing

DALTON[40] suite of programs. While the transition from Ens-

WF method to the Algorithm 1 visibly lowers the absolute

energies of both states, it does not change the shape of the

curves. Clearly, the energies obtained with Algorithms 2 and 3

differ very little and the difference between the results pro-

duced by Algorithms 1 and 2 is practically invisible.

All three hybrid methods follow the LR-CCSD curves fairly

well both in shape and in absolute values, with slight devia-

tions for the ground-state in the dissociation limit and for the

triplet in the mid-range limit. Overall, the methods in these

case seem to give a well-balanced description of both the

ground and the excited states. This is a typical example of

how similar the outcomes of 2 and 3 actually are. In a few

cases (especially for small values of l ), while the minimization

of the ensemble energy with respect to the expansion coeffi-

cients would lower it by up to a few eV, at the same time it

would introduce a severe breaking of the spin symmetry for

some of the states (which has a negative impact on the shape

of the dissociation curves). It becomes clear that the Algorithm

3 is not a good approximation to the self-consistent, multicon-

figuration, ensemble-DFT-based method. Let us focus then on

the two simpler Algorithms 1 and 2, which do not suffer from

spin symmetry breaking.

BH molecule is a system very similar to LiH. Computations

were performed in Aug-cc-pVTZ basis set and the configura-

tion space consisted of 16 determinants constructed from the

following configurations 1r22r23r2; 1r22r23r4r;f 1r22r23r1p;
1r22r24r2; 1r22r23r5rg with all pertinent spin combinations

(except for 1r22r23r5r, where only the triplet was included).

The presented results from the ensemble calculations corre-

spond to taking the range-separation parameter l 5 1 and

two values of the b parameter b 5 0 and b50:5. The results

were compared with LR-CCSD energies calculated in the same

basis set and energies obtained from a configuration interac-

tion (CI) calculation performed in the same space as the

ensemble calculation. Only a small difference between the per-

formance of Algorithms 1 and 2 can be seen for 11R1 (i.e. the

ground state, see Fig. 3) and 13R1 state (Fig. 4). The Algorithm

2, employing DFT orbitals produces for both states slightly

lower energies. As expected, in an ensemble with dominant

ground state (b50:5, circle markers on Fig. 3) the ground state

has a deeper minimum than in the equiensemble (see trian-

gles on Fig. 3), at the expense of the description of 13R1 state

Figure 2. Dissociation curves of the first triplet state of LiH molecule.

Circles • denote Ens-WF, squares W—LR-CCSD, triangles �—Algorithm

1, triangles �—Algorithm 2, diamonds �—Algorithm 3.

Figure 1. Dissociation curves of the ground state of LiH molecule. Circles

• denote Ens-WF, squares W—LR-CCSD, triangles �—Algorithm 1, trian-

gles �—Algorithm 2, diamonds �—Algorithm 3.
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(compare curves with circles vs. the one with triangles on Fig.

4). Our investigations, the results of which are only partly

shown here, show that dependence of the quality of the

results on b is rather random. For almost all states (bar 21R1,

equiensemble case) significant improvement with respect to

the CI method is achieved. Errors are reduced from hundreds

of mHartree to tens of mHartree.

Finding an optimal value of the range-separation parameter

l was in the case of BH molecule a matter of compromise

between the lowering effect of adding the dynamic correlation

through the density functional and keeping the shapes of the

dissociation curves correct through the wavefunction part. In

the end, a value of l 5 1 was chosen, as the lowest value that

correctly reproduces the shape of dissociation curve of the

state 21R1 (not shown here). In both figures for BH, Figures 3

and 4, it is clear that results obtained by the Algorithms 1 and

2 differ very little, similarly for P states (not shown here). It is

partially due to the choice of large value of l which translates

into a big contribution of eHF and, at the same time, small

influence on the orbitals of the short-range functional in the

Algorithm 2.

