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It is shown how to properly construct exchange-correlation (xc) potentials in the Kohn-Sham (KS) formalism
of density-functional theory such that physically meaningful KS eigenvalues result. A potential adjustor �N−

Hxc

is derived which enables for any approximate functional for the xc energy the construction of a consistent xc
potential leading to an eigenvalue of the energetically highest occupied KS orbital equal to the negative of
the ionization potential. Together with a second potential adjustor �N+

Hxc KS band structures can be converted
in approximate quasiparticle band structures exhibiting the exact physical instead of the KS band gap. This
represents an alternative route to the fundamental quasiparticle band gap, completely within the KS formalism
without the need to resort to many-body perturbation theory approaches like the GW method. It is shown that,
for any finite system, approximate xc potentials including those in the local density and generalized gradient
approximations, in contrast to common belief, always exhibit consistent nonzero discontinuities at integer electron
numbers, if constructed properly. Thus the discontinuity of xc potentials is identified as a derived quantity which
emerges automatically by properly constructing xc potentials without the need to be specifically incorporated in
approximate xc functionals. It is demonstrated that all relevant objects of the ensemble KS formalism, in particular
functional derivatives and their discontinuities, can be expressed in terms of quantities readily available in the KS
formalism of integer electron numbers within an approach named integer electron ensemble approach (IEEA).
Attempts to specifically construct ensemble density functionals are shown to be needless. Taking the known
asymptotic behavior of the electron density into account an internal consistency condition for xc potentials
is presented which justifies tuning procedures of xc functionals and, furthermore, indicates how asymptotic
corrections for xc potentials have to be properly employed.
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I. INTRODUCTION

The discontinuity [1–4] of the exchange-correlation (xc)
potential, the functional derivative of the xc energy with
respect to the electron density, at integer electron numbers
is a key quantity in the Kohn-Sham (KS) formalism of
density-functional theory (DFT) [5,6]. Discontinuities in
the derivatives of components of the electronic energy are
responsible for the fact that the Kohn-Sham band gap is not
equal to the physical (quasiparticle) band gap, the difference
between ionization potential and electron affinity. The band
gap determines the electronic nature of periodic systems, e.g.,
metallic versus semiconducting behavior, but also of atoms and
molecules. (In finite systems often the term hardness, being
half the band gap, is used.) Because KS and quasiparticle
band gaps are different, the latter are presently not accessible
in KS methods and have to be calculated via many-body
perturbation theory, in particular by GW methods [7–9]. GW

methods are computationally expensive and typically carried
out non-self-consistently based on KS band structures which
is unsatisfying from a formal point of view. In this work the
formal basis for a determination of the physical band gap,
exclusively within the KS formalism, is presented which opens
up an alternative route to the fundamental quasiparticle band
gap and represents a long-standing goal in DFT.

The commonly employed approximate xc functionals are
believed to lack derivative discontinuities [1–6,10,11]. Here
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xc functionals within the generalized gradient approximation
(GGA) [5,6] are considered as typical examples of standard
density functionals. However, the results of this work are
relevant for all approximate xc functionals and, furthermore,
can be generalized [12] to the case of functionals occurring
in generalized Kohn-Sham methods [13]. For an electronic
system with integer electron number N the eigenvalue εN

of the energetically highest occupied KS orbital equals
the negative of the ionization potential IPN provided the
employed xc potential represents the correct limit of the cor-
responding ensemble xc potential from the electron deficiency
side [1,14–18]. Standard GGA calculations yield eigenvalues
εN which are not even close to the negative of the ionization
potential.

In this work, a potential adjustor �N−
Hxc is derived that gives

access to the sum of the Hartree plus the xc (abbreviated as
Hxc from now on) potential as it emerges in the ensemble KS
formalism [5,6,19] using exclusively quantities readily avail-
able in the KS formalism of integer electron numbers. For any
approximate functional of the xc energy the potential adjustor
�N−

Hxc leads to a corresponding Hxc potential with a proper
absolute energy adjustment such that εN = −IPN , in finite as
well as periodic systems. Moreover, Hxc potentials obtained
along these lines exhibit the proper consistent discontinuity at
integer electron numbers. This demonstrates that the common
wisdom [5,6,10,11] that standard xc functionals, e.g., within
the GGA, suffer from the lack of derivative discontinuities is
not true. If GGA potentials as well as other approximate po-
tentials are constructed properly then they do exhibit nonzero
discontinuities, at least for finite electron systems. Thus, the
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naive, straightforward use of GGA or other functionals as
ensemble density functionals is identified as an approximation
that leads to the lack of derivative discontinuities but not the
GGA or other approximations themselves.

The energies of an electronic system at noninteger electron
numbers form straight lines resulting from interpolating the
energies of the system at the adjacent integer numbers [1].
Deviations from such straight lines in GGA calculations,
termed localization and delocalization errors [10,11], again
are manifestations of the fact that GGA functionals are not
suitable approximations for ensemble functionals. However,
it is shown here that the relevant objects occurring in the
ensemble KS formalism can be expressed in terms of quantities
readily available in the KS formalism of integer electron
numbers and therefore there is no need for approximate
ensemble xc functionals. Thus it is neither necessary to derive
GGA ensemble functionals nor other specific ensemble density
functionals. The approach towards the ensemble KS formalism
which is advocated here and relies exclusively on density
functionals for integer electron numbers represents an integer
electron ensemble approach (IEEA) and shall be denoted by
this name.

The potential adjustor �N−
Hxc and an analogous potential

adjustor �N+
Hxc for the electron surplus side which emerge

in the IEEA enable the conversion of KS band structures
into approximate quasiparticle band structures exhibiting
the physical instead of the KS band gap. As a result the
fundamental physical band gap can be obtained entirely within
the KS formalism and it is no longer necessary to resort to GW

methods [7–9].
The paper is organized as follows. In the next section

the IEEA is introduced and it is shown how derivatives of
energy functionals of the ensemble density-functional theory
can be taken properly. Then a section follows which presents
potential adjustors for arbitrary xc potentials including GGA
ones to correctly fix the energetic position and to introduce
discontinuities at integer electron numbers. Moreover, implica-
tions for strategies to develop new approximate xc functionals
are discussed. This is followed by a section discussing
implications for finite electron systems. In particular an
internal consistency check for xc potentials is introduced and
it is explained how asymptotic corrections for xc potentials
should be applied. In the subsequent section the limit of infinite
systems is analyzed. First, it is pointed out that, in contrast to
common wisdom, a calculation of changes of total energies due
to changes of particle numbers can be easily carried out for
infinite systems. Then it is shown that for GGA functionals
the previously introduced potential adjustors vanish in the
limit of infinite systems and that GGA xc potentials do not
exhibit discontinuities in this limit despite the fact that the
energy correctly changes linearly with the particle number
and therefore localization or delocalization errors do not
occur. Orbital-dependent xc functionals, on the other hand, are
shown to lead to xc potentials with discontinuities at integer
electron numbers in the limit of infinite systems and to be
well suited to determine fundamental quasiparticle band gaps
within the IEEA and thus completely within DFT without
invoking approaches from many-body perturbation theory like
the GW method. Finally, in the last section, conclusions are
given.

