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Individual correlations in ensemble density-functional theory:
State-driven/density-driven decomposition without additional Kohn–Sham systems
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Gould and Pittalis [Phys. Rev. Lett. 123, 016401 (2019)] recently revealed a density-driven
correlation energy in many-electron ensembles that must be accounted for by approximations. We
show that referring to auxiliary state-driven Kohn-Sham (KS) systems, which was inherent to its
evaluation, is in fact not needed. Instead, individual-state densities can be extracted directly from
the KS ensemble. On that basis, a simpler and more general expression is derived and tested.
The importance of density-driven effects is thus confirmed, and a direct route to approximations is
introduced.

Introduction. Time-dependent density-functional the-
ory (TD-DFT) [1] has become over the last two
decades the method of choice for modeling properties of
electronically-excited molecules and materials. Despite
this success, which is explained by the moderate compu-
tational cost of the method, TD-DFT still suffers from
various deficiencies. The latter drastically reduce its ap-
plicability, in particular to a large variety of molecules
and materials where electron correlation is strong [2].
These failures originate from the single-reference pertur-
bative character of the theory [in the widely used lin-
ear response regime] and the common adiabatic approx-
imation, where memory effects are absent. As a result,
the interest in time-independent formulations of DFT for
excited states has increased substantially over the last
decade [3–24].
Gross–Oliveira–Kohn (GOK) ensemble DFT [25–27],
which is a generalization of Theophilou’s DFT for
equiensembles [28, 29], is one of these (low-cost) alter-
natives. Unlike state-averaged quantum chemical meth-
ods [30], GOK-DFT describes (in principle exactly) each
state that belong to the ensemble with a single Slater
determinant (or a configuration state function), in anal-
ogy with regular ground-state Kohn–Sham (KS) DFT. A
substantial difference with the latter though is that, in
GOK-DFT, the non-interacting KS ensemble is expected
to reproduce the true interacting ensemble density [i.e.
the weighted sum of ground- and excited-state densities]
only, not each individual (ground- or excited-state) den-
sity. This subtle point, which has not been much em-
phasized in the literature until very recently [31, 32], is
central in the Gould-Pitallis correlation energy decom-
position into state-driven (SD) and density-driven (DD)
contributions [31].
This decomposition shed a new light on individual cor-
relations within an ensemble and is relevant to the
design of density-functional approximations for ensem-
bles, which is an important outstanding problem in
DFT [11, 17, 24, 33]. The way such a decomposition
should be written and implemented is, however, open to
discussion. Gould and Pittalis [31] proposed to introduce

state-specific KS systems (one for each state, in addition
to the KS ensemble) which are expected to reproduce the
exact individual-state densities. While KS potentials for
excited states are well defined for Coulomb systems [34–
36], their construction is not straightforward in the gen-
eral case. When they exist, the non-uniqueness problem
can be solved through a selection procedure [31]. But
there might also be situations where such potentials do
not exist. A simple example is given by the two-electron
asymmetric Hubbard dimer [37] where the occupation of
the atomic sites plays the role of the density. In the non-
interacting dimer, the density of the first singlet excited
state does not vary with the KS potential. It matches the
interacting excited-state density only when the dimer is
symmetric [14].
As shown in this Letter, the non-uniqueness or non-
existence of excited-state KS potentials is not a prob-
lem as such in the context of ensemble DFT, where the
KS potential is well defined (up to a constant) [26], sim-
ply because individual-state densities can be extracted
in principle exactly from the KS density-functional en-
semble. On that basis, an exact expression for the in-
dividual density-functional correlation energies and their
subsequent SD/DD decomposition is derived. While be-
ing simpler and more general (i.e. applicable to all sys-
tems) than the Gould–Pittalis decomposition [31], it un-
covers the relation between individual and ensemble cor-
relations, thus offering a clearer way to practical approx-
imations.