Stretching of the single O-H bond in a water molecule will

shed more light on the performance of the methods. The cal-

culations for H2O were performed in Aug-cc-pVDZ basis set

and the ensemble was built of configurations: 1a022a02
n

3a024a021a0 02, 1a022a023a024a05a01a002; 1a022a023a04a025a01a002, 1

a022a023a024a025a01a00; 1a022a023a025a021a002g (a total of 13

determinants). The results were compared with CC3 energies

calculated in the same basis set and energies obtained from a

configuration interaction (CI) calculation performed in the

same space as the ensemble calculation. For reasons that we

will elaborate on in the following paragraphs we only show

the equiensemble (b 5 0) results.

As shown in Fig. 5, the results for the ground state obtained

by Algorithms 1 and 2 are very similar, with a slightly deeper

minimum produced by Algorithm 1. Both curves are much

lower than the CI ones. They are qualitatively correct close to

the dissociation limit, but they build a spurious maximum at R

53:5 a:u: and the minimum is still much too shallow. Both

Algorithms 1 and 2 correctly reproduce the shape and the

absolute energies of 13A0 state (see Fig. 6). The CC3 bench-

mark is available only up to R55:669 a:u:, the calculations with

this method diverge beyond that distance. It is known that

the states 11A0 and 13A0 become degenerate in the dissocia-

tion limit and evidently both Algorithms 1 and 2 reproduce

this behavior.

The energies of 11A0 0 and 13A00 states (Fig. 7) obtained with

Algorithm 2 are satisfactory qualitatively and quantitatively.

They are slightly higher than the CC3 benchmark, but the

curves have correct shapes and the states become degenerate

in the dissociation limit, as they should do. The energies of

the 11A0 state obtained with the Algorithm 1 are very similar

to those obtained by means of the Algorithm 2, while the

13A0 0 curve goes below the benchmark value and does not

Figure 3. Dissociation curve of the ground state of BH molecule, l 5 1. Empty squares (w) denote CI, full ones (W)—CCSD. Full circles • denote b50:5

Algorithm 1, empty circles �—b50:5, Algorithm 2. Full triangles �—b 5 0, Algorithm 1, empty triangles �—b 5 0, Algorithm 2.
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coincide with the 11A00 state energy in the dissociation limit.

The CI curves, on the other hand, are on average 300 mHartree

higher than the ones obtained by Algorithms 1 and 2 and

have incorrect shape.

Now, let us look at the most interesting state—the 21A0 pre-

sented in Fig. 8. The curious behavior of this state is the rea-

son why only the equiensemble results are shown. Only in

proximity of b 5 0 the shape of the curve is approximately cor-

rectly reproduced. This phenomenon owes to the fact that the

virtual orbitals obtained from a ground-state HF computation

(which corresponds to b!1 in the eHF method) describe

the 21A0 state very poorly. In an equiensemble calculation 5a0

orbital enters the optimization with a significant weight, which

changes the shape of the dissociation curve of not only the 21

A0 state, but also 11A0 0 and 13A0 0 (cf. CI and Algorithm 2 curves

in Figs. 7 and 8). MCSCF results (computed in Molpro[41,42]

software package, with 65 configuration state functions)

shown in Fig. 8 support this claim. When the orbitals are only

optimized with respect to the ground state (CASSCF[43,44] in a

minimal active space, single iteration), the curve is very erratic.

Then, when the 21A0 state is taken into account (SA-MCSCF in

the same active space, with equal weights for the ground and

the 21A0 state, single iteration), the curve follows the ones

Figure 4. Dissociation curve of the 13R1 state of BH molecule l 5 1. Empty

squares (w) denote CI, full ones (W)—CCSD. Full circles • denote b5

0:5 Algorithm 1, empty circles �—b50:5, Algorithm 2. Full triangles

�—b 5 0, Algorithm 1, empty triangles �—b 5 0, Algorithm 2.

Figure 5. Dissociation curve of the ground state of H2O molecule, l 5 1,

b 5 0. Symbols W denote CC3 results, •—CI b50:5, �—Algorithm 1,

�—Algorithm 2.

Figure 6. Dissociation curve of the 13A0 state of H2O molecule, l 5 1,

b 5 0. Symbols W denote CC3 results, •—CI b 5 0, �—Algorithm 1,

�—Algorithm 2.