II. INTEGER ELECTRON ENSEMBLE APPROACH:
DERIVATIVES OF ENERGY FUNCTIONALS

For a start, an important point to remember is that functional
derivatives with respect to the electron density are defined
only up to an additive constant in the KS formalism of integer
electron numbers. This is because changes δρ(r) of the electron
density ρ have to integrate to zero, i.e.,

∫
dr δρ(r) = 0, in

order to not change the electron number to a noninteger
value. The change δF of a functional F [ρ] is given in
terms of the functional derivative f (r) of F and δρ(r) by
δF = ∫

drf (r)δρ(r) but also by δF = ∫
dr[f (r) + ν]δρ(r)

with ν ∈ R because
∫

drνδρ(r) = 0. This means in the KS
formalism of integer electron numbers functional derivatives
with respect to the electron density are always given by a set of
functions whose members differ by the addition of a constant.
Such a set of functions as well as an arbitrary member of
such a set shall be denoted by a bar above the corresponding
symbol, e.g., the set of functions f (r) + ν is denoted by f̄ .
The xc potential in the integer electron number KS formalism
is given by the set of functions v̄xc and is undefined with
respect to the addition of a constant. On the other hand, the
commonly employed GGA xc potentials [5,6] are completely
defined without the freedom of an additive constant. This
is because the GGA expressions for the xc energy can be
evaluated not only for electron densities yielding integer
electron numbers but for arbitrary ones. A GGA xc potential
obtained as naive, straightforward functional derivative of the
GGA energy functional represents only one member of the set
v̄GGA

xc of potentials. However, this member, in general, is not
the one that equals the corresponding ensemble xc potential
approaching the limit of the integer electron number of the
considered electronic system from the electron deficiency side.
Therefore, εN �= −IPN in common GGA methods.

Within the ensemble KS formalism the Hohenberg-Kohn
functional F [ρ] is given by the constrained search F [ρ] =
min
�→ρ

{Tr[�(T̂ + V̂ee)]} searching among those density matrices

� = ∑
p cp|�p〉〈�p| with

∑
p cp = 1 that yield the electron

density ρ(r) the one that minimizes the sum of the kinetic
and the electron-electron interaction energy. By T̂ the kinetic
energy operator is denoted and by V̂ee the operator of the
electron-electron interaction. In the ensemble KS formalism
the electron density ρ can integrate to noninteger electron
numbers and the functional derivative δF/δρ(r) is completely
defined without the freedom of adding a constant. The ground-
state density matrix �0[v̄,q] of an electronic system with the
external potential v and an electron number q with N − 1 �
q � N is given by �0[v̄,q] = (N − q)|�N−1

0 [v̄]〉〈�N−1
0 [v̄]| +

(q − N + 1)|�N
0 [v̄]〉〈�N

0 [v̄]| with �N−1
0 [v̄] and �N

0 [v̄] being
the ground-state wave functions of the corresponding elec-
tronic systems with N − 1 and N electrons; see below for
details. Changing the external potential v to v + ν by adding
a constant ν does not change the eigenstates �N−1

0 [v̄] and
�N

0 [v̄] or the density matrix �0[v̄,q]. Therefore �N−1
0 [v̄],

�N
0 [v̄], and �0[v̄,q] are considered as functionals not only

of the actual external potential v but of the whole set v̄.
The ground-state electron density corresponding to the
ground-state density matrix �0[v̄,q] shall be denoted ρ

q

0 [v̄].
The Hohenberg-Kohn functional F [ρq

0 [v̄]] is given by
F [ρq

0 [v̄]] = Tr{�0[v̄,q](T̂ + V̂ee)}. The ground-state electron
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density ρ
q

0 [v̄] obeys the Euler equation [5,6]

δF

δρ(r)

∣∣∣∣
ρ=ρ

q

0 [v̄]

= −v(r) + μN [v] = −v̄(r) + μN [v̄] (1)

with the chemical potential μN [v], equal to the negative of the
ionization potential, given as the difference μN [v] = EN

0 [v] −
EN−1

0 [v] of the ground-state energies EN
0 [v] and EN−1

0 [v] of
the N - and (N − 1)-electron system with the external potential
v. However, any potential v̄ obtained by adding a constant to v

may enter the Euler equation (1) for the ground-state density
ρ

q

0 [v̄] as long as the consistent chemical potential μN [v̄] =
EN

0 [v̄] − EN−1
0 [v̄] corresponding to the potential v̄ occurs in

Eq. (1). The right-hand sides of Eq. (1) are invariant with
respect to the addition of a constant to the potentials v or
v̄ because the addition of a constant ν changes the energies
EN

0 and EN−1
0 by Nν and (N − 1)ν and thus the difference

EN
0 − EN−1

0 by ν which cancels the shift −ν of −v or −v̄

upon addition of a constant ν.
Next Eq. (1) is derived using only quantities readily

available in the KS formalism of integer electron numbers.
The approach to express the relevant objects of the ensemble
KS formalism in terms of quantities from the KS formalism
of integer electron numbers is the integer electron ensemble
approach (IEEA) announced in the Introduction. By reducing
objects of the ensemble KS formalism to those of the KS
formalism of integer electron numbers the physical origin and
the meaning of the former become clear and in applications
additional approximations due to the ensemble formation
are avoided such that only the common approximations
required already in practical applications of the integer-
electron-number KS formalism have to be invoked. As usual
the electron density shall be ensemble v representable, i.e.,
it shall be the ensemble ground-state electron density ρ

q

0 of
an electronic system defined, besides the electron number
N − 1 < q < N , by some external potential v. The external
potential v usually is the potential of the nuclei. For all known
physical systems the ground-state energy is a convex function
of the electron number consisting of straight lines connecting
the ground-state energies EN

0 [v] at integer electron numbers
N [1]. The ground-state energy of the considered system with
q electrons therefore is given by

E
q

0 [v] = (N − q)EN−1
0 [v] + (q − N + 1)EN

0 [v]

= (N − q)
〈
�N−1

0 [v̄]
∣∣T̂ + V̂ee + v̂

∣∣�N−1
0 [v̄]

〉
+ (q − N + 1)

〈
�N

0 [v̄]
∣∣T̂ + V̂ee + v̂

∣∣�N
0 [v̄]

〉

= (N − q)

[
F

[
ρN−1

0

] +
∫

drv(r)ρN−1
0 (r)

]

+ (q − N + 1)

[
F

[
ρN

0

] +
∫

drv(r)ρN
0 (r)

]

= (N − q)F
[
ρN−1

0

] + (q − N + 1)F
[
ρN

0

]

+
∫

drv(r)ρq

0 (r). (2)

