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The adiabatic connection of density functional theory (DFT) for electronic systems is generalized here to
negative values of the coupling strength α (with attractive electrons). In the extreme limit α → −∞ a simple
physical solution is presented and its implications for DFT (as well as its limitations) are discussed. For two-
electron systems (a case in which the present solution can be calculated exactly), we find that an interpolation
between the limit α → −∞ and the opposite limit of infinitely strong repulsion (α → +∞) yields a rather
accurate estimate of the second-order correlation energy EGL2

c [ρ] for several different densities ρ, without using
virtual orbitals. The same procedure is also applied to the Be isoelectronic series, analyzing the effects of near
degeneracy.
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I. INTRODUCTION, DEFINITIONS, AND OUTLINE

Combining low computational cost with reasonable accu-
racy for many molecules and solids, density functional theory
(DFT) [1,2] has become a particularly successful approach
for electronic-structure calculations both in chemistry and
in physics. In DFT, the exact electron density ρ = ρ(r)
and ground-state energy EN [v] of N interacting electrons
in a given external potential v = v(r) can be, in principle,
obtained by solving single-particle (“Kohn-Sham”) equations
for noninteracting electrons. In the practical implementation
of Kohn-Sham (KS) DFT, however, we have to rely on
approximations for the density functional Exc[ρ] of the
exchange-correlation (xc) energy. Despite the large number
of available approximations for this functional and of their
successful applications, there are still important cases in which
KS DFT can fail, which is why the quest for better xc
functionals continues to be a very active research field (for
recent reviews see Refs. [3–5]). For example, present-days KS
DFT encounters problems in the treatment of near-degeneracy
effects (rearrangement of electrons within partially filled
levels, important for describing bond dissociation but also
equilibrium geometries, particularly for systems with d and f
unsaturated shells), in the description of van der Waals long-
range interactions (relevant, for example, for biomolecules and
layered materials), and of localization effects due to strong
electronic correlations as those occurring in Mott insulators or
in low-density nanodevices.

An exact expression for the xc functional is the coupling-
constant integral [6–8]

Exc[ρ] =
∫ 1

0
dαWα[ρ]. (1)

The integrand is the α-dependent density functional

Wα[ρ] = 〈#α[ρ]|V̂ee|#α[ρ]〉 − U [ρ], (2)

with the operator of the electronic Coulomb repulsion

V̂ee = e2

2

N∑

i=1

N∑

j=1

1 − δij

|ri − rj |
, (3)

and the continuum functional of the Hartree energy,

U [ρ] = e2

2

∫
d3r

∫
d3r ′ ρ(r)ρ(r′)

|r − r′|
. (4)

The crucial quantity in Eq. (2) is the α-dependent wave
function

#α[ρ] = #α([ρ]; r1, . . . , rN ; σ1, . . . , σN ), (5)

where the rn and the σn, respectively, are spatial and
spin coordinates of the electrons. Out of all antisymmetric
N -electron wave functions # that are associated with the same
given electron density ρ, #α[ρ] denotes the one that yields the
minimum expectation of T̂ + αV̂ee [9], with the kinetic-energy
operator T̂ = − h̄2

2me

∑N
i=1 ∇2

i ,

〈#α[ρ]|T̂ + αV̂ee|#α[ρ]〉 = min
#→ρ

〈#|T̂ + αV̂ee|#〉. (6)

If the density ρ is v representable for all α ! 0, there exists an
α-dependent external potential vα

ext([ρ], r) such that #α[ρ] is
the ground state of the Hamiltonian

Ĥα[ρ] = T̂ + αV̂ee +
N∑

i=1

vα
ext([ρ], ri). (7)

By construction, this Hamiltonian has for all α ! 0 the same
ground-state density ρ = ρ(r) as the real system with α = 1.

At the noninteracting limit α = 0, the ground state of Ĥα[ρ]
is, in most cases, the single Slater determinant #0[ρ] with the
N occupied KS orbitals. Consequently,

Ex[ρ] ≡ W0[ρ] = 〈#0[ρ]|V̂ee|#0[ρ]〉 − U [ρ], (8)

is the functional of the DFT exchange energy.
For α > 0, #α[ρ] is no longer a Slater determinant of

single-particle orbitals, but a correlated N -electron wave
function. As α > 0 grows, the electron-electron repulsion
in the state #α[ρ] increases. So does the average distance
〈|ri − rj |〉 between two electrons. Consequently, for N > 1,
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the expectation of V̂ee in Eq. (2) must be a monotonically
decreasing function of α, d

dα
Wα[ρ] < 0.