Figure 7. Dissociation curve of the 13A0 0 and 11A0 0 states of H2O molecule,

l 5 1, b 5 0. Squares denote 13A0 0 state, circles—11A0 0 , full symbols—CC3,

empty—CI, half-filled—Algorithm 2, crossed—Algorithm 1.
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produced by the Algorithms 1 and 2. Still, spurious extrema

are visible. Performing a self-consistent calculation (CASSCF or

SA-MCSCF) then eliminates the spurious extrema and the

shape of the curves is in good agreement with the one

obtained with CC3, while the total energies remain signifi-

cantly too high. This observation suggests that also a multi-

configuration ensemble DFT, if implemented self-consistently,

would produce the curves of correct shape. The behavior of

this state is a good illustration of the impact the self-

consistency has on the solution—while the short-range den-

sity-functional is alleviating the method’s sensitivity to the size

of the active space, the self-consistency is often essential for

producing orbitals of sufficient quality. Still, the H2O results are

rather accurate, with the exception of the ground state. In that

case, lower energies could of course be obtained with a larger

value of b, but then the shape of 21A0 state dissociation curve

would deteriorate.

Another studied system was an N2 molecule, stretched

along its triple bond. The calculations were performed in cc-

pVDZ basis set. The singlet state energies were compared with

FCI results[45] while the triplet state with the CC3 results com-

puted in the same basis set. The ensemble included 12 deter-

minants. In the case of N2 the value of b seems to have very

little influence on the results, so only the results for the equi-

ensemble results are presented. The shapes of the curves

obtained with Algorithms 1 and 2 are very similar to the CI

ones, which means that the orbitals from ensemble calcula-

tions are similar to the Hartree-Fock ones.

Already by looking at Fig. 9 one concludes that the method

struggles with N2. Even though by tuning the l parameter

one could obtain a good agreement of the Algorithm 2 (or

Algorithm 1) with the FCI benchmark in the minimum but the

energy rises too steeply with the bond length. It suggests

(and is indeed confirmed by work[45]) that for medium and

large distances the contribution of triply excited determinants

is significant. This leads us to belief that the problem could

only be remedied by expanding the ensemble.

One can make the same conclusions about the first excited

state (Fig. 10). Larsen et al.[45] also in this case mention large

contribution of multiply excited determinants for larger bond

lengths. Unfortunately, no FCI benchmark for triplet states of

N2 is available, so employ the CC3 results as reference. As

Larsen et al. mention, CC3 model is reliable for small distances,

Figure 8. Dissociation curve of the 21A0 state of H2O molecule, l 5 1,

b 5 0. Symbols W denote CC3 results, �—Algorithm 1, �—Algorithm 2,

dashed line (- -)—SA-MCSCF, dash-dot (-�-)—CAS-SCF, dotted (� � �)—SA-

MCSCF with single iteration and solid line—CAS-SCF with single iteration.

Figure 9. Dissociation curve of the ground state of N2 molecule, b 5 0.

Symbols: full squares (W) denote FCI results, empty ones (w)—CI. Empty

triangles (�) denote Algorithm 2, l 5 1, full triangles (�)—Algorithm 1,

l 5 1. Full circles (•)—Algorithm 1,l50:5, empty ones (�)—Algorithm 2,

l50:5.

Figure 10. Dissociation curve of the 13D state of N2 molecule, b 5 0. Sym-

bols: full squares (W) denote CC3 results, empty ones (w)—CI. Empty tri-

angles (�) denote Algorithm 2, l 5 1, full triangles (�)—Algorithm 1,

l 5 1. Full circles (•)—Algorithm 1, l50:5, empty ones (�)—Algorithm 2,

l50:5.
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but tends to overestimate the correlation contribution for

larger ones. We find that the 13P state (not shown here) is

very well-described near the minimum by the Algorithm 1 for

the value of l 5 1 with the error with respect to the CC3

benchmark at the minimum amounting to 1 mHa, which is

also optimal for the singlets (the errors being equal to 40 mHa

and 11 mHa for 11R1
g and 11P1

g ; states, respectively), whereas

the minimum of 13D state (error of 62 mHa) is too shallow for

this value of l and only for l50:5 good agreement (error of

38 mHa) is obtained. It would be interesting to see the same

computations performed for a larger basis set, unfortunately

cc-pVDZ is the largest basis set for which a benchmark is

available.