In Eq. (2) it was used that the ground-state energy EN
0 [v] =

F [ρN
0 ] + ∫

drv(r)ρN
0 (r) and that EN−1

0 [v] = F [ρN−1
0 ] +∫

drv(r)ρN−1
0 (r) with the Hohenberg-Kohn functionals F [ρN

0 ]

and F [ρN−1
0 ] of the ground-state electron densities ρN

0 and
ρN−1

0 of the N - and (N − 1)-electron system, respectively.
For the last line it was exploited that the ground-state electron
density ρ

q

0 of the ensemble with electron number N − 1 <

q < N is given by (N − q)ρN−1
0 + (q − N + 1)ρN

0 .
The ensemble ground-state electron density ρ

q

0 behaves
linear with q, like the ground-state energy E

q

0 [v], be-
cause the corresponding ground-state density matrix �0[v,q]
behaves linear with q, i.e., as already stated above,
is given by �0[v,q] = (N − q)|�N−1

0 [v]〉〈�N−1
0 [v]| + (q −

N + 1)|�N
0 [v]〉〈�N

0 [v]| with �N−1
0 [v] and �N

0 [v] being the
ground-state wave functions of the corresponding electronic
systems with N − 1 and N electrons. The latter expression for
�0[v,q] can be obtained by starting from the general ansatz
�0[v,q] = ∑

M

∑
i c

M
i |�M

i [v]〉〈�M
i [v]| with �M

i [v] denoting
the wave function of the ith eigenstate of the M-electron
system with external potential v. Because the general ansatz
for �0[v,q] is a linear form only ground states can contribute
to the ensemble ground-state density matrix, that is only states
with i = 0. If an M-electron state with i �= 0 contributed
then the energy could be lowered by replacing it by the
corresponding M-electron state with i = 0. Thus the ansatz for
�0[v,q] simplifies to �0[v,q] = ∑

M cM
0 |�M

0 [v]〉〈�M
0 [v]|. For

all known physical systems the ionization energy is higher than
the electron affinity for any given electron number M . There-
fore only the ground states of the (N − 1)- and N -electron
systems contribute to �0[v,q] for N − 1 < q < N and the
above expression for �0[v,q] results. The ground-state energy
E

q

0 [v] = Tr{�0[v,q](T̂ + V̂ee + v̂)} and the electron density
ρ

q

0 = Tr{�0[v,q]ρ̂} are given as simple traces of �0[v,q] with
the Hamiltonian operator T̂ + V̂ee + v̂ and the density operator
ρ̂, respectively, which implies that the linearity of �0[v,q] with
q transfers to E

q

0 [v] and ρ
q

0 ; see Ref. [1] for further discussions.
Subtraction of

∫
drv(r)ρq

0 (r) from both sides of Eq. (2)
yields the Hohenberg-Kohn functional

F
[
ρ

q

0

] = (N − q)F
[
ρN−1

0

] + (q − N + 1)F
[
ρN

0

]
(3)

for the electron density ρ
q

0 . Here it is used that
E

q

0 [v] = F [ρq

0 ] + ∫
drv(r)ρq

0 (r). Equation (3) shows that the
Hohenberg-Kohn functional F [ρq

0 ] for the electron density
q, a quantity defined in the ensemble KS formalism, can be
given by the linear interpolation between the Hohenberg-Kohn
functionals F [ρN−1

0 ] and F [ρN
0 ] which are accessible in the

KS formalism of integer electron numbers.
Next changes δρ of the electron density ρ

q

0 are considered.
The changes δρ are decomposed according to

δρ(r) = δρ0(r) + δq
[
ρN

0 (r) − ρN−1
0 (r)

]
(4)

with

δρ0(r) = δρ(r) − δq
[
ρN

0 (r) − ρN−1
0 (r)

]
, (5)

and

δq =
∫

dr′δρ(r′). (6)

By Eq. (4) an arbitrary change δρ of the electron density
is decomposed into one part, δρ0, that does not change the
particle number, i.e., for which

∫
drδρ0(r) = 0 holds, and a

second part that changes the electron number by the required
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amount δq through the change δq[ρN
0 (r) − ρN−1

0 (r)] which
equals the difference of the ground state N - and (N − 1)-
electron densities scaled by δq.

In the KS formalism of integer electron numbers, here N

or N − 1, the functional derivatives of the Hohenberg-Kohn
functionals F [ρN

0 ] and F [ρN−1
0 ] with respect to changes of

the electron density, which then have to integrate to zero,
are given by the set of functions −v̄, i.e., by the negative of
the external potential v plus an arbitrary additive constant.
The change δρ0(r) was constructed to integrate to zero.
If we only consider changes δF of the Hohenberg-Kohn
functional F [ρq

0 ] that leave the electron number q unchanged,

i.e., changes by δρ0(r), then the corresponding functional
derivative of F [ρq

0 ] again is −v̄ and δF = − ∫
drv̄δρ0(r).

Changes of the Hohenberg-Kohn functional F [ρq

0 ] due to
changes δq[ρN

0 (r) − ρN−1
0 (r)], on the other hand, are tanta-

mount to changes of the electron density from ρ
q

0 to ρ
q+δq

0 and
the corresponding change δF of the Hohenberg-Kohn func-
tional thus, according to Eq. (3), is given by δF = δq{F [ρN

0 ] −
F [ρN−1

0 ]}. If the changes δF = − ∫
drv̄δρ0(r) due to changes

δρ0(r) and the changes δF = δq{F [ρN
0 ] − F [ρN−1

0 ]} due to
changes δq[ρN

0 (r) − ρN−1
0 (r)] are added then the change δF

due to an arbitrary change δρ(r) of the electron density is
obtained:

δF = −
∫

drv̄(r)δρ0(r) + δq
{
F

[
ρN

0

] − F
[
ρN−1

0

]}

= −
∫

drv̄(r)[δρ(r) − δq[ρN (r) − ρN−1(r)]] + δq
{
F

[
ρN

0

] − F
[
ρN−1

0

]}

= −
∫

drv̄(r)δρ(r) + δq

∫
drv̄(r)[ρN (r) − ρN−1(r)] + δq

{
F

[
ρN

0

] − F
[
ρN−1

0

]}

= −
∫

drv̄(r)δρ(r) + δq

{[
F

[
ρN

0

] +
∫

drv̄ρN (r)

]
−

[
F [ρN−1

0 ] +
∫

drv̄(r)ρN−1(r)

]}

= −
∫

drv̄(r)δρ(r) + δq
{
EN

0 [v̄] − EN
0 [v̄]

} = −
∫

drv̄(r)δρ(r) + δqμN [v̄] =
∫

dr[ − v̄(r) + μN [v̄]]δρ(r). (7)

In Eq. (7), among other things, Eqs. (5) and (6) were used.
From Eq. (7) immediately Eq. (1) for the functional derivative
of F [ρq

0 ] follows. As desired, the derivation given here for
Eq. (1), i.e., for the functional derivative of the Hohenberg-
Kohn functional within the ensemble KS formalism, uses only
quantities occurring in the KS formalism of integer electron
numbers or quantities like F [ρq