A brief review of GOK-DFT. Let us consider the M+1
lowest (in energy) solutions to the electronic Schrödinger

equation ĤΨI = EIΨI , 0 ≤ I ≤ M , where the Hamilto-
nian Ĥ = T̂ + Ŵee + V̂ext is the sum of the N -electron
kinetic energy, Coulomb repulsion, and local multiplica-

tive external potential V̂ext ≡
∑N

i=1 vext(ri)× operators,
respectively. For simplicity, we will assume that the en-
ergies are not degenerate, i.e. E0 < E1 < . . . < EM .
Note that the theory can be easily extended to multiplets
by assigning the same ensemble weight to degenerate

states [26]. The ensemble energy Ew =
∑M

I=0 wIEI is a

http://arxiv.org/abs/2001.08605v2


2

weighted sum of ground- and excited-state energies where
the (positive) ensemble weights decrease with increasing

index I. They are normalized, i.e. w0 = 1 −
∑M

I=1 wI ,
so that only the weights assigned to the excited states
w ≡ (w1, w2, . . . , wM ) are allowed to vary independently.
In GOK-DFT, the ensemble energy is determined as fol-
lows for given and fixed weights w [26]:

Ew = min
{ϕk}k

{

Tr
[

γ̂w

(

T̂ + V̂ext

)]

+ Ew

Hxc [nγ̂w ]
}

, (1)

where Tr denotes the trace, γ̂w =
∑M

I=0 wI |ΦI〉 〈ΦI |, and

nγ̂w(r) ≡
∑M

I=0 wInΦI
(r) is a trial ensemble density. The

trial determinants (or configuration state functions) ΦI

are all generated from the same set {ϕk}k of orthonor-
mal molecular orbitals that are optimized variationally.
The ensemble Hartree-exchange-correlation (Hxc) den-
sity functional in Eq. (1) can be decomposed exactly as
follows:

Ew

Hxc[n] = Ew

Hx[n] + Ew

c [n], (2)

where the Hx ensemble functional [12]

Ew

Hx [n] =
M
∑

K=0

wK 〈Φw

K [n]| Ŵee |Φ
w

K [n]〉 (3)

is obtained from the KS ensemble that reproduces the
density n:

M
∑

K=0

wK nΦw

K
[n](r) = n(r). (4)

Note that, in the general case, the N -electron KS wave-
functions {Φw

K [n]}0≤K≤M
can be configuration state

functions [12], i.e. linear combinations of KS determi-
nants. They are in principle weight-dependent so that
the density n can be reproduced, whatever the value of
the ensemble weights [7, 14]. The minimizing KS wave-
functions {Φw

I ≡ Φw

I [nw]}0≤I≤M
in Eq. (1) reproduce

the exact ensemble density nw:

M
∑

I=0

wInΦw

I
(r) =

M
∑

I=0

wInΨI
(r) ≡ nw(r), (5)

so that the exact ensemble energy can be expressed as

Ew =

M
∑

I=0

wI 〈Φ
w

I | T̂ + V̂ext |Φ
w

I 〉+ Ew

Hxc[n
w]. (6)

The corresponding minimizing orbitals fulfill the ensem-
ble KS equations [26],

[

−
∇2

2
+ vext(r) + vwHxc [n

w] (r)

]

ϕw

p (r) = εwp ϕ
w

p (r),(7)

where vwHxc [n] (r) = δEw

Hxc[n]/δn(r) is the ensemble Hxc
density-functional potential. Note that, when the KS

wavefunctions are single determinants [we make this as-
sumption in the following, for simplicity], their density
can be expressed as follows:

nΦw

I
(r) =

∑

p

θIp
∣

∣ϕw

p (r)
∣

∣

2
, (8)

where θIp is the (fixed and integer) occupation number
of the orbital ϕw

p in the determinant Φw

I .

Extracting exact individual densities. As pointed
out in Ref. [31], Eq. (5) does not imply that the KS
wavefunctions reproduce the exact individual densities
{nΨI

}0≤I≤M . Nevertheless, these densities can be ex-
tracted directly from the KS ensemble, as we will see.
This means that it is in principle not necessary to re-
fer to additional state-specific KS systems for modeling
individual-state properties within an ensemble.
We start from the simple observation that, like the en-
ergy [24], the density of any (ground or excited) state can
be extracted from the (linear-in-w) ensemble density as
follows:

nΨJ
(r) = nΨ0

(r) +

M
∑

I=1

δIJ

(

nΨI
(r)− nΨ0

(r)
)

