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By exploiting freedoms in the definitions of “correlation,” “exchange,” and “Hartree” physics in
ensemble systems, we better generalise the notion of “exact exchange” (EXX) to systems with frac-
tional occupations of the frontier orbitals, arising in the dissociation limit of some molecules. We in-
troduce the linear EXX (“LEXX”) theory whose pair distribution and energy are explicitly piecewise
linear in the occupations f σ

i . We provide explicit expressions for these functions for frontier s and p
shells. Used in an optimised effective potential (OEP) approach the LEXX yields energies bounded
by the piecewise linear “ensemble EXX” (EEXX) energy and standard fractional optimised EXX en-
ergy: EEEXX ≤ ELEXX ≤ EEXX. Analysis of the LEXX explains the success of standard OEP methods
for diatoms at large spacing, and why they can fail when both spins are allowed to be non-integer so
that “ghost” Hartree interactions appear between opposite spin electrons in the usual formula. The
energy ELEXX contains a cancellation term for the spin ghost case. It is evaluated for H, Li, and Na
fractional ions with clear derivative discontinuities for all cases. The p-shell form reproduces accurate
correlation-free energies of B-F and Al-Cl. We further test LEXX plus correlation energy calculations
on fractional ions of C and F and again we find both derivative discontinuities and good agreement
with exact results. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773284]

I. INTRODUCTION

Following initial work by Yang and co-workers1–4

on non-interacting ensembles5 with spin-resolved fractional
occupancy, much consideration has been given to the
behaviour of density functional theory (DFT) under the
Kohn-Sham (KS) prescription,6 and its various common ap-
proximations (e.g., local-density approximation,6 generalized
gradient approximations,7 Becke-like,8 optimised effective
potential (OEP)9) in such ensembles. Many attempts have
been made to understand and deal with the issues that arise in
ensembles (see, e.g., Refs. 10–12), with variable success. We
will show that, in such systems, the notion of “correlation”
physics becomes intertwined with “exchange” and “Hartree”
physics in the usual prescription, with (improvable) conse-
quences for common approximations.

Let us begin by considering, quite generally, the nature
of “electron correlation” and “electron exchange” in a non-
ensemble system. The usual expression for the groundstate
correlation energy can be written as

Ec = 〈�|Ĥ |�〉 − 〈�T |Ĥ |�T 〉, (1)

where Ĥ is the Hamiltonian of a many-electron system,
|�〉 is its groundstate wavefunction, and |�T〉 is some ap-
proximation to the wavefunction (by the variational prin-
ciple, correlation, energy is never positive). Thus corre-
lation is not an intrinsic property of the system, but a
property of the chosen trial wavefunction. In standard OEP
approaches,9 including KS DFT, |�T〉 takes the form of a sin-
gle Hartree-Fock (HF) like Slater determinant which is con-
structed from one-particle orbitals |iσ 〉 evaluated in a com-
mon one-particle Hamiltonian ĥ = t̂ + V̂ 13 where t̂ ≡ − 1

2∇2

and V̂ ≡ Vσ (r). We can now define the exchange energy
Ex = 〈�T |Ĥ |�T 〉 − Ē and the “naive Hartree” energy of
the system14 Ē = ∑

iσ 〈iσ |t̂ + V̂Ext|iσ 〉 + 1
2

∫
drdr ′
|r−r ′|n(r)n(r ′).

Here, n(r) = 〈�T |n̂(r)|�T 〉 = ∑
iσ |φiσ (r)|2 [where n̂(r) is

the electron number density operator and φiσ (r) = 〈r|iσ 〉]
and V̂Ext ≡ VExt(r) is the external potential. The groundstate
energy is thus E = Ē + Ex + Ec where the partitioning de-
pends on both the choice of Ē and |�T〉.

This can be extended into ensembles by replacing projec-
tions on wavefunctions O = 〈�|Ô|�〉 by traces on density
matrices O = Tr[ρ̂Ô] (where operators act appropriately for
any number of electrons) and by summing Ē over ensemble
members. The density matrix ρ̂ is defined as

ρ̂ =
∑
E

wE |�E 〉〈�E |, (2)

where 0 ≤ wE ≤ 1 is the weight of member E with wavefunc-
tion |�E 〉 and

∑
E wE = 1. Minimisations can then be carried

out over ρ̂ rather than |�〉.