0 ] that can be expressed in
terms of quantities from the KS formalism of integer electron
numbers, in the case of F [ρq

0 ] by Eq. (3).
The above considerations hold true equally well for model

systems of noninteracting electrons, i.e., for KS systems.
Equation (1) then turns into

δTs

δρ(r)

∣∣∣∣
ρ=ρ

q

s,0[v̄s ]

= −v̄s(r) + εN [v̄s], (8)

a Euler equation for the derivative of the noninteracting kinetic
energy Ts with a right-hand side consisting of the effective
KS potential v̄s and the energetically highest occupied KS
eigenvalue εN [v̄s], which represents the difference in the
energies of the N - and (N − 1)-electron KS systems, i.e., the
chemical potential, of the KS system. Again the Euler equation
holds for any member of the set v̄ provided the consistent
eigenvalue εN [v̄s] enters the Euler equation (8). As in the
case of Eq. (1), the right-hand side of Eq. (8) only contains
quantities of the KS formalism for integer electron numbers
and the equation can be derived using only such quantities.
This means that one not only can derive expressions for all
required relevant objects of the ensemble KS formalism that
contain only quantities of the KS formalism of integer electron
numbers but furthermore the derivations of these expressions

also require only quantities of the KS formalism of integer
electron numbers.

III. POTENTIAL ADJUSTORS FOR
EXCHANGE-CORRELATION POTENTIALS

LEADING TO CONSISTENT DISCONTINUITIES

The KS system associated with a given real electron system
is the one that has the same ground-state electron density,
that is the KS system with the ground-state density ρ

q

s,0[v̄s] =
ρ

q

0 [v̄]. For this electron density ρ
q

0 the difference between
the Hohenberg-Kohn functional F [ρq

0 ] and the noninteracting
kinetic energy Ts[ρ

q

0 ] defines the Hxc energy EHxc[ρq

0 ]. Taking
the difference between the Euler equations (1) and (8) and the
limit q → N− leads to

lim
q→N−

δEHxc

δρ(r)

∣∣∣∣
ρ=ρ

q

0

= vN−
Hxc(r) = v̄Hxc(r) + �N−

Hxc[v̄Hxc] (9)

with the potential adjustor

�N−
Hxc[v̄Hxc] = μN [v̄] − εN [v̄ + v̄Hxc]

= EN
0 [v̄] − EN−1

0 [v̄] − εN [v̄ + v̄Hxc]. (10)

The potential adjustor �N−
Hxc[v̄Hxc] shifts an arbitrary member

of the set of Hxc potential v̄Hxc = v̄s(r) − v̄(r) of the KS
formalism of integer electron number N to the one Hxc
potential vN−

Hxc which emerges in the ensemble KS formalism
in the limit of approaching the electron number N from the
electron deficiency side [20,21]. The potential vN−

Hxc is the
one that needs to be used in a KS calculation in order to
obtain an energetically highest occupied KS orbital with an
eigenvalue equal to the negative of the ionization energy.
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The Hxc potential used in actual KS calculations is one out
of the set v̄Hxc but, in general, not vN−

Hxc and, hence, the
corresponding eigenvalue of the energetically highest occupied
KS orbital, in general, is not related to the ionization energy.
Equations (9) and (10) are valid for arbitrary members of the
sets of potentials v̄ and v̄s ; the only requirement is consistency,
i.e., that the chemical potential μN [v̄] = EN

0 [v̄] − EN−1
0 [v̄]

refers to v̄ and that the eigenvalue εN [v̄ + v̄Hxc] belongs to the
KS one-electron equation with the corresponding KS potential
v̄s = v̄ + v̄Hxc. Equations (9) and (10) are key equations of
this work. Their value is that they relate the Hxc potential
vN−

Hxc from the ensemble KS formalism to quantities of the KS
formalism of integer electron numbers N and N − 1 which
are easily accessible in actual calculations.

For any given approximation of the xc energy Eqs. (9)
and (10) enable the construction of the corresponding Hxc
potential vN−

Hxc. This is demonstrated for the GGA for the xc
energy. If the actual external potential v is chosen from the set
v̄ then Eq. (9) reads as

GGAvN−
Hxc(r) = GGAv̄Hxc(r) + GGA�N−

Hxc[GGAv̄Hxc] (11)

with
GGA�N−

Hxc[GGAv̄Hxc]

= GGAEN
0 [v] − GGAEN−1

0 [v] − εN
GGA[v + v̄Hxc]. (12)

On the right-hand side of Eq. (11) any member of the
set GGAv̄Hxc can enter but usually it would be the one
obtained as straightforward functional derivative of the
GGA xc energy. The calculation of the potential adjustor
GGA�N−

Hxc[GGAv̄Hxc] via Eq. (12) requires just a second
self-consistent GGA calculation for the (N − 1)-electron
system to obtain GGAEN−1

0 [v] besides the N -electron
GGA calculation yielding GGAv̄Hxc, εN

GGA[v + GGAv̄Hxc],
and GGAEN

0 [v]. Note that the energies GGAEN
0 [v] and

GGAEN−1
0 [v] do not depend on which potential of the set

GGAv̄Hxc is chosen and that the effect of an additive constant
in GGAv̄Hxc is canceled in Eq. (11) by the corresponding
shift of εGGA

N [v + GGAv̄Hxc] changing GGA�N−
Hxc[GGAv̄Hxc]

in the opposite direction. If the adjustor GGA�N−
Hxc[GGAv̄Hxc]

is added to the commonly employed Hxc GGA potential
GGAv̄Hxc in order to obtain GGAvN−

Hxc then all KS eigenvalues
are shifted by GGA�N−

Hxc[GGAv̄Hxc]. The energetically highest
occupied KS eigenvalue εGGA

N [v + GGAv̄Hxc] turns into
εGGA
N [v + GGAv̄Hxc] + GGA�N−

Hxc[GGAv̄Hxc] = GGAEN
0 [v] −

GGAEN−1
0 [v] = μGGA

N [v] = εGGA
N [v + GGAvN−

Hxc], i.e., the
highest occupied KS eigenvalue εGGA

N [v + GGAvN−
Hxc] then

equals the GGA chemical potential μGGA
N [v] or the negative of

the GGA ionization potential GGAEN
0 [v] − GGAEN−1

0 [v] as it
would emerge from a GGA � SCF (difference self-consistent
field) calculation.

All the above arguments can be repeated for an electronic
system with a fractional occupation number q with N � q �
N + 1 and the limit q → N+ can be taken. Equation (9) for
vN−

Hxc then turns into the equation

vN+
Hxc(r) = v̄Hxc(r) + �N+

Hxc[v̄Hxc] (13)

for vN+
Hxc, i.e., the Hxc potential obtained in the ensemble KS

formalism by approaching the integer electron number N from

the electron surplus side. The Hxc potential vN+
Hxc obtained by

adding the potential adjustor

�N+
Hxc[v̄Hxc] = EN+1

0 [v̄] − EN
0 [v̄] − εN+1[v̄ + v̄Hxc] (14)

to a member of the set of potentials v̄Hxc(r) leads to a one-
electron KS equation with the effective KS potential v̄ + vN+

Hxc

which yields an eigenvalue εN+1[v̄ + vN+
Hxc(r)] being equal to

the negative of the ionization energy of the N + 1 electron
system.