The quantity

EGL2
c [ρ] ≡ 1

2
d

dα
Wα[ρ]|α=0, (9)

is the second-order correlation energy in the Görling-Levy
perturbation expansion [10,11]. It can be expressed in terms
of the KS single-particle orbitals, but, in contrast to Ex[ρ], it
requires also all the unoccupied orbitals

EGL2
c [ρ] = −

∞∑

k=1

∣∣〈#k
0 [ρ]

∣∣V̂ee − V̂H[ρ] − V̂x[ρ]|#0[ρ]〉|2

Ek
0 − E0

.

(10)

Here, #k
0 [ρ] is the kth excited state and Ek

0 the corresponding
eigenvalue (while E0 is the ground-state energy) of the
noninteracting Hamiltonian Ĥ0[ρ]. The operators V̂H[ρ] =∑N

i=1 vH([ρ]; ri) and V̂x[ρ] =
∑N

i=1 vx([ρ]; ri), respectively,
represent the Hartree potential

vH([ρ]; r) = δU [ρ]
δρ(r)

≡ e2
∫

d3r ′ ρ(r′)
|r − r′|

, (11)

and the exchange potential

vx([ρ]; r) = δEx[ρ]
δρ(r)

. (12)

Since the exchange functional Ex[ρ] is not known explicitly in
terms of the density ρ, but only implicitly via the KS orbitals
[Eq. (8)], the evaluation of the function vx([ρ]; r) for a given
density ρ is a nontrivial problem (see Refs. [12–17]). The
resulting weak-interaction expansion of Wα[ρ] is then

Wα[ρ] = Ex[ρ] + 2EGL2
c [ρ]α + · · · (α → 0). (13)

The functional Wα[ρ] and its exact properties have always
played a central role for the construction of approximate
Exc[ρ] (see Refs. [18–22]). Although the integration over α in
Eq. (1) runs between 0 and 1, we can consider values ofα larger
than the physical interaction strength α > 1. In particular, the
strong-interaction (or low-density) limit of DFT is defined as
the α → ∞ limit of Wα[ρ]. It was shown that, in this limit,
the leading terms in Wα[ρ] are [23–27]

Wα[ρ] = W∞[ρ] + W ′
∞[ρ]√
α

+ W ′′
∞[ρ]
α

+ · · · (α → ∞).

(14)

While generally W ′′
∞[ρ] = 0 [23,27,28], the functionals

W∞[ρ] and W ′
∞[ρ] were evaluated systematically for spher-

ically symmetric N -electron densities [26,27]. This α → ∞
expansion of Wα[ρ] is useful in several ways. For example
(even if treated in an approximate way [23]), it was used to
build an exchange correlation functional (interaction-strength
interpolation, or ISI) by interpolating Wα[ρ] between α → 0
[Eq. (13)] and α → ∞, yielding atomization energies of
simple molecules with errors within ∼3.4 kcal/mol [29,30].
Moreover, by properly rescaling a given approximate
functional Exc[ρ], it is possible to test its performance in
the strong-interaction limit, thus adding a new constraint
for building approximations [28,31,32]. More recently, the
strong-interaction limit was used to directly address strongly

correlated systems [33,34] in a DFT framework completely
different with respect to the traditional KS one.

In this work we aim at extending our knowledge on the
functional Wα[ρ] by studying its behavior for α < 0, thus
considering attractive electrons. In the very limit α → −∞,
we propose a rather simple and physically appealing solution,
which can be evaluated exactly in the case of two-electron
systems. The main interest in the exploration of this limit
is to find new pieces of information on the unknown func-
tional Wα[ρ]. Similarly to previous work on the opposite
α → ∞ limit, we expect that our results will open new pos-
sibilities for improving state-of-the-art DFT approximations.
Notice that, so far, the α < 0 case was only addressed in
the special case of two electrons confined on the surface
of a sphere, where accurate numerical calculations for α ∈
(−∞,∞) were performed [35]. A functional tuned to repro-
duce these calculations also for α < 0 was recently proposed
[36]. The present work fully extends these early results by
addressing the α → −∞ limit in a general way.

The article is organized as follows. In Sec. II we
present our solution for #α[ρ], vα

ext([ρ], r) and Wα[ρ] in the
α → −∞ limit, discussing the implications for DFT, as well
as the limitations of our approach. As a first application, we
show in Sec. III that for two-electron systems the information
on the α → −∞ limit can be used to get a rather accurate
estimate of EGL2

c [ρ] of Eq. (10) by simply interpolating
between the α → ±∞ limits and thus without using the
unoccupied orbitals. The same procedure is also applied to
the Be isoelectronic series and the role of near-degeneracy
effects in this framework is discussed. Section IV is devoted
to conclusions and perspectives.

II. THE LIMIT α → −∞
For α < 0, the Hamiltonian (7) describes attractive elec-

trons with a given ground-state density ρ = ρ(r). To un-
derstand how attractive fermions can be forced to form a
given smooth density distribution ρ by means of a local
external potential vα

ext([ρ], r), we consider here the extreme
case α → −∞.