II. EXACT EXCHANGE APPROACHES

We can now succinctly define the standard “exact ex-
change” (EXX) functional approach. Here we consider only
EEXX = Ē + Ex with Ec assumed to be zero. Investigations
into EXX in fractionally occupied ensemble systems2, 15–17

show both successes and shortcomings (discussed in more de-
tail later). In all these works, the Hartree and exchange energy
takes the “standard” form, bilinear in the occupations f σ

i ,

ES
Hx =

∫
drdr ′

2|r − r ′|
∑
iσjσ ′

f σ
i f σ ′

j [Piσjσ ′ − δσσ ′Qiσjσ ′], (3)
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where Piσjσ ′ = |φiσ (r)|2|φjσ ′(r ′)2| and Qiσjσ

= φiσ (r)φ∗
iσ (r ′)φ∗

jσ (r)φjσ (r ′). Here, the negative exchange
term cancels the unphysical positive Hartree interaction of
each spin orbital |iσ 〉 with itself. However, if two different or-
bitals of the same spin are partly occupied (0 < f σ

i , f σ
j < 1

with i 	= j), or if there is partial occupation of both spins in
the same orbital (0 < f

↑
i , f

↓
i < 1), there is a corresponding

cross-term in (3) that is not cancelled.
In a slightly different context Gidopoulos et al.18 call

this spurious term the “ghost interaction” as it repre-
sents an unphysical interaction between orbitals in different
non-interacting ensemble members. In the regular EXX en-
ergy expression (3), the ghost interaction appears in the
Hartree and exchange energy terms involving pairs of orbitals
in the frontier orbital. In a Kohn-Sham interpretation of the
equivalent diatom problem, these interactions would be sup-
pressed in the total energy via orthogonality of the degenerate
groundstate wavefunctions. However, when one does not have
the exact exchange-correlation functional, or as here neglects
correlation, it can reappear, particularly when one does not
properly account for the ensemble nature of the system.

We will argue that, in the ensemble interpretation of par-
tial occupation,1–3 this cross term should not be present, and
its explicit removal results in an improved linear exact ex-
change (LEXX) approach which is correctly piecewise lin-
ear, not bilinear, in the occupation factors f. Here, defining
θσ
iE to be one for orbital |iσ 〉 occupied in ensemble member
E and zero otherwise, we exploit the fact that the “ensemble
occupancy” factor f σ

i = 〈θσ
i 〉E ≡ ∑

E wEθ
σ
iE requires weights

wE that are piecewise linear in f σ
i , from which it follows

that 〈θσ
i θσ ′

j 〉E ≡ ∑
E wEθ

σ
iEθ

σ ′
jE is similarly piecewise linear.

All energy terms are proportional to 〈θσ
i 〉E or 〈θσ

i θσ ′
j 〉E and

are thus piecewise linear. As will be discussed in more detail
later this is equivalent, under an exchange approach, to find-
ing a non-interacting ensemble of Slater determinants formed
from a common set of orbitals produced in a common poten-
tial.

This allows the creation of simple functionals that avoid
much of the “localization and delocalization error” of Yang
et al.,1–4 and the “many electron self-interaction error” of
Perdew et al.19 In the present work, we focus on two il-
lustrative cases: (i) a single partially occupied “frontier” or-
bital denoted “h” with 0 ≤ f

↑
h ≤ 1 and 0 ≤ f

↓
h ≤ 1; and

(ii) open p shells with f
↑
h = f

↓
h . However, the scheme itself

has wider applicability, including the full dissociation prob-
lem of molecules. Reference 18 might be considered another
specific example of this approach, while Ref. 20 outlines a
similar approach via HF for the restricted case of fractional
occupation of a single spin (their 1SSO approach).