= nw(r)−
M
∑

I=1

wI

∂nw(r)

∂wI
+

M
∑

I=1

δIJ
∂nw(r)

∂wI

= nw(r) +

M
∑

I=1

(δIJ − wI)
∂nw(r)

∂wI
. (9)

By inserting the KS ensemble density expression of
Eq. (5) into Eq. (9) we can express the exact deviation
in density [that we will refer to as DD effect] of the true
interacting state from the KS one as follows:

nΨJ
(r) − nΦw

J
(r) =

M
∑

I=1

M
∑

K=0

(δIJ − wI) wK
∂nΦw

K
(r)

∂wI
,

(10)

where, as readily seen, the key quantity to
model is the linear response ∂nΦw

K
(r)/∂wI =

2
∑

p θ
K
p ϕw

p (r)∂ϕw

p (r)/∂wI [we use real algebra for

simplicity] of the individual KS densities to variations in
the ensemble weights. In the following we denote i (or j)
the orbitals that are occupied in the ensemble, i.e. those

that fulfill
∑M

K=0 wKθKi > 0. Unoccupied orbitals will
be denoted as a. According to Eq. (7) and first-order
perturbation theory, the response of the occupied KS
orbitals reads

∂ϕw

i (r)

∂wI
=
∑

a

〈ϕw

a | V̂
w

Hxc,wI
|ϕw

i 〉

εwi − εwa
ϕw

a (r), (11)

where the local multiplicative perturbation operator
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V̂w

Hxc,wI
≡ Vw

Hxc,wI
(r)× is defined as follows:

Vw

Hxc,wI(r) =
d

dwI

[

vwHxc [n
w] (r)

]

=
∂vwHxc

[

nξ
]

(r)

∂wI

∣

∣

∣

∣

∣

ξ=w

+

∫

dr′
δvwHxc [n

w] (r)

δn(r′)

∂nw(r′)

∂wI
. (12)

Note that, like in linear response TD-DFT [2], the per-
turbation depends on the response of the KS orbitals
through the ensemble Hxc kernel contribution [last term
on the right-hand side of Eq. (12)]. By expressing the
response ∂nw(r)/∂wI of the ensemble density in terms
of the KS orbitals and their first-order derivatives [see
Eqs. (5) and (8)], we finally obtain the following static

linear response equations:

∂ϕw

i (r)

∂wI
=
∑

a

ϕw

a (r)

εwi − εwa

∫

dr′ Vw

Hxc,I(r
′)ϕw

i (r′)ϕw

a (r′)

+2
∑

a

∑

j

M
∑

K=0

wK θKj ϕw

a (r)

εwi − εwa

∫

dr′
∫

dr”
δvwHxc [n

w] (r′)

δn(r”)

×ϕw

i (r′)ϕw

a (r′)ϕw

j (r”)
∂ϕw

j (r”)

∂wI
, (13)

where

Vw

Hxc,I(r) =
∂vwHxc

[

nξ
]

(r)

∂wI

∣

∣

∣

∣

∣

ξ=w

+
∑

p

(

θIp − θ0p
)

∫

dr′
δvwHxc [n

w] (r)

δn(r′)

∣

∣ϕw

p (r′)
∣

∣

2
(14)

is what remains from the full perturbation in Eq. (12)
when the true densities are approximated by the KS
ones. As readily seen from Eq. (13), this part of the
perturbation ignites the response of the KS orbitals
which should then be updated (via the ensemble Hxc
kernel contribution) until a self-consistent convergence
is reached. Note that, for practical purposes, one should
rewrite Eq. (13) as a coupled-perturbed equation, by
analogy with Ref. [38]. If the exact ensemble potential
and kernel were known, one should ultimately recover
the exact linear response, thus leading to the true
individual densities via Eq. (10). This is the first key
result of this work. Note that DD effects can still be
(partially) described by means of Eq. (13) even if the
simple (weight-independent) ground-state functional
approximation Ew

Hxc[n] ≈ EHxc[n] [15, 39] is employed.
Indeed, in the latter case, the first term on the right-
hand side of Eq. (14) vanishes but not the second one
that involves the conventional ground-state Hxc kernel
δvHxc [n] (r)/δn(r

′).

