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We observe that the direct Coulomb (Hartree) term appearing in the ensemble-density-functional the-
ory for excited states contains an unphysical (“ghost”) interaction which has to be corrected by the
ensemble exchange and correlation functional. We propose a simple additive correction to the conven-
tional ensemble exchange energy in the form of an orbital functional. By treating this corrected exchange
energy functional self-consistently within the optimized effective potential method one finds a significant
improvement of atomic excitation energies.
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Modern density functional theory (DFT) [1–3] is often
the method of choice to calculate the electronic structure
of atoms, molecules, and solids in the ground state. How-
ever, there is no unique generalization of DFT for excited
states. Many different DF schemes dealing with excited
states have been proposed, some focusing on a single ex-
cited state [4–9], some focusing on ensembles [10–19],
and some relying on time-dependent DFT [20]. In the lat-
ter approach, excitation energies are determined from the
poles of the frequency-dependent linear density response
[21–23]. In spite of its tremendous success, the time-
dependent DFT scheme has the computational disadvan-
tage of requiring, in one way or another, the calculation of
the linear density response near the poles, or, alternatively,
the time propagation of the time-dependent Kohn-Sham
equations [24].

In this Letter, we shall focus on the DFT for ensembles
which is computationally simpler and conceptually closer
to the ground state formalism. The ensemble DFT, first
proposed by Theophilou [10,11], derives from a general-
ization of the Rayleigh-Ritz principle [10,14,25]: Con-
sider, for simplicity, a two-state ensemble consisting of
the ground state C0 and the first excited state C1 of the
N -electron Hamiltonian [26]

H � T 1 Vext 1 Wee , (1)

where the operators on the right-hand side represent the
kinetic energy, the external potential, and the mutual Cou-
lomb repulsion of the electrons. Then, the variational prin-
ciple states that the functional

E�v��C, C0� � �1 2 v� �CjHjC� 1 v�C0jHjC0� , (2)

with orthonormal functions C and C0 and 0 , v # 1�2,
attains its minimum value when C � C0 and C0 � C1.
This statement holds true for any value of v in the inter-
val �0, 1�2�. For v � 1�2, any two orthonormal functions
lying in the space spanned by C0 and C1 minimize the
functional (2). On one hand, one can use this ensemble
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variational principle directly by inserting trial wave func-
tions for C and C0. If C and C0 are chosen to be Slater
determinants F0, F1 one obtains the ensemble-Hartree-
Fock (eHF) scheme by varying the ensemble energy

E
�v�
eHF�F0, F1� � �1 2 v� �F0jHjF0� 1 v�F1jHjF1�

(3)

with respect to the orbitals contained in F0, F1 [27,28].
On the basis of the ensemble variational principle,

Hohenberg-Kohn (HK) and Kohn-Sham (KS) type theo-
rems have been formulated, where the ensemble spin
densities

rs�r� � �1 2 v�rs
C0

�r� 1 vr
s
C1

�r�, s � ", # (4)

serve as the basic variables. r
s
C0

�r� and r
s
C1

�r� are the
spin densities associated with the ground state C0 and the
excited state C1 of the interacting system.

In the KS scheme, the interacting ensemble is mapped
onto an ensemble of noninteracting particles whose en-
semble spin densities

rs�r� � �1 2 v�rs
F0

�r� 1 vr
s
F1

�r�, s � ", # (5)

reproduce the ensemble spin densities (4) of the interact-
ing system. r

s
F0

�r� and r
s
F1

�r� are the spin densities of
the ground and first excited states, F0 and F1, of the non-
interacting system. Taking the case where F1 differs from
F0 by a single-particle excitation of a spin-up electron,
F0 and F1 will have the form F0 � �1�

p
N! � det�w"

1, . . . ,
w

"
N " , w

#
1, . . . ,w#

N #� and F1 � �1�
p

N! � det�w"
1, . . . , w"

N "21,

w
"
N "11, w

#
1, . . . , w#

N #�, where N " �N #� is the number of
spin-up (spin-down) electrons and N � N " 1 N #. The
orbitals satisfy the ensemble KS equationsΩ

2
=2

2
1 ys

s �r",r#� �r�
æ
ws

i �r� � es
i ws

i �r� . (6)

These equations have to be solved self-consistently with
the ensemble spin densities (5) which, for the above
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determinants F0 and F1, take the explicit form

r"�r� �
N "21X
j�1

n
"
j�r� 1 �1 2 v�n"

N "�r� 1 vn
"

N "11�r� ,

(7)

r#�r� �
N #X

j�1
n
#
j�r� , (8)

with

ns
j �r� � jws

j �r�j2, s � ", # . (9)