A. Non-interacting “exchange” ensembles

To illustrate the general approach we consider, as an ex-
ample, ensembles with total and spin-resolved electron num-
ber Nt = N + f and Ntσ = N/2 + fσ (N is even). The ground-
state ensemble members and weights can be found by min-
imising over density matrices subject to various constraints.
However, for simple cases where energy ordering is obvious,

one can construct the ensemble more intuitively, just by de-
manding that a given set of occupations f σ

i be reproduced.
For example if the frontier orbital is non-degenerate (e.g., in
an s shell), then the ensemble will be composed of up to three
components. For f ≤ 1, the ensemble is formed from f↑ parts
an N + 1 electron system with extra electron in ↑ (short-hand
N + ↑), f↓ parts N + ↓ and (1 − f) parts N where, because N
is even, both spins are filled equally. For f ≥ 1 the ensemble
comprises (1 − f↓) parts N + ↑, (1 − f↑) parts N + ↓, and
(f − 1) parts N + 2.

The density matrix is composed of many-electron wave-
functions |�E 〉 and is

ρ̂f =
∑
E

wE |�E 〉〈�E |. (4)

For the present case of a non-degenerate
frontier orbital wE ∈ {1 − f, f ↑, f ↓} and �E
∈ {�N,�N+↑,�N+↓} for f ≤ 1, while wE ∈ {1 − f ↓, 1 −
f ↑, f − 1} and �E ∈ {�N+↑,�N+↓,�N+2} for f > 1. This
leads to a total energy E(f ) = Tr[ρ̂f Ĥ ] = ∑

E wEE[�E ]
that obeys

E(f ) =
{

f EN+1 + (1 − f )EN, 0 ≤ f ≤ 1

(f − 1)EN+2 + (2 − f )EN+1, 1 < f ≤ 2,
(5)

where EN is the energy of an N-electron system (note that
EN + ↑ = EN + ↓ ≡ EN + 1).

The LEXX is defined, in general, by assuming that the
trial density matrix ρ̂f T of the ensemble obeys the same rela-
tionship (4) but with the component wavefunctions |�E 〉 re-
placed by Hartree-Fock like determinants |�T

E 〉 constructed
from a single set of spin-dependent orbitals {|iσ 〉}. This
trial density matrix: (i) reduces to the regular EXX for in-
teger occupation, (ii) gives correct energies for H with less
than one electron, split arbitarily between spins, and (iii)
is constructed from a single set of orbitals |iσ 〉 evaluated
in a common Hamiltonian, a requirement that ensures that
OEP or KS methods can be used. Here, the orbitals are
eigen-solutions ĥ|iσ 〉 = εiσ |iσ 〉 of a one-body Hamiltonian
ĥ = t̂ + V̂ . We sort the orbitals so that εiσ ≤ εjσ for i < j. Tak-
ing the spin-resolved density nσ (r) = Tr[ρ̂f T n̂σ (r)], one now
finds

nσ (r) =
∑

i

〈
θσ
i

〉
E |φiσ (r)|2 ≡

∑
i

f σ
i |φiσ (r)|2, (6)

where typically f σ
i = 1 for the inner orbitals and f σ

h = f σ

where |hσ 〉 is the frontier orbital in the spin-shell with high-
est energy: which may or may not be occupied in both
spins.

The EXX approximation (Ec = 0) allows us to use
only the Hartree and exchange (Hx) components of the pair-
density n2Hxσσ ′ ≡ Tr[ρ̂f T n̂σ (r)n̂σ ′(r ′)] to evaluate the elec-
tronic groundstate. From the properties of HF wavefunctions,
the pair-density of an ensemble can be written as

n2Hxσσ ′ ≡ n2Hσσ ′ + n2xσσ ′

=
∑
ij

〈
θσ
i θσ ′

j

〉
E [Piσjσ ′ − δσσ ′Qiσjσ ]. (7)
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Finally, we can use (7) to calculate the energy via

ELEXX =
∑

σ

∫
dr[tσ (r) + nσ (r)V Ext(r)]

+ 1

2

∑
σσ ′

∫
drdr ′

|r − r ′|n2Hxσσ ′(r, r ′) (8)

≡
∑
iσ

〈
θσ
i

〉
Ee

(1)
iσ +

∑
iσjσ ′

〈
θσ
i θσ ′

j

〉
Ee

(2)
iσjσ ′ , (9)

where tσ (r) = ∑
i

〈θσ
i 〉E
2 |∇φiσ (r)|2 and

e
(1)
iσ =

∫
dr

[
1

2
|∇φiσ |2 + V Ext|φiσ |2

]
, (10)

e
(2)
iσjσ ′ = 1

2

∫
drdr ′

|r − r ′| [Piσjσ ′ − δσσ ′Qiσjσ ]. (11)

These energy expression are perhaps the most general, and
most important in this work, highlighting the importance of
ensemble averages in the evaluation of average occupation
and pair-occupation factors for groundstate energy calcula-
tions.