Individual Hxc energies. The next natural step consists
in extracting individual Hxc density-functional energies
from the KS ensemble. For that purpose, we use the
analog of Eq. (9) for energies [24] which, when combined
with the variational KS expression of the ensemble energy

in Eqs. (1) and (6), leads to the following exact (ground-
and excited-state) energy level expressions:

EJ = 〈Φw

J | T̂ + V̂ext |Φ
w

J 〉+ Ew

Hxc,J [nw] , (15)

where the ensemble-density-functional individual Hxc en-
ergy reads

Ew

Hxc,J [n] = Ew

Hxc[n] +
M
∑

I=1

(δIJ − wI)
∂Ew

Hxc[n]

∂wI

+

∫

dr
δEw

Hxc[n]

δn(r)

(

nΦw

J
[n](r) − n(r)

)

. (16)

Note that, as expected, the ensemble density-functional
Hxc energy is recovered from the weighted sum of the
individual Hxc components [see Eqs. (4) and (16)]:

M
∑

J=0

wJ Ew

Hxc,J [n] = Ew

Hxc[n]. (17)

Eqs. (16) and (17), which are the second key result of
this work, establish a clearer connection between ensem-
ble and individual density-functional Hxc energies. Be-
fore analyzing the Hx and correlation terms separately
for each state, it is worth noticing that, according to
Eqs. (1), (5), and (6), the individual Hxc energies can
also be expressed as follows:

Ew

Hxc,J [nw] = Ew

Hxc [n
w] +

M
∑

I=1

(δIJ − wI)

×





d

dwI

(

Ew

Hxc[n
w]

)

−
∂Eξ

Hxc

[

nξ,w
]

∂wI

∣

∣

∣

∣

∣

ξ=w



 , (18)

where the auxiliary double-weight ensemble KS density

nξ,w(r) =

M
∑

K=0

ξK nΦw

K
(r) (19)

has been introduced. The term that is subtracted on the
right-hand side of Eq. (18) originates from the fact that
the ensemble energy is calculated variationally. It is in
principle nonzero since the individual densities in the
KS ensemble are weight-dependent, unlike in the true
physical system.

Exact individual Hartree-exchange energies. Let us
first focus on the individual Hx contributions to Eq. (18).
As the dependence in ξ of the double-weight ensemble
density in Eq. (19) does not affect the individual KS den-

sities, we conclude that Φξ
K [nξ,w] = Φw

K , thus leading to
[see Eq. (3)],

Eξ
Hx

[

nξ,w
]

=
M
∑

K=0

ξK 〈Φw

K | Ŵee |Φ
w

K〉 , (20)

while Ew

Hx [n
w] =

∑M

K=0 wK 〈Φw

K | Ŵee |Φ
w

K〉. As a result,
the individual Hx energy in Eq. (18) reduces to the simple
and intuitive expression:

Ew

Hx,J [nw] = 〈Φw

J | Ŵee |Φ
w

J 〉 , (21)
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where, as emphasized previously, Φw

J can be a configu-
ration state function [12].

Density-driven correlation energies. We now focus on
the individual correlation energies with a particular em-
phasis on their SD/DD decomposition. We start from
the density-functional expression of Eq. (16). Follow-
ing Gould and Pittalis [31], we introduce the following
correlation bifunctional of the ensemble and individual
densities:

Ew

c,J [n, nJ ] = Ew

c [n] +

M
∑

I=1

(δIJ − wI)
∂Ew

c [n]

∂wI

+

∫

dr
δEw

c [n]

δn(r)

(

nJ(r)− n(r)
)

. (22)

Note that the exact Jth correlation energy is recovered
by inserting the Jth noninteracting KS density into the
bifunctional:

Ew

c,J [n
w] = Ew

c,J

[

nw, nΦw

J

]

. (23)

Note also that the bifunctional varies linearly with nJ .
Interestingly, if we instead insert the true interacting den-
sity, a different correlation energy [that will be referred
to as SD correlation energy in the following] will be ob-
tained. Note that, according to Eq. (9), it can be ex-
pressed more explicitly as follows:

Ew,SD
c,J [nw] := Ew

c,J [nw, nΨJ
]

= Ew

c [nw] +

M
∑

I=1

(δIJ − wI)
dEw

c [nw]

dwI
, (24)

where, according to Eqs. (3), (5), and (6), the exact en-
semble correlation energy reads

Ew

c [nw] =

M
∑

K=0

wK

(

〈T̂ + Ŵee〉ΨK
− 〈T̂ + Ŵee〉Φw

K

)

.