The difference between vN+
Hxc(r) and vN−

Hxc(r) is the derivative
discontinuity �N

Hxc of the Hxc energy at the integer electron
number N . From Eqs. (9) and (13) together with Eqs. (10)
and (14) one obtains

�N
Hxc = �N+

Hxc[v̄Hxc] − �N−
Hxc[v̄Hxc]

= EN+1
0 [v̄] + EN−1

0 [v̄] − 2EN
0 [v̄]

− εN+1[v̄ + v̄Hxc] + εN [v̄ + v̄Hxc] (15)

for the derivative discontinuity. While the individual quantities
on the right-hand side of Eq. (15) depend on which members
of the sets v̄ and v̄Hxc are chosen, the derivative discontinuity
�N

Hxc is invariant with respect to this choice, i.e., additions of
constants to the potentials v̄ and v̄Hxc cancel.

Eqs. (9), (10), and (13)–(15) enable the calculation of the
potentials vN−

Hxc, vN+
Hxc, and of the derivative discontinuity �N

Hxc

for any given approximation of the xc energy. By using vN−
Hxc

in the one-electron KS equation the resulting KS eigenvalue
εN [v + vN−

Hxc] equals the negative of the ionization potential
as it emerges from a corresponding �SCF calculation, i.e.,
the difference of the corresponding N and (N − 1)-electron
KS calculations. The sum of the KS band gap plus the
discontinuity �N

Hxc of the xc potential, for all approximate
xc energy functionals including GGA functionals, yields the
physical band gap as it emerges from a �SCF calculation. For
finite systems, �N

Hxc is always nonzero for any approximate
xc functional. The potentials vN−

Hxc, vN+
Hxc, and the derivative

discontinuity �N
Hxc only depend on the xc energy functional

for integer electron numbers. This means they are derived
quantities which need and should not be approximated by
any extra measures. If an approximate xc energy functional
yields good ionization energies and electron affinities in
�SCF calculations it automatically yields good fundamental
band gaps; see later on for the implications in the case of
semiconductors.

The reason why GGA functionals are commonly er-
roneously believed [5,6,10,11] to not exhibit a derivative
discontinuity is that GGA expressions not only are considered
as approximate xc energy functionals in the KS formalism of
integer electron numbers but also in a naive, straightforward
way as approximate ensemble density functionals. The step
to consider GGA functionals as ensemble density functionals,
however, represents a second severe and poor approximation.
As shown here, this second step is not necessary because all
required objects from ensemble DFT are easily accessible
from quantities readily available in the KS formalism of
integer electron numbers. This includes energies of ensembles
with noninteger electron numbers q which can be obtained
straightforwardly [1] by linear interpolation of the energies
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of the electron systems with the integer electron numbers
bracketing q. Localization or delocalization errors reported
in Refs. [10,11] for GGA functionals only occur if GGA func-
tionals are used straightforwardly as ensemble functionals.
This as well as attempts to construct specific approximations
for ensemble xc functionals do not make much sense from the
perspective of this work. The consequence for future strategies
to develop new functionals in DFT is that efforts should
concentrate on the improvement of xc energy functionals for
integer electron numbers.

If the self-consistent total energies EN−1
0 [v̄] and EN+1

0 [v̄]
in Eqs. (10), (14), and (15) for the potential adjustors
�N−

Hxc[v̄Hxc] and �N−
Hxc[v̄Hxc] and the derivative discontinuity

�N
Hxc are replaced by non-self-consistent energies obtained by

evaluating the total energy of the (N − 1)- and the (N + 1)-
electron system with the KS orbitals of the N -electron system,
then an approximate adjustment of potentials as suggested in
Refs. [22] and [23] is obtained. An evaluation of all required
energies with the orbitals of the N -electron system means
that relaxation effects upon ionization or upon addition of an
electron are neglected.

IV. AN INTERNAL CONSISTENCY RELATION
FOR FINITE SYSTEMS AND ASYMPTOTIC

CORRECTIONS FOR XC POTENTIALS

If the Hxc potential vN−
Hxc obtained by properly adjusting a

Hxc potential v̄Hxc by �N−
Hxc[GGAv̄Hxc] is employed in the KS

equations then it was shown that the eigenvalue of the highest
occupied KS orbital obeys the equation

εN

[
v + vN−

Hxc

] = −IPN (16)

with IPN denoting the ionization potential of a finiteN -
electron system. The electron density of finite electronic
systems was shown to decay according to ρ(r) → e−2αr with
α = [2(IP )]1/2 if the external potential v(r) is a Coulombic
potential approaching zero for r → ∞ like, e.g., the potential
generated by the nuclei of a molecule [18,24]. Similarly,
the electron density of a finite KS system, a model system
consisting of hypothetical noninteracting electrons, decays like
ρ(r) → e−2αr with α = (−2{εN [v̄s] − v̄s(∞)})1/2 and with
v̄s(∞) being the asymptotic value of the effective KS potential
v̄s for r → ∞. By construction the KS model system and
the physical electron system have the same electron density.
Therefore

− εN [v̄s] + v̄s(∞) = IPN . (17)

If v + vN−
Hxc is chosen for the effective KS potential v̄s in

Eq. (17), Eq. (16) is considered, and the fact is taken into
account that v vanishes for r → ∞, then the equation

vN−
Hxc(∞) = v̄Hxc(∞) + �N−

Hxc[v̄Hxc] = 0 (18)

follows in agreement with Refs. [18,24]. Here vN−
Hxc(∞) is

the asymptotic value vN−
Hxc for r → ∞. Equation (18) repre-

sents an internal consistency check. If the potential adjustor
�N−

Hxc[v̄Hxc] is added to a member of a set of approximate
Hxc potentials v̄Hxc then the resulting Hxc potential vN−

Hxc

has to approach zero for r → ∞. The other way around,

for that member of the set of approximate Hxc potentials
v̄Hxc that approaches zero for r → ∞ the potential adjustor
�N−

Hxc[v̄Hxc] has to be zero, i.e., this member of the set is
vN−

Hxc and the eigenvalue of the highest occupied KS orbital
obtained with it has to equal EN

0 [v] − EN−1
0 [v] determined by

the corresponding �SCF calculation. GGA functionals do not
meet this internal consistency condition for finite systems.