B. Fractional s shells

For the fractionally occupied s shells discussed here,
detailed calculation shows that 〈θσ

i θσ ′
j 〉E = min[f σ

i , f σ ′
j ]

− δih,jhδσ σ̄ ′Ch
U (σ̄ is the opposite spin to σ and Ch

U is de-
fined below). The Hartree and exchange components can be
compactly written as

n2Hσσ ′ = ∑
ij min

[
f σ

i , f σ ′
j

]
Piσjσ ′ − δσ σ̄ ′Ch

UPhσhσ̄ , (12)

n2xσσ ′ = −δσσ ′
∑

ij min
[
f σ

i , f σ
j

]
Qiσjσ , (13)

where we have chosen to split Hartree and exchange terms via
P and Q. The term

Ch
U = min[f ↑, f ↓, (1 − f ↑), (1 − f ↓)] (14)

removes spurious “ghost interactions” between electrons of
unlike spin. For a zero to two electron system, Eqs. (12)–(14)
are equivalent (after integration) to Eq. (7) of Ref. 4 sans the
correlation energy term. This desirable outcome is a direct
result of the ensemble averaging.

When either f↑ or f↓ is integer, Ch
U = 0 and n2Hxσσ ′

≡ ∑
ij f σ

i f σ ′
j [Piσjσ ′ − δσσ ′Qiσjσ ′] since Piσ iσ = Qiσ iσ .

Clearly, this is the form used in (3) and thus energies derived
from (12) to (13) will be identical. We can now proffer an ex-
planation for the variable success of the EXX for fractionally
occupied ensembles. By violating the aufbau principle and/or
allowing spins to vary in an unrestricted fashion, good results
have been obtained for atoms and diatoms15, 16 and systems
with fractional occupancy.2 In these works, only one spin was
allowed to be non-integer so that 〈θσ

h θσ ′
h 〉E = f σ

h f σ ′
h and the

EXX and LEXX energies were equivalent. In systems where
both spins were fractionally occupied (e.g., Refs. 15 and 17),
the EXX failed to reproduce the correct derivative discontinu-
ity. In these works f↑ = f↓ = f/2 and 〈θσ

h θσ ′
h 〉E 	= f σ

h f σ ′
h . Thus

the EXX and LEXX energies differed. We show later that, in
this case, the LEXX is guaranteed to produce a lower energy.

C. Fractional p shells

As a less trivial example, we also consider the case of de-
generate frontier p orbitals with equal densities in each spin.
Here, we must sum not only over ensembles members of dif-
ferent electron number but also over the degenerate combi-
nations of px, py, and pz orbitals. For example, in an isolated
carbon atom each ensemble member has fully occupied 1s
and 2s shells, but only two occupied 2p orbitals of the same
spin σ which we denote pγ σ and pδσ where γ 	= δ and γ ,
δ ∈ {x, y, z}. To find the equal-spin, spherically symmetric
ensemble we weight each ensemble member equally so that
wpγ pδσ = 1

6 for all six combinations of γ 	= δ and σ . In mem-
ber pγ pδσ , we set θσ

2p,pγ
= θσ

2p,pδ
= 1 while the remaining 2p

orbital with spin σ , and all 2p orbitals with spin σ̄ have zero
occupation. Averaging over all cases gives 〈θσ

2p,pγ
〉E = 1

3 as

expected, while 〈θσ
2p,pγ

θσ
2p,pγ

〉E = 1
3 , 〈θσ

2p,pγ
θσ

2p,pδ
〉E = 1

6 for
γ 	= δ and 〈θσ

2p,pγ
θ σ̄

2p,pδ
〉E = 0.