A. The wave function "α[ρ] for α → −∞
As their attraction becomes very strong (α → −∞), we

expect that the electrons in the state #α[ρ] form a compact
“attractive-electron cluster” (AEC). With this, we mean that
simultaneous measurement of their positions in this state
will always yield N points r1, . . . , rN in space that are
very close to each other, much closer than any distance
over which the density ρ(r) changes appreciably. For N = 2,
for example, the AEC is a positronium-type object with
an average distance of 〈|r1 − r2|〉 = 2aB

|α| between the two
electrons (where aB = h̄2/mee

2 is the Bohr radius). Notice that
here we are only interested in the mathematical limitα → −∞
of the Hamiltonian (7) so that we disregard any relativistic
effect.

Exploiting this concept of a compact AEC, we expect that,
as α → −∞, the external potential vα

ext([ρ], r) approaches a
smooth function of r which gives the quasipoint-like AEC
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AEC

ρ(r)

FIG. 1. As the coupling strength α → −∞, the N electrons are
expected to form a compact (point-like) AEC, whose center-of-mass
position has the probability distribution 1

N
ρ(r).

the probability distribution 1
N
ρ(r), as pictorially sketched in

Fig. 1.
To formalize this idea, we write

N∑

i=1

vα
ext([ρ], ri)#α([ρ]; r1, . . . , rN ; σ1, . . . , σN )

≈ Nvα
ext([ρ], R)#α([ρ]; r1, . . . , rN ; σ1, . . . , σN )

(α → −∞), (15)

where R = 1
N

∑N
i=1 ri is the center of mass of the N electrons.

The accuracy of this approximation grows indefinitely as
α → −∞, when the radius of the AEC tends to zero. Thus, we
introduce relative Jacobi coordinates sn (n = 1, . . . , N − 1)
and the center of mass sN ≡ R,

sn = 1
n

n∑

i=1

ri − rn+1 (1 " n < N), (16)

sN = 1
N

N∑

i=1

ri ≡ R. (17)

For 1 < n < N , the inverse transformation reads

rn = R − n − 1
n

sn−1 +
N−1∑

&=n

s&
& + 1

, (18)

while for n = 1 and n = N we have

r1 = R +
N−1∑

&=1

s&
& + 1

, rN = R − N − 1
N

sN−1. (19)

In terms of the Jacobi coordinates s1, . . . , sN−1, sN ≡ R,
the operator T̂ = − h̄2

2me

∑N
i=1 ∇2

i assumes the form

T̂ = − h̄2

2M

∂2

∂R2
+ T̂rel, M = Nme, (20)

where T̂rel acts on the relative coordinates only

T̂rel = −h̄2

2

N−1∑

n=1

1
mn

∂2

∂s2
n

, mn = n

n + 1
me. (21)

Also, the purely multiplicative operator V̂ee of Eq. (3) depends
on the relative coordinates only

V̂ee = Ṽee(s1, . . . , sN−1), (22)

since ri − rj is independent of R, see Eqs. (18) and (19).
The resulting structure of the Hamiltonian (7), within the

approximation (15), implies a product ansatz for the wave
function #α[ρ] in terms of the new coordinates

#α[ρ] → φα([ρ]; R) ψα(s1, . . . , sN−1; σ1, . . . , σN ), (23)

where φα and ψα are, respectively, the lowest-eigenvalue
solutions of the following Schrödinger equations

{
− h̄2

2M

∂2

∂R2
+ Nvα

ext([ρ], R)
}
φα = Eα

cmφα, (24)

{T̂rel + αṼee(s1, . . . , sN−1)}ψα = Eα
relψα. (25)

Since φα([ρ]; R) is symmetric with respect to permutations of
the electronic coordinates rn, the second factor ψα of the wave
function (23) must be antisymmetric

ψα(. . .) = 1√
N !

∑

π∈SN

(−1)π P̂πψα(. . .). (26)

Here, SN is the group of the N ! permutations π of N elements
and (−1)π is the sign of π . The operator P̂π is defined by

P̂πψα({s(r1, . . . , rN )}; σ1, . . . , σN )
= ψα({s(rπ(1), . . . , rπ(N))}; σπ(1), . . . , σπ(N)), (27)

with the short-hand notation {s} := s1, . . . , sN−1 and the
explicit functions sn = sn(r1, . . . , rN ) of Eq. (16). To recover
on the right-hand side a pure function of s1, . . . , sN−1 (and of
the σn), the rπ(n) must be re-expressed in terms of the sn by
Eqs. (18) and (19), where sN cancels out.

The factors φα and ψα of the wave function (23) are
addressed, respectively, in the following two sections.