It is common to compare the eigenvalue of the highest occu-
pied KS orbital with the negative of the experimental ionization
potential for KS calculations with Hxc potentials approaching
zero for r → ∞ like, e.g., GGA Hxc potentials obtained
as straightforward functional derivatives of the GGA Hxc
energy. This represents a check against an external quantity,
the experimental ionization potential. Whether the adjusted
Hxc potential v̄Hxc + �N−

Hxc[v̄Hxc], for a given approximate xc
functional, approaches zero for r → ∞ represents an internal
check. Alternatively, it can be checked whether the potential
adjustor �N−

Hxc[v̄Hxc] is zero if, for a given approximate xc
functional, that Hxc potential is chosen from the set v̄Hxc that
approaches zero for r → ∞. GGA functionals will neither
meet the check against the experimental IP nor the internal
check. The internal check can be used for a system-dependent
optimization or tuning of xc functionals. Suppose we make
an ansatz for a xc functional containing adjustable parameters
that, due to its form, leads to xc potentials approaching zero
for r → ∞. Then the parameters can be tuned in a way that the
internal check is met, i.e., that the eigenvalue of the highest
occupied KS orbital equals EN

0 [v] − EN−1
0 [v] calculated by

the corresponding �SCF calculations. Such a tuning has been
proposed in the framework of generalized KS methods [13] to
improve response properties, in particular, excitation energies
in Refs. [25–27]. Here an additional justification for such a
tuning is given because it can be interpreted as a measure to
obey the above internal consistency condition. Assuming that
the results of this work are also valid [12] for generalized KS
methods, this might be considered as a stronger justification
than arguing that the eigenvalue of the highest occupied KS
orbital should equal the experimental IPN which is then
approximated by a �SCF calculation.

A further implication from the results of this work is that
asymptotic corrections for approximate xc potentials [28,29]
should be added after adding the potential adjustor �N−

Hxc.
Energetic shifts of asymptotic corrections in order to not
change the original xc potential in the uncorrected region do
not make sense because the energetic position of the original
xc potential prior to adding the potential adjustor has little
physical meaning.

V. POTENTIAL ADJUSTORS AND DISCONTINUITIES OF
XC FUNCTIONALS IN THE LIMIT OF INFINITE SYSTEMS

The results of this work are valid both for finite, i.e., atomic
or molecular, systems as well as for periodic systems. For
periodic systems in the limit of infinite size, in practice for
large numbers M of k points, a calculation of total-energy
differences EN

0 [v̄] − EN−1
0 [v̄] or EN+1

0 [v̄] − EN
0 [v̄] might

seem to be not feasible at first sight. Clearly the change
of the total energy per unit cell vanishes for M → ∞ if a
single electron is added or removed from a system with M

k points, which corresponds to an arrangement of M unit
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cells. However, it is straightforward to carry out total-energy
calculations with one single electron added or removed. In a
semiconductor, e.g., the one-electron state at the bottom of
the conduction band or at the top of the valence band becomes
occupied or unoccupied, respectively. Indeed such calculations
are simpler than in the case of finite systems because in the
limit M → ∞ an addition or removal of a single electron does
not change the KS orbitals. Therefore the total energy of the
(N − 1)- and the (N + 1)-electron systems can be evaluated
with the one-electron states obtained in the KS calculation for
the N -electron system, without additional SCF calculations
for the (N − 1) or (N + 1) system; see below for details.

By adding the potential adjustor �N−
Hxc to the valence band

of a semiconductor and �N+
Hxc to the conduction bands, the KS

band structure turns into an approximate quasiparticle band
structure with the physical instead of the KS band gap. This
means that the KS formalism itself yields access to the exact
fundamental quasiparticle band gap by transforming a regular
KS band structure with the help of the potential adjustors �N−

Hxc

and �N+
Hxc into a KS quasiparticle band structure. While such a

KS quasiparticle band structure yields the exact fundamental
band gap, it is only an approximation to a full quasiparticle
band structure at points other than the fundamental band gap,
however, an approximation that can be assumed to be much
better than the regular, i.e., not adjusted, KS band structure. In
the special case of GGA functionals and related functionals it
turns out, see below, that GGAEN

0 [v] − GGAEN−1
0 [v] = εN

GGA

and GGAEN+1
0 [v] − GGAEN

0 [v] = εN+1
GGA if from the set of

Hxc potentials v̄Hxc the one resulting from straightforward dif-
ferentiation of the energy functional is used. As a consequence,
see later on, potential adjustors and the derivative discontinuity
vanish in the limit of infinite systems in the case of GGAs
and of approximations of a related form. This, however, is
a specific shortcoming of the GGA. For orbital-dependent
functionals [30], e.g., on the basis of the random-phase
approximation [31–34], the potential adjustors do not vanish
and yield finite band gaps [35]. The calculation of band gaps
via orbital-dependent density-functional methods represents
an alternative to GW methods with many opportunities to be
explored in the future.

Now the IEEA for xc functional shall be considered in more
detail for the case of infinite systems. To that end a system
consisting of 
 × m × n = M unit cells in periodic boundary
conditions, i.e., Born von Karman boundary conditions, shall
be considered. This system shall be treated by a GGA
calculation with a regular grid of 
 × m × n = M k points.
The complete system consisting of M unit cells shall have
N electrons. Its GGA ground state energy GGAEN

0 [v] is
given by

GGAEN
0 [v] =

∑
ik

〈φik|T̂ |φik〉 +
∫

�

drv(r)ρN
0 (r) + EGGA

Hxc

[
ρN

0

]

(19)

with the Hxc energy

EGGA
Hxc

[
ρN

0

] =
∫

�

drεGGA
Hxc (r)ρN

0 (r) (20)

and the ground state N -electron density

ρN
0 (r) =

∑
ik

φ∗
ik(r)φik(r). (21)

In Eqs. (19)–(21) T̂ = (−1/2)∇2 is the operator of the kinetic
energy and εGGA

Hxc (r) is the GGA Hxc energy density [5,6].
The summation

∑
ik runs over all M k points and for a

given k point over the index i of all occupied bands. The
integration volume � is the crystal volume, the volume of the
complete systems consisting of all M unit cells, that is M times
the unit-cell volume V , i.e., � = MV . In a KS calculation
usually the total energy per unit cell is calculated, which
is obtained from GGAEN

0 [v] of Eq. (19) by division by M .
The KS orbitals φik are normalized with respect to the crystal
volume �, i.e.,

∫
�

drφ∗
ik(r)φik(r) = 1. In an actual calculation

the integrations
∫
�

drv(r)ρN
0 (r) and

∫
�

drεGGA
xc (r)ρ0(r) can

be replaced by corresponding integration
∫
V

drv(r)ρN
0 (r)

and
∫
V

drεGGA
xc (r)ρ0(r) over one unit cell instead of the

crystal volume to directly obtain the corresponding energy
contributions per unit cell.