For general unfilled frontier p shells, this yields an addi-
tional like-spin correction of the form −Chσ

L [P − Q] to (12)
and (13) so that

n2Hσσ ′ =
∑
ij

min
[
f σ

i , f σ ′
j

]
Piσjσ ′

− (
δσσ ′Ch

L − δσ σ̄ ′Ch
U

) ∑
h

Phσhσ ′, (15)

n2xσσ ′ = −δσσ ′
∑
ij

min
[
f σ

i , f σ
j

]
Qiσjσ

− δσσ ′Ch
L

∑
h

Qhσhσ̄ , (16)

where we recognise the degeneracy in the outermost p orbitals
by summing over the degenerate hx, hy, and hz states with
equal weights to yield a spherically symmetric groundstate.
Let us restrict ourselves to the case f↑ = f↓ = f/2 where 0 ≤ f
< 2 is the total occupation (over both spins) of each orbital in
the shell. One can sum over the ensemble to show (after much
work),

Chσ
L = 1

2
min[f, 2 − f, |1 − f |, 1/3] (17)

for open p shells. We note that the total number of electrons
in the shell is Np = 3f and (15)–(17) are valid for Np integer
or fractional.

The like-spin correction ensures that a bilinear approach
would fail even for systems with one spin fully occupied. In-
deed it is only true for the case f↑ = 1, f↓ = 0 (or vice versa)
occurring for half-occupied shells in N and P. In general, one
must not only allow the spin-symmetry to be broken, but also
break the spherical symmetry to make the bilinear expression
(3) correct.

The energy expression from the LEXX scheme with spin
and spherical symmetry is equivalent to the regular EXX en-
ergy from a system with broken spin and/or space symmetry
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(unrestricted EXX energy) and thus should be close to the
unrestricted Hartree Fock energy. The LEXX is thus able to
predict the energy of an open-shell system while maintain-
ing appropriate symmetries, in contrast to regular EXX with
symmetries imposed which is not expected to yield meaning-
ful results.

D. General ensemble systems

While we have so far determined our ensembles using
explicit knowledge of the degenerate groundstate, it is pos-
sible to carry out a more general ensemble minimisation to
determine wE . Here, for a given potential, we allow ensem-
ble members (determined by member occupancy factors θσ

iE )
to sample all combinations of “occupied” and “unoccupied”
orbitals of the one-electron Hamiltonian, and minimise the en-
ergy with respect to wE . In practice, we would restrict the al-
lowed ensemble members to limited combinations predicted
to be low in energy. For example, in the p shell case given
above, or indeed Be, we might search for the minimum over
cases with full occupancy in 1s2 and varying occupancy in the
near-degenerate 2p and 2s orbitals.

As shown in Eq. (9), the general LEXX energy
ELEXX[{wE}] for a given ensemble can be written as a
sum of the ensemble averaged occupations 〈θσ

i 〉E and pair-
occupations 〈θσ

i θσ ′
j 〉E with orbital dependent energy prefac-

tors given in Eqs. (10) and (11). These averaged occupations
depend piecewise linearly on wE and thus ELEXX[{wE }] can
be minimised under the constraints 0 ≤ wE ≤ 1,

∑
E wE = 1,

and
∑

E wENE = N (where NE is the number of electrons in
member E and N is the desired, possibly non-integer, total
number of electrons), as well as other desired constraints such
as spin and spatial symmetries. That is, we look for the (con-
strained) set of weights minimising

ELEXX =
∑
E

wE

⎡
⎣∑

iσ

θσ
iEe

(1)
iσ +

∑
iσjσ ′

θσ
iEθ

σ ′
jEe

(2)
iσjσ ′

⎤
⎦ , (18)

which may have multiple solutions. We can thus find, for a
given potential and orbitals, optimal weights wE , and through
them 〈θσ

i 〉E and 〈θσ
i θσ ′

j 〉E . For the true KS potential, this
should be equivalent to finding the temperature → 0+ limit
of finite-temperature DFT. Such an approach might be useful
for dealing with the difficult atomic dissociation problem.