(25)

The complementary DD correlation energy is then de-
fined as

Ew,DD
c,J [nw] := Ew

c,J [nw]− Ew,SD
c,J [nw]

=

∫

dr
δEw

c [nw]

δn(r)

(

nΦw

J
(r)− nΨJ

(r)
)

. (26)

As readily seen from Eq. (26), the DD correlation energy
vanishes for the ground state (J = 0) when w = 0 since,
in this case [which corresponds to regular DFT] the phys-
ical and KS ground states have exactly the same density.
In addition, unlike in the original SD/DD decomposition
of Gould and Pittalis [31], our DD correlation energies
are traceless, i.e.

M
∑

J=0

wJ E
w,DD
c,J [nw] = 0. (27)

In other words, within our terminology, DD effects will
contribute to individual correlation energies only, not to
the ensemble one. One should stress that, even though
the SD/DD correlation energy decomposition of Eq. (26)
is very intuitive, as it is based on the idea that DD effects
reflect differences in density between interacting and non-
interacting wavefunctions, our formalism allows for other
decompositions. For example, by rewritting our SD cor-
relation energy more explicitly as follows [see Eqs. (24)
and (25)]:

Ew,SD
c,J [nw] = 〈ΨJ | T̂ + Ŵee |ΨJ〉 − 〈Φw

J | T̂ + Ŵee |Φ
w

J 〉

−2

M
∑

I=1

M
∑

K=0

(δIJ − wI) wK

〈

Φw

K

∣

∣

∣

∣

T̂ + Ŵee

∣

∣

∣

∣

∂Φw

K

∂wI

〉

, (28)

one may choose to remove in the summation over K all
but the individual-state K = J contribution, thus mak-
ing the decomposition more wavefunction-based. This
leads to an alternative definition for the SD correlation
energy,

E
w,SD

c,J [nw] = 〈ΨJ | T̂ + Ŵee |ΨJ〉 − 〈Φw

J | T̂ + Ŵee |Φ
w

J 〉

−2
M
∑

I=1

(δIJ − wI) wJ

〈

Φw

J

∣

∣

∣

∣

T̂ + Ŵee

∣

∣

∣

∣

∂Φw

J

∂wI

〉

, (29)

which can be connected to the one proposed by Gould
and Pittalis [31]. Indeed, if the state-specific KS wave-
function the authors referred to is replaced by the more

explicit expressionΦw

J +wJ

∑M
I=1 (δIJ − wI) ∂Φ

w

J /∂wI , we
recover Eq. (29) through first order in wJ . In this case,
the complementary DD correlation energy will of course
differ from the one in Eq. (26) but both decompositions
should return the same individual correlation energy

E
w,SD

c,J [nw] + E
w,DD

c,J [nw] = Ew,SD
c,J [nw] + Ew,DD

c,J [nw].
It is worth noticing that the DD correlation energies will
not be traceless anymore,

M
∑

J=0

wJ E
w,DD

c,J [nw] = 2

M
∑

J=0

w
2
J

M
∑

I=1

(δIJ − wI)

×

〈

Φw

J

∣

∣

∣

∣

T̂ + Ŵee

∣

∣

∣

∣

∂Φw

J

∂wI

〉

6= 0, (30)

as expected from Ref. [31]. In the rest of this work we
will continue exploring the decomposition of Eq. (26).

In a practical calculation, one would use the following
equivalent expression [see Eq. (10)] in order to evaluate
each DD correlation energy individually:

Ew,DD
c,J [nw] = −

M
∑

I=1

M
∑

K=0

(δIJ − wI) wK

×

∫

dr
δEw

c [nw]

δn(r)

∂nΦw

K
(r)

∂wI
, (31)

or, in a more compact way [see Eq. (19)],

Ew,DD
c,J [nw] = −

M
∑

I=1

(δIJ − wI)
∂Eξ

c

[

nξ,w
]

∂wI

∣

∣

∣

∣

∣

ξ=w

,(32)
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where the derivatives in w of the KS densities would be
obtained by solving our central linear response Eq. (13).
In the light of Eq. (18) and the comment that follows
Eq. (19), we conclude from Eqs. (24) and (32) that
neglecting DD correlations is analogous to ignoring
the variational character of the ensemble energy when
extracting (by differentiation) individual correlation
energies from the latter.