The energy GGAEN−1
0 [v] of the complete system consisting

of M unit cells with one single electron removed is given by

GGAEN−1
0 [v] =

∑
ik

〈φnk|T̂ |φnk〉

+
∫

�

drv(r)ρN
0 (r) + EGGA

Hxc

[
ρN

0 − ρφN
]

−〈φN |T̂ |φN 〉 −
∫

�

drv(r)ρφN (r) (22)

in the limit of a large number M of unit cells. In this limit
the removal of one electron from the system will not change
the orbitals φik. Therefore no additional self-consistent KS
calculation for the N − 1 electron system is required in this
case. Merely the energy expression has to be reevaluated
for N − 1 electrons, which leads to Eq. (22). The removed
electron, labeled electron N , is the one of the energetically
highest occupied KS orbital φN . In a semiconductor this
is the energetically highest occupied orbital of the k point
representing the top of the valence band. The electron density
ρφN of this KS orbital is given by ρφN (r) = φ∗

N (r)φN (r).
The energy difference between the N - and the (N −

1)-electron system is given by
GGAEN

0 [v] − GGAEN−1
0 [v]

= 〈φN |T̂ |φN 〉 +
∫

�

drv(r)ρφN (r) + EGGA
Hxc [ρ0]

−EGGA
Hxc

[
ρN

0 − ρφN
]

(23)

= εN [v + ṽHxc] −
∫

�

drṽHxc(r)ρφN (r)

+EGGA
Hxc [ρ0] − EGGA

Hxc

[
ρN

0 − ρφN
]
. (24)

Equation (23) can be easily evaluated. The expectation value
〈φN |T̂ |φN 〉 is just one contribution of the sum

∑
ik〈φnk|T̂ |φnk〉

which is routinely evaluated for the noninteracting kinetic
energy. The energies

∫
�

drv(r)ρφN (r) and EGGA
Hxc [ρN

0 − ρφN ]
can be obtained by replacing the density ρ0 by ρφN and by ρN

0 −
ρφN , respectively, in the energy contributions

∫
�

drv(r)ρN
0 (r)
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and EGGA
Hxc [ρN

0 ] of GGAEN
0 [v]. Of course, factors of 1/M

introduced in the evaluation of GGAEN
0 [v] for obtaining

energies per unit cell have to be removed.
While it is easily possible to evaluate the right-hand side of

Eq. (23) it is instructive to add and subtract the contribution∫
�

drṽGGA
Hxc (r)ρφN (r) and to use that T̂ + v(r) + ṽGGA

Hxc (r)
represents the KS Hamilton operator. The KS orbital φN

is an eigenstate to this Hamilton operator with eigenvalue
εN [v + ṽHxc]. This leads to Eq. (24) The tilde above ṽGGA

Hxc

indicates that the Hxc potential is the one obtained as
straightforward functional derivative of the GGA Hxc energy.

For GGA functionals the energy contribution EGGA
Hxc [ρN

0 ] −
EGGA

Hxc [ρN
0 − ρφN ] in Eqs. (23) and (24) can be expanded in a

Taylor series around ρN
0 as

EGGA
Hxc

[
ρN

0

] − EGGA
Hxc

[
ρN

0 − ρφN
] =

∫
�

dr
δEGGA

Hxc

δ(r)

∣∣∣∣
ρ=ρN

0

ρφN (r) − (1/2)
∫

�

drdr′ δ
2EGGA

Hxc

δ(r)δ(r′)

∣∣∣∣
ρ=ρN

0

ρφN (r)ρφN (r′) + · · ·

=
∫

�

drṽHxc(r)ρφN (r) − (1/2)
∫

�

dr (2)f GGA
Hxc (r)

[
ρφN (r)

]2 + · · · (25)

using that

δ2EGGA
Hxc

δ(r)δ(r′)

∣∣∣∣
ρ=ρN

0

= (2)f GGA
Hxc (r)δ(r − r′). (26)

Equation (26) is a consequence of the form of GGA function-
als. A GGA functional for the xc energy can be written as an
integral

∫
�

dr(0)f GGA
xc (r) with an integrand which is a function

(0)f GGA
xc (ρ(r),∇ρ(r)) of the electron density ρ(r) and its

gradient ∇ρ(r), i.e., the first-order derivatives of ρ with respect
to the spatial coordinates x, y, z. The first functional derivative
of the GGA xc energy with respect to ρ, the xc potential
ṽGGA

xc (r), is a function (1)f GGA
xc (ρ(r),∇ρ(r),d2ρ(r)/dx2, . . . )

of ρ(r), ∇ρ(r) and second-order spatial derivatives of ρ, like
d2ρ(r)/dx2. The second functional derivative of the GGA xc
energy with respect to ρ then is a function (2)f GGA

Hxc (r) of ρ(r)
and its spatial functional derivatives up to third order times
a δ function δ(r′ − r). Higher-order functional derivatives in
a similar way are functions (n)f GGA

Hxc (r) times products of δ

functions.
The crucial point now is the scaling behavior of the density

ρφN (r) with the system size, i.e., with the number M of
unit cells. The density ρφN (r) scales with 1/M because the
KS orbitals scale with 1/

√
M . This is a consequence of the

normalization condition
∫
�

drρφN (r) = 1 of the KS orbitals
with respect to the crystal volume � which equals MV and
thus scales with M . As a result of these scalings the first term∫
�

drṽHxc(r)ρφN (r) of the Taylor series (25) of the energy
difference EGGA

Hxc [ρ0] − EGGA
Hxc [ρ0 − ρφN ] has a nonzero value

because the 1/M scaling of ρφN (r) and the scaling of the
integration volume � with M compensate each other. The
quadratic term

∫
�

dr (2)f GGA
Hxc (r)(ρφN (r))2 of this Taylor series,

however, scales with 1/M because it contains the square of the
electron density which scales according to 1/M2 and again an
integration over the crystal volume scaling with M . Therefore
this contribution vanishes for M → ∞. The same holds true
for terms of the Taylor series of higher orders n which scale
as 1/Mn−1 with M . This means in the limit M → ∞ all terms
of the Taylor series of EGGA

Hxc [ρ0] − EGGA
Hxc [ρ0 − ρφN ] vanish

except the leading linear term
∫
�

drṽHxc(r)ρφN (r). This term,
however, is canceled by the second term on the right-hand side
of Eq. (24) which leads to
GGAEN

0 [v] − GGAEN−1
0 [v] = εGGA

N [v + ṽHxc] for M → ∞.

(27)

This means, for GGA functionals, �SCF calculations simply
yield the eigenvalue εGGA

N [v + ṽHxc] of the highest occupied
KS orbital as total-energy difference of the N - and (N − 1)-
electron system in the case of infinite systems.

As a consequence of Eq. (27) the potential adjustor

GGA�N−
Hxc[GGAṽHxc]

= GGAEN
0 [v] − GGAEN−1

0 [v] − εGGA
N [v + ṽHxc]

= εGGA
N [v + ṽHxc] − εGGA

N [v + ṽHxc]

= 0 for M → ∞. (28)

Similarly it can be shown for M → ∞ that GGAEN+1
0 [v] −

GGAEN
0 [v] = εGGA

N+1 [v + ṽHxc] and subsequently that also the
potential adjustor GGA�N+

Hxc[GGAṽHxc] = 0. As a consequence

GGAvN−
Hxc(r) = GGAvN+

Hxc(r) = GGAṽHxc(r) for M → ∞
(29)

and

GGA�N
Hxc = GGAvN+

Hxc(r) − GGAvN−
Hxc(r) = 0 for M → ∞.