III. OPTIMISED EFFECTIVE POTENTIALS

For a many-electron system the EXX (or LEXX) ground-
state energy is composed of the orbital kinetic energy Ts

= 1
2

∫
dr

∑
iσ f σ

i |∇φiσ |2, the energy from the external poten-
tial EExt = ∫

drVExtn and the Hartree plus exchange energy
EHx. For an ensemble we calculate EHx via, for example, the
expansion (12) and (13) of n2Hxσσ ′ for s shells [or (15) and
(16) for equi-p shells] to form the orbital dependent LEXX
expression

EHx =
∑
σσ ′

∫
drdr ′

2|r − r ′|n2Hxσσ ′(r, r ′), (19)

while for “standard” EXX we instead use (3). The difference
in energies between the LEXX and “standard” EXX for fron-
tier s shells is thus the difference between (3) and (19). For
example, for the s case

ELEXX − EEXX = EHx − ES
Hx = −C̃h

Ueh, (20)

where ES
Hx is given by (3) and eh = ∫

drdr ′
|r−r ′|Ph↑h↓ and

C̃h
U = Ch

U − min[f ↑, f ↓] + f ↑f ↓ = min[f ↑f ↓, (1 − f ↑)(1
− f ↓)] governs the unlike-spin correction to the Hartree
energy required when both f↑ and f↓ are non-integer. A
similar expression can be derived for the like-spin correction
to p-shells.

We can now define orbital dependent groundstate ener-
gies via EEXX = Ts + EExt + ES

Hx for the EXX and ELEXX

= EEXX − C̃h
Ueh for the LEXX. In an optimised-effective

potential9 approach, we look for a potential V ≡ Voσ (r)
such that the orbitals satisfying [t̂ + Voσ ]φiσ = εiσ φiσ min-
imise the energy. Here, we call this approach the EXX or
LEXX (with an overline to denote use of an optimised ef-
fective potential) depending on the Hx functional used. Find-
ing Voσ involves, as input, the functional derivatives Diσ (r)
= δEHx/δφiσ (r). Thus, the scheme for finding optimised
LEXX solutions differs only from that for the regular EXX
in that D̃iσ for the LEXX includes an extra term for i = h. Via
C̃h

U , the additional term vanishes whenever f↑ or f↓ is integer,
as expected (at least for s shells).

Let us consider some of the formal implications of the
LEXX. First, the total energy found in an optimised LEXX
scheme must be bounded below by the EXX energy of the full
ensemble. To prove this, we first note that the ensemble EXX
energy EEEXX for an ensemble of positive weights wE of ele-
ments E can be written as EEEXX(f ) = ∑

E wEE
EXX
E [{φE

iσ }]
where [t̂ + V E

oσ ]φE
iσ = εEiσ φE

iσ and V E
oσ is chosen to min-

imise EEXX
E [{φ}] and may vary between different ensemble

members. From (6) to (19), it is clear that ELEXX[{φiσ }]
= ∑

E wEE
EXX
E [{φiσ }] where Voσ in [t̂ + Voσ ]φiσ = εiσ φiσ

can no longer vary separately for each part of the ensem-
ble. Thus by the variational nature of an OEP, we find
EEXX

E [{φE
iσ }] ≤ EEXX

E [{φiσ }] and EEEXX(f ) ≤ ELEXX. Sec-
ond, we see that ELEXX[{φ}] ≤ EEXX[{φ}] for any set
of orbitals {φ} and thus ELEXX[LEXX] ≤ ELEXX[EXX]
≤ EEXX[EXX] (where the term in the square brackets la-
bels the OEP used to evaluate the orbitals) with the equality
holding (for s shells) only when C̃h

U = 0 (i.e., when each of
the spins is integer occupied). The former inequality follows
from (20) by noting that C̃h

U ≥ 0 and eh = ∫
drdr ′
|r−r ′|Ph↑h↓ ≥ 0

as Ph↑h↓ ≥ 0 (similarly for the like spin term) and the latter
follows from the minimisation principle of OEPs. Putting the
OEP inequalities together, we find

EEEXX ≤ ELEXX ≤ EEXX, (21)

where we include the overline (indicating an optimised poten-
tial was used) for clarity.