Torsion of ethylene

Finally, we test the Algorithm 1 with parameters identified as

appropriate for most of the systems—l 5 1 and b 5 1 on a

challenging case of twisting of the double bond of the ethyl-

ene molecule. Here, both the description of the ground state

and the first excited singlet—which become nearly degenerate

at 90� rotation angle—requires a multireference approach.

Configurations included in the ensemble were

1a22a23a21b2
32b2

31b2
21b2

1

�
, 1a22a23a21b2

32b32b21b2
1; 1a22a23a21

b2
32b2

21b2
1g and all computations were performed with DZP[46]

basis set. As shown in Figure 11, the Algorithm 1 describes

very well the ground state for all torsion angles, following

closely the reference curve. The torsion barrier is closer to the

experiment value than even the benchmark TCSCF-CISD result

and the total ground-state energy also agrees very well with

the TCSCF-CISD one (see Table 1). Ensemble method does not

produce a cusp at 90
�

like the ground-state DFT (PBE func-

tional) does. The description of the excited state is not as per-

fect. The curves produced by both CI and the ensemble

method are systematically too high, which suggests that while

the size of the ensemble is sufficient, the description suffers

from the lack of full self-consistency. Regardless, the obtained

result shows that the presented multiconfiguration ensemble

method is able to reproduce the orthogonalization of

ethylene.

Conclusions

We have investigated a hierarchy of multiconfiguration ensem-

ble DFT methods based on the range-separated ensemble

energy functional given in Eq. (15). The considered variants dif-

fer by the level of approximation with which the orbitals and

the expansion coefficients entering Eq. (16) used to predict

energies of different states are obtained. The multiconfigura-

tion ensemble DFT approach avoids the problem of the spuri-

ous ghost interaction and takes into account spin polarization

in the density functional part. The obtained results lead to the

conclusion that the method in general is capable of reproduc-

ing the shapes of potential energy surfaces of ground and of

excited states on equal footing. While in a longer perspective

it seems necessary to introduce a fully self-consistent, spin-

adapted method, at present the two simpler of the presented

approaches—the Algorithms 1 and 2 produce the results of

very similar quality, and they are more reliable than the more

computationally costly Algorithm 3. The Algorithm 1, in which

a range-separated functional is only used to compute the

energies of states, may be preferable due to its very low com-

putational cost and better stability.

At present the choice of the configurations included in the

ensemble and of the optimal values of the range-separation

and the weights-governing parameters, l and b, respectively,

is essential for the quality of the results. We anticipate, though,

that upon introducing the full self-consistency the dependence

of the results on the value of b will become less important.

The employed scheme of computing the energies according

to Eq. (16) is a computationally robust and a pragmatic choice.

It allows one to associate the computed energies with states

of a given spin and spatial symmetry, which greatly improves

the usefulness of the method. It has to be noted, however,

that very recently an alternative approach to the ghost-

interaction-free multiconfiguration ensemble DFT has been

hinted in Ref. [35], but since neither the algorithm nor numeri-

cal examples were shown, it is difficult to assess the viability

of this approach.

Figure 11. Torsion of C2H4 molecule, b 5 1, l 5 1. Dotted lines—CI method,

dashed lines—ground state PBE, solid lines—Algorithm 1, dashes and

crosses—TCSCF-CISD[46] (benchmark), black crosses—experimental gap.[47]

Table 1. The ground-state energy of ethylene (in Hartree), the barrier of

rotation and relative energies of the first excited singlet state at 0
�

and

90
�

in mHartree. Computations with DZP basis set.[46]

TCSCF-CISD[46] Exp.[47] Alg. 1 PBE CI

S0 energy 278.366 – 278.314 278.476 278.063

Barrier 120 103 112 149 133

DE (0
�
) – 282 380 – 359

DE (90
�
) – 202 277 – 258
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