(30)

This means for periodic systems in the limit of an infinite
number of k points the GGA potential adjustors vanish, the
GGA Hxc potential GGAṽHxc obtained as straightforward
functional derivative of the GGA Hxc energy equals the
corresponding GGA Hxc potentials GGAvN−

Hxc and GGAvN+
Hxc,

and the GGA derivative discontinuity GGA�N
Hxc vanishes.

Remember that this holds true only in the limit of infinite
system, while for finite systems the GGA potential adjustors
are nonzero, GGAṽHxc �= GGAvN−

Hxc �= GGAvN+
Hxc, and the GGA

Hxc potential exhibits a finite discontinuity. Moreover, note
that the vanishing GGA potential adjustors and the vanishing
derivative discontinuity are a consequence of a shortcoming of
the GGA xc energy, namely that, in the limit of infinite systems,
GGA total-energy differences between the N - and (N − 1)-
electron system and between the (N + 1)- and (N )-electron
system equal the N th and (N + 1)th KS eigenvalue, respec-
tively. This is completely in line with the results presented in
this work. If, e.g., the Hxc potential GGAvN−

Hxc = GGAṽHxc is
used in the KS equation then the energetically highest occupied
KS eigenvalue equals the negative of the ionization energy as it
results from a GGA �SCF calculation because the latter, as just
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shown, is simply εN
GGA[v + ṽHxc]. Furthermore, the GGA KS

band gap plus the GGA derivative discontinuity GGA�N
Hxc = 0

equals the physical band gap calculated by differences of GGA
�SCF calculations of the total GGA energies of the N -, the
(N − 1)-, and the (N + 1)-electron system, which also equals
the GGA KS band gap. Thus the problem to calculate physical
band gaps with GGA methods does not originate from the
GGA xc potentials but is a consequence of the fact that GGA
energy functionals are not suitable for this purpose.

The shortcoming of GGA xc energies to describe ionization
potentials and electron affinities of periodic systems in the
limit of infinite size has its origin in their functional form.
Indeed such shortcomings will plague any xc energy functional
with functional derivatives with respect to the electron density
that have the form (2)f GGA

Hxc (r)δ(r − r′) for the second-order
derivative and correspondingly the form (n)f GGA

Hxc (r1) times
products of δ functions in the variables r1,r2, . . . rn for the
nth-order functional derivative. Thus, due to basic limitations
of the ansatz, there is no chance to develop GGA-type xc
functionals that can correctly describe the physical band gap
of semiconductors.

It is crucial to note that the incapability of GGA functionals
to describe band gaps of infinite systems is a failure of the GGA
but not of the KS formalism itself. Approximate functionals for
the xc energy with a form different from that of GGA function-
als, in particular orbital-dependent functionals [30], exhibit
nonzero potential adjustors �N−

Hxc[v̄Hxc] and �N+
Hxc[v̄Hxc] and

nonzero derivative discontinuities �N
Hxc not only for finite but

also for infinite systems. The exact-exchange (EXX) only KS
method [36–39], i.e., a method which treats the exchange
energy and the corresponding local multiplicative KS ex-
change potential exactly but neglects correlation completely,
e.g., leads to large derivative discontinuities EXX�N

Hx of the
Hartree plus exchange energy and large potential adjustors
EXX�N−

Hx [v̄Hx] and EXX�N+
Hx [v̄Hx] in semiconductors [35].

The derivative discontinuity EXX�N
Hx equals the linear term in

an expansion of the derivative discontinuity along the adiabatic
connection introduced in Ref. [40]. If EXX�N

Hx is added to the
EXX KS band gap the resulting physical band gaps are much
larger than those found in experiment. This can be attributed
to the neglect of correlation. If the exact treatment of exchange
is accompanied by some suitable correlation functional, e.g.,
within the random-phase approximation, then reasonable band
gaps should be obtained.

If the GGA xc functional is considered as ensemble density
functional in a naive straightforward way then the difference
of the GGA Hxc energies for an electron number N and a
fractional electron number q with N − 1 < q < N is given
by Eq. (25) with ρN

0 replaced by (N − q)ρN
0 . Because the

quadratic and higher-order terms on the right-hand side of
Eq. (25) vanish, the GGA Hxc energy changes linearly with
the electron number q in the limit of an infinite system.
This means even if GGA functionals are used in a naive and
straightforward way as ensemble functionals, then GGA xc
energies correctly change linearly with the electron number in
the limit of infinite systems. Thus, for infinite systems, GGA
functionals do not suffer from localization and delocalization
errors as they are described in Refs. [10,11] for finite systems.
Nevertheless GGA xc potentials do not exhibit a discontinuity

at integer electron numbers and show the various other
shortcomings typical for GGA functionals. Thus the concept
of localization and delocalization errors for detecting and
analyzing shortcomings of xc density functionals seems to
be questionable in the case of infinite systems.

VI. CONCLUSIONS

It was shown that approximate xc potentials generally
exhibit discontinuities at integer electron numbers for finite
systems provided functional derivatives are taken in the correct
way. In contrast to hitherto common belief, this is also true
for GGA xc potentials. Discontinuities of xc potentials were
identified as derived quantities which automatically emerge
if the xc potentials are constructed properly with the use of
potential adjustors presented here. By the integer electron en-
semble approach (IEEA) introduced here it could be moreover
demonstrated that all relevant objects of the ensemble KS
formalism can be expressed in terms of quantities readily
available in the KS formalism of integer electron numbers.
This has strong implications for strategies to construct new xc
functionals. Efforts for the development of xc functionals only
need to concentrate on energy functionals for integer electron
numbers. Specific attempts to generate discontinuities in xc
potentials at integer electron numbers are not necessary.

In the limit of infinite systems GGA xc potentials do
not exhibit discontinuities at integer electron numbers even
if the derivatives are taken properly via the IEEA. On the
other hand, the GGA xc energy correctly behaves linearly
with the particle number in the limit of infinite systems
even if the GGA xc functional in a naive straightforward
way is used as ensemble density functional. This means in
the limit of infinite systems GGA functionals despite their
shortcomings do not exhibit localization or delocalization
errors, which means that the concept to analyze approximate
xc functionals in terms of these errors seems not to make
sense in this case. It is important to recognize that the lack
of discontinuities in infinite systems is a shortcoming of the
GGA energy functional but not a general shortcoming of the
KS formalism. For orbital-dependent functionals for the xc
energy the IEEA leads to xc potentials with discontinuities
even in the limit of infinite systems. Indeed with the potential
adjustors emerging in the IEEA it is possible to convert KS
band structures in approximate quasiparticle band structures
which exhibit the exact fundamental quasiparticle band gap. In
practice, of course, the band gaps would not be exact but their
quality would depend on the quality of the orbital-dependent
xc functional. Thus the potentials adjustors of the IEEA open
up a new route to fundamental band gaps completely within
the KS formalism without the need to resort to many-body
perturbation theory approaches like the GW method.
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