IV. CORRELATION ENERGIES

The consequences of the improved pair-densities also
extend beyond exchange physics. Some beyond-direct
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random-phase approximation (dRPA) correlation energy
methods [see Ref. 21 for an overview] like the RPAx,22

RXH,23 and PGG24 kernels, ISTLS25 and tdEXX26 depend
in some way on the groundstate pair-density. The differ-
ence between the EXX and LEXX expressions will therefore
manifest in correlation energies too. Here, we can calculate
the correlation energy via the “ACFD” functional (see, e.g.,
Ref. 21) involving the orbital-dependent linear response func-
tion χ0, and “xc kernel” fxc. By way of example, the “PGG”24

kernel directly uses the groundstate pair-density to approxi-
mate

fxcσσ ′(r, r ′) ≈ 1

|r − r ′|
(

n2Hxσσ ′(r, r ′)
nσ (r)nσ ′(r ′)

− 1

)
. (22)

It thus captures the ensemble physics at both the LEXX and
correlation levels via n2Hx.

V. RESULTS

In Figure 1, we show correlation-free energies for H, Li,
and Na-like fractional ions calculated in the optimised EXX
and LEXX schemes under the Krieger, Li, and Iafrate27 (KLI)

approximation to the potential in a real space code for spher-
ically symmetric systems. Results are presented for f↑ and
f↓ ranging from zero to one such that f ranges from zero
(e.g., Na+) to two (e.g., Na−). The true ensemble EXX en-
ergy EEEXX takes the same, piecewise linear form as (5) but
with groundstate energies EN of the ensemble members (for
integer N) replaced by EXX energies EEXX

N from the opti-
mal Slater determinant. The sides of the surface plots show
the case where one frontier spin orbital is integer occupied
and the other fractionally occupied (or integer at the cor-
ners) and it is clear that the results for the optimised EXX
and LEXX are identical as expected. In the interior, how-
ever, a different picture emerges, with the required derivative
discontinuities at f↑ + f↓ = 1 being absent in the EXX but
clearly present in the LEXX. The LEXX also varies mini-
mally with f = f↑ + f↓ fixed (along diagonals perpendicu-
lar to the projection), unlike the EXX. The slight remaining
non-linearity must be explained via the implicit dependence
of the orbitals on f as the energy formula is explicitly lin-
ear in f. We are unsure if this is a result of the optimised
effective potential approach itself, or the KLI approximation
thereto.
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FIG. 1. Groundstate energy differences E(f ↑, f ↓) − ELEXX( 1
2 , 1

2 ) (Ha) of H, Li, and Na ions with fractional occupations under EXX (left) and LEXX (right).
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The LEXX clearly offers dramatic improvements over
the EXX in energy calculations. For Li and Na it also makes
a good approximation to the true EEXX energy without re-
sorting to correlation physics. Here, the maximum variation
from EEXX is at most 6 mHa for Li and Na, significantly
smaller than the correlation energies of 45 mHa and 396 mHa,
respectively,28 for the neutral atoms. Only for H, where the
orbitals of H and H− differ significantly through space, is the
difference significant, growing to almost 20 mHa for f ≈ 1.5,
comparable to the H− correlation energy of 42 mHa.

The LEXX was previously used23 to generate ground-
states for correlation energy calculations. We are thus able
to compare the correlation-free LEXX results from that
work with benchmark HF energies calculated by Chakravorty
et al.28 To test the validity of the p shell LEXX expression (us-
ing Eqs. (15)–(17)), we compared the energies of the first and
second row open p shell atoms B-F and Al-Cl as these have
integer electron numbers, but fractional f. For these atoms the
LEXX energy has a maximum error of <1.5mHa (for O) and
a mean average error of just 0.6 mHa. To numerical accuracy
in our calculations, this is close to exact agreement and jus-
tifies both the LEXX itself and the KLI approximation to the
OEP, at least for integer electron number.