Application. Gould and Pittalis [31] have shown that
DD effects can contribute substantially to correlation en-
ergies. We will show that, even though we use a different
SD/DD decomposition, we reach exactly the same con-
clusion. For that purpose, we consider the two-electron
Hubbard dimer model [14–17, 24, 37] that can be seen as
a prototype for a diatomic molecule. In this simple but
nontrivial model, the density n reduces to a (possibly
fractional) number that corresponds to the occupation of
the first atomic site [the occupation of the second atom
is then 2 − n]. It is governed by three parameters: the
hopping t that modulates the strength of the kinetic en-
ergy, the on-site two-electron repulsion strength U , and
the external potential difference ∆vext which controls the
asymmetry in the dimer. For simplicity, we focus on
the weakly asymmetric and strongly correlated regime
∆vext/t << t/U << 1. In this case, the ground state
remains essentially symmetric [14], i.e. nΨ0

≈ 1, and the
density of the first (singlet) excited state [whose charge-
transfer character increases with ∆vext/t] varies through
first order in ∆vext/t as nΨ1

≈ 1 + [(U∆vext)/(2t
2)] [15].

As a result, the bi-ensemble density reads

nw ≈ 1 +
wU∆vext

2t2
, (33)

where w ≡ w1. As mentioned in the introduction, the KS
excited state is always symmetric (nΦw

1
= 1), even when

the true interacting system is not. Therefore, the KS
ground-state density equals nΦw

0
= (nw − w)/(1− w), thus

leading to

nΦw

0
≈ 1 +

wU∆vext
2t2(1− w)

. (34)

As shown in Ref. [15], in the strongly correlated regime,
the ensemble correlation functional reads, for |n−1| ≤ w,
as follows:

Ew

c (n) ≈ −
U

2

[

(1− w)−
(3w− 1)(n− 1)2

(1− w)2

]

. (35)

Individual SD/DD correlation energies can then be ob-
tained from Eqs. (24) and (32), thus leading to the final
expressions:

Ew,SD
c,J=0 (n

w) ≈ −
U

2
+

U(U∆vext)
2

8t4
w
2(1 − 5w)

(1− w)3
,

Ew,DD
c,J=0 (n

w) ≈
U(U∆vext)

2

4t4
w
2(3w− 1)

(1 − w)3
, (36)

for the ground state, and

Ew,SD
c,J=1 (n

w) ≈
U(U∆vext)

2

4t4
w(4w− 1)

(1 − w)2
,

Ew,DD
c,J=1 (n

w) ≈
U(U∆vext)

2

4t4
w(1− 3w)

(1 − w)2
, (37)

for the excited state. As pointed out in Ref. [31]
and readily seen from Eq. (36), when w > 1/3, DD
correlation energies can be positive. In the excited state,
our SD correlation energy is also positive when w > 1/4
[see Eq. (37)]. This is not surprizing as the energy
extraction procedure used in Eq. (15) is not variational,
even though the ensemble energy is. Interestingly, in
the excited state, the DD/SD correlation energy ratio is
|(3w− 1)/(4w− 1)|, which gives 50% for an equiensemble
(w = 1/2), thus illustrating the importance of DD effects,
at least in the considered (strongly correlated) regime.

Summary and outlook. Exact expressions for indi-
vidual correlation energies within a density-functional
ensemble, as well as their subsequent state-driven
(SD)/density-driven (DD) decomposition, have been
derived. Unlike Gould and Pittalis [31], we did not
have to refer to additional state-specific KS systems.
By uncovering the individual components of ensemble
correlation energies we make a crucial step toward
the development of first-principle density functionals
for ensembles. While we focused on the extraction of
individual properties, extensions to the calculation of
couplings between states should be explored. Work is
currently in progress in these directions.
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