For notational simplicity we have omitted the obvious de-
pendence of w

s
j �r� on the ensemble parameter v. The

total energy of the interacting ensemble is given by

E�v��r", r#� � T �v�
s �r", r#� 1

X
s

Z
d3r ys

ext�r�rs�r�

1
1
2

ZZ
d3r d3r 0

r�r�r�r0�
jr 2 r0j

1 E�v�
xc �r", r#� , (10)

where T �v�
s denotes the kinetic energy functional of the

noninteracting ensemble and E�v�
xc is the ensemble ex-

change and correlation (xc) energy. r�r� � r"�r� 1 r#�r�
is the total density. Minimization of the total energy (10)
with respect to rs yields the explicit representation
033003-2
ys
s �r", r#� �r� � ys

ext�r� 1
Z

d3r 0
r�r0�

jr 2 r0j

1
dEv

xc�r", r#�
drs�r�

(11)

of the ensemble KS potential.
The success of any DFT crucially depends on the avail-

ability of good approximations for the xc energy func-
tional. The standard functionals of ground-state DFT are
the local density approximation (LDA) and the generalized
gradient approximations (GGAs). Despite their impressive
success, LDA and GGAs have one deficiency in common:
They are not free from spurious self-interactions. Self-
interaction corrections are most efficiently taken into ac-
count by explicitly orbital-dependent functionals. By
virtue of the HK theorem, orbital functionals are implicit
functionals of the spin densities and the functional deriva-
tives of the latter can be calculated by the so-called opti-
mized effective potential (OEP) method [29–31]. With
self-interaction free functionals, especially with the exact
exchange energy, the KS orbital energies are significantly
improved over the LDA and GGAs: The KS band gaps
are in close agreement with experiment [32], and in finite
systems the Rydberg series is obtained [30]. Likewise, in
the ensemble formulation, the first successful implementa-
tion [15] used an LDA-type functional [13] derived from a
uniform electron gas at finite temperature. A crucial step
forward was made by Nagy who introduced the OEP idea
in the ensemble formalism [16] and applied it successfully
to the Hartree-Fock-like functional
E
�v�
Nagy�r", r#� � T �v�

s �r", r#� 1
X
s

Z
d3r ys

ext�r�rs �r� 1
1
2

ZZ
d3r d3r 0

r�r�r�r0�
jr 2 r0j

2
1
2

X
s

ZZ
d3r d3r 0

jrs�r,r0�j2

jr 2 r0j
, (12)
where

r"�r, r0� �
N "21X
j�1

n
"
j�r, r0� 1 �1 2 v�n"

N "�r, r0�

1 vn
"

N "11�r, r0� (13)

r#�r, r0� �
N #X

j�1

n
#
j�r, r0� (14)

with

ns
j �r,r0� � ws

j �r�ws
j �r0��, s � ", # . (15)

In this energy functional, the usual self-interaction terms
contained in the ensemble Hartree energy [the third term on
the right-hand side of Eq. (12)] are canceled by the corre-
sponding self-exchange terms, similar to the ground state.

In this Letter, we propose a new orbital functional, to be
used in the ensemble OEP formalism. It arises from the
central observation that the same ensemble Hartree term
contains an additional spurious (self-like) interaction
G
�v�
H �r", r#� � v�1 2 v�

ZZ
d3r d3r 0

n
"

N " �r�n"

N "11�r0�
jr 2 r0j

(16)

not present in ordinary ground-state DFT. This term will
be called ghost interaction. It is easily found by insert-
ing the ensemble spin densities (7) and (8) in the Hartree
energy functional. The ensemble exchange energy term
[the last term on the right-hand side of Eq. (12)] contains
a similar ghost interaction

G�v�
x �r", r#� � 2v�1 2 v�

ZZ
d3r d3r 0

3
n
"

N "�r, r0�n"

N "11�r0, r�
jr 2 r0j

. (17)

Unlike ordinary self-interaction terms, the ghost-Hartree
and the ghost-exchange terms do not cancel each other.
They correspond to the direct and exchange interaction of

the orbital w
"
N " with the orbital w

"
N "11. G

�v�
H and G

�v�
x are
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unphysical because w
"

N " and w
"

N "11 are never occupied in
one and the same determinant. We propose to employ the
exchange-energy functional

E�v�
x �r", r#� � 2

1
2

X
s

ZZ
d3r d3r 0

3
jrs�r, r0�j2

jr 2 r0j
2 G�v��r", r#� , (18)

where
033003-3
G�v��r", r#� � G
�v�
H �r", r#� 1 G�v�

x �r",r#� . (19)

With this exchange-energy functional, the total ensemble-
energy functional E�v��r", r#� is rendered ghost-
interaction free. Naturally, the eHF energy E

�v�
eHF�F0, F1�,

in (3), is also ghost-interaction free. The full OEP scheme
[16], applied to the exchange functional (18), leads to
an integral equation for the local ensemble exchange
potential ys

x �r�. We solve this equation within the popular
approximation by Krieger, Li, and Iafrate (KLI) [33–37],
leading to
r#�x�y#
x�x� �

N #11X
j�1

n
#
j�x�

Z
d3r n

#
j�r�y#

x�r� 2
Z d3r jr#�x, r�j2

jx 2 rj
1

N #11X
j�1

n
#
j�x�

ZZ d3r d3r 0

jr 2 r0j
n
#
j�r, r0�r#�r0, r� (20)

and

r"�x�y"
x�x� �

N "11X
j�1

ajn
"
j�x�

Z
d3r n

"
j�r�y"

x�r� 2
Z d3r jr"�x, r�j2

jx 2 rj
1

N "11X
j�1

ajn
"
j�x�

ZZ d3r d3r 0

jr 2 r0j
n
"
j�r, r0�r"�r0, r�

2 v�1 2 v� �nN " �x� 1 nN "11�x��
ZZ d3r d3r 0

jr 2 r0j
�nN "�r�nN "11�r0� 2 nN "�r, r0�nN "11�r0, r��

1 v�1 2 v�
Z d3r

jr 2 xj
�nN "�x�nN "11�r� 1 nN "�r�nN "11�x�

2 nN "�r, x�nN "11�x, r� 2 nN "�x, r�nN "11�r, x�� , (21)
where aj � 1, 1 # j # N " 2 1, aN " � 1 2 v, and
aN "11 � v.

We have calculated the total ensemble energies of vari-
ous atoms with and without the ghost-interaction correc-
tion (G�v� fi 0, or � 0). In Table I, we present the results,
exchange only (x only) as well as correlated (CS), through
the ground-state Colle-Salvetti [38] approximation for the
TABLE I. Equiensemble total energies for various atoms in eV units. The ensemble configuration and dimensionality are shown
in the second and third columns.

No. of states x only x only CS CS
Atom Ensemble in ensemble G�v� � 0 G�v� G�v� � 0 G�v� Experimenta

He �1s2	 1S; 2 266.531 267.456 267.565 268.463 268.705
�1s2s	 1S

He �1s2s	 3S; 2b 257.143 257.606 257.143 257.606 257.744
�1s3s	 3S

He �1s2s	 3S; 2b,c 258.096 258.613 258.096 258.613 258.621
�1s2p	 3P

He �1s2s	 3S; 4b 257.932 258.313 257.932 258.313 258.335
�1s2p	 3P

Li �1s22s	 2S; 4 2200.463 2200.953 2201.797 2202.287 2202.100
�1s22p	 2P

Li �1s22s	 2S; 2 2199.946 2200.382 2201.253 2201.661 2201.799
�1s23s	 2S

C21 �1s22s2	 1S; 4 2985.392 2986.616 2988.113 2989.310 2989.278
�1s22s2p	 3P

aThe total energy of the subspace or equiensemble is shown. In the case of an n-dimensional subspace with Ei , 1 # i # n, the
n lowest eigenvalues, the total energy is equal to 1

n

Pn
i�1 Ei .

bWe ignore the threefold degeneracy due to the triplet spin part of the wave function.
cWe have chosen one out of the three degenerate 2p orbitals.
correlation energy, which is also an orbital functional. An
equiensemble �v � 1�2� has always been chosen. An
OEP calculation (within the KLI approximation) is em-
ployed in all cases, also when we set G�v� � 0. The states
in each ensemble are proper eigenfunctions of the total spin
[39] and consequently we had to use a different potential
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for each ensemble. These potentials were derived in a simi-
lar way to Eqs. (20) and (21). The experimental data in the
eighth column are taken from the NIST database for atomic
spectroscopy [40] and Ref. [41].

Comparing the results in columns 4 and 5, 6 and 7, with-
out and with the ghost-interaction correction, we observe
that the correction always lowers the energy as expected.
Note that the x-only results give upper bounds to the ex-
perimental values, since they are actually upper bounds of
the eHF energy (3). Comparison with experiment shows
that in all cases incorporating the correction G�v� signifi-
cantly reduces the error.

When not properly subtracted, the ghost interaction
terms (19) lead, in the ensemble KS equations (6), to a
(direct and exchange) potential of orbital w

"

N "11 which acts
on orbital w

"
N " and, likewise, to a (direct and exchange)

potential of orbital w
"

N " acting on orbital w
"

N "11. Terms
similar to the latter (but not to the former) also appear in
ground-state HF theory if one associates the unoccupied
HF orbitals with excited electrons. It is the appearance of
these terms which causes the virtual orbitals of ground-
state HF theory to be too diffuse. Various remedies to cure
this problem within the context of ground-state HF theory
have been suggested [42–44]. In contrast to the ground-
state HF case, the ghost interactions identified in this
Letter contribute to the total (ensemble) energy to be mini-
mized. The elusive exact ensemble KS potential should,
of course, be free from the spurious ghost interactions.
The central message of this Letter is that, in the necessary
construction of approximate ensemble KS potentials, it
is essential to properly subtract the spurious ghost inter-
actions to improve the excitation energies obtained from
ensemble DFT.
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