In Figure 2, we show the energy of carbon and fluorine
ions with five/eight to seven/ten electrons. For illustrative pur-
poses, we show results with (dRPA, PGG, exact) and without
(LEXX, EEXX) correlation energies evaluated in the “ACFD”
functional (see, e.g., Ref. 21). The LEXX is used for the ki-
netic, external, Hartree, and exchange energies in all calcu-
lations bar EEXX and exact. Correlation energies are evalu-
ated using the dRPA and PGG kernel (see Ref. 23 for tech-
nical details). The exact groundstate energy of fractional ions
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FIG. 2. Groundstate energy E(N) of C and F ions under the LEXX approach
with and without correlation energy included. Electrons are split equally be-
tween up and down spin N↑ = N↓ = N/2.

of C is given by the piecewise linear function E(N ) = EC
0

− (N − 6)IC for 5 ≤ N ≤ 6 and E(N ) = EC
0 − (N − 6)AC

for 6 < N ≤ 7 where EC
0 is the groundstate energy of carbon,

IC is its ionisation potential and AC its electron affinity (with
similar expression for F). Energies and ionisation potentials
are taken from Ref. 28 and affinities from Refs. 29 and 30.
The EEXX energy is defined in the same way but with E0, I
and A replaced by correlation-free EXX values. We note that,
at integer electron number, our groundstate LEXX energies
are within 1 mHa of those found via HF in Ref. 28. As such
we reproduce the energy of the triplet state of carbon.

Clearly, the LEXX without correlation approximates the
piecewise linear form, albeit incorrectly predicting negative
fractional affinities for N � 6.75 for C and N � 9.60 for F. In-
cluding correlation improves things, although even here there
is a small range with negative affinities, at N � 6.25 for C
with the RPA and PGG kernels, and N � 9.25 for F with the
PGG kernel. It is clear that the “LEXX-PGG” (PGG evaluated
with an LEXX pair-density) is a fairly good approximation to
the groundstate ensemble energy at all fractions in both cases,
especially for the positive ions. The derivative discontinuity
shown here comes entirely from our correct treatment of Hx
in most cases, with a nonzero but very small extra contribution
from correlation in the PGG case. We aim to further inves-
tigate correlation energies at fractional occupation in future
work.

VI. CONCLUSIONS AND FURTHER WORK

While the discussion here has focused on Fermionic sys-
tems with non-degenerate frontier orbitals and ensembles
constructed around varying electron number, the general ap-
proach holds true for any non-interacting ensemble system.
For example, in Bosonic systems, orbital SI is not cancelled
by exchange terms even for integer occupation, a situation
which favours the present type of analysis of the “Hartree”
and “exchange” terms. Other interesting cases include finite
distance dissociation, where quantum superpositions of de-
terminants are required as well as classical ensembles; and
thermal ensembles.

LEXX physics is also useful beyond the OEP LEXX
method discussed here. It should be possible to construct local
density functionals (such as the LSDA) from pseudo-densities
based on the modified exchange and/or Hartree pair-density
via an approach like that of Ref. 31 or Ref. 32. This perhaps
provides some further justification for the success of recent
work by Johnson and Contreras-García.12 The LEXX may
also have potential uses in O(N )-scaling DFT approaches (see
Ref. 33 for a recent review).

By constructing a density matrix with similar proper-
ties to the exact ensemble, we were able to develop a LEXX
formalism yielding an orbital-dependent total energy (8) via
a pair-density, piecewise linear in the occupation factors,
and involving ensemble averages of the one 〈θσ

i 〉E and two
〈θσ

i θσ ′
j 〉E orbital pair factors [see (9)–(11)]. This is exempli-

fied for doubly fractional s shells in (12) and (13) with ghost-
interactions suppressed by the correction term (14) and with
similar expressions for p shells discussed in (15) and (16) with

Downloaded 08 Jan 2013 to 152.3.102.242. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



014103-7 T. Gould and J. F. Dobson J. Chem. Phys. 138, 014103 (2013)

additional like-spin correction term (17). Using these energy
expressions in the OEP LEXX functional proposed here gives
clearly improved results (with EEEXX ≤ ELEXX ≤ EEXX)
when compared with the more common form of EXX, with-
out resorting to correlation physics. This suggests that the
very notion of electron correlation is imprecisely defined for
OEP or KS systems with fractional occupancy. Using the
properties of ensembles to create better trial wavefunctions
and density matrices can be an excellent means of reducing
the workload of the correlation functional in such systems.
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