B. The external potential vα
ext([ρ], r) for α → −∞

In terms of the first factor φα in Eq. (23), the probability
density of the electronic center-of-mass position R in the wave
function #α[ρ] for α → −∞ is given by

ρα
cm([ρ], R) →

∑

σ1,...,σN

∫
d3s1 · · ·

∫
d3sN−1 |φαψα|2

= φα([ρ], R)|2. (28)

For α → −∞, when the AEC becomes very compact (point-
like), the function Nρα

cm([ρ], R) must approach the electron
density ρ(r). Then, using φα(r) =

√
ρα

cm(r), Eq. (24) can be
resolved for vα

ext([ρ], r)

lim
α→−∞

vα
ext([ρ], r) = E−∞

cm

N
+ h̄2

2meN2

∇2√ρ(r)√
ρ(r)

. (29)

According to this result, the external potential vα
ext([ρ], r) in

the Hamiltonian (7) approaches a smooth and finite function
v−∞

ext ([ρ], r), as α → −∞. The value E−∞
cm can be fixed

by the condition vα
ext([ρ], r) → 0 for |r| →∞ . Obviously,

Nv−∞
ext ([ρ], r) is simply the external potential for a single

particle with mass M = Nme (which is the AEC of the
previous Sec. II A) and ground-state density 1

N
ρ(r).

So far, we see that an external potential vα
ext([ρ], r) can, for

α → −∞, generate a given smooth density distribution ρ(r)
for N attractive electrons. The smooth distribution is achieved
by the uncertainty in the center-of-mass position R of the
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AEC. This picture becomes questionable in cases such as the
stretched H2 molecule, where the density is separated spatially
into several pieces.

C. The functional Wα[ρ] for α → −∞
As we see in Sec. II A, as α → −∞ #α[ρ] should be

better and better approximated by the product ansatz of
Eq. (23). Consequently, the expectation 〈#α[ρ]|V̂ee|#α[ρ]〉
can be computed in this limit by using the second factor ψα

of Eq. (23), as V̂ee only depends on the relative coordinates.
Thus, for α → −∞ we have

Wα[ρ] + U [ρ]

≡ 〈#α[ρ]|V̂ee|#α[ρ]〉

→
∑

σ1,...,σN

∫
d3s1 · · ·

∫
d3sN−1|ψα(. . .)|2Ṽee(s1, . . . , sN−1),

(30)

where we integrated out the center-of-mass coordinate and
used the normalization

∫
d3R|φα([ρ], R)|2 = 1. We now

remark that the Schrödinger equation for ψα of Eq. (25) is not
affected by the details of the density function ρ(r), but only by
the electron number N =

∫
d3rρ(r), so that the same is true for

its lowest-eigenvalue solution ψα and thus for the right-hand
side of Eq. (30). This means that, for all different densities ρ
with the same electron number N , the function Wα[ρ] + U [ρ]
on the left-hand side of Eq. (30) has the same asymptote when
α → −∞. This point is, of course, very appealing, but has
obvious limitations that will be discussed in the next Sec. II D.

To address the solution ψα of Eq. (25), we consider the
universal (i.e., density independent) Hamiltonian

ĤN
α = T̂ + αV̂ee (α < 0). (31)

ĤN
α describes a system of N attractive electrons in the absence

of any localizing external potential vext(r). Such a system has
translational symmetry and a uniform ground-state density ρ̄.
To make ρ̄ finite, we can introduce a normalization volume
+ = N/ρ̄ and impose periodic boundary conditions on the
wave function. In the ground state of ĤN

α , the N electrons are
forming a “free” AEC whose center-of-mass position R has a
uniform probability distribution within +, with density 1

N
ρ̄.

Notice that for the Hamiltonian (31), Eq. (15) is not
an approximation, since vα

ext([ρ̄], r) ≡ 0. Consequently, the
product on the right-hand side of Eq. (23), where the factors φα

and ψα satisfy Eqs. (24) [with vα
ext ≡ 0] and (25), respectively,

represents the exact ground state #N
α of ĤN

α , for all finite
values of α " 0. Therefore, Eq. (30) can be written as

〈#α[ρ]|V̂ee|#α[ρ]〉 →
〈
#N

α

∣∣V̂ee
∣∣#N

α

〉
(α → −∞). (32)

Due to the universal form of the Hamiltonian (31), its
ground-state wave functions #N

α for different interaction
strengths α < 0 are related by a simple scaling law

#N
α ({r, σ }) = |α|3N/2#N

α=−1({|α|r, σ }), (33)

in the short-hand notation {r, σ } ≡ r1, . . . , rN ; σ1, . . . , σN .
The resulting scaling law for the ground-state energy EN

α of
ĤN

α reads

EN
α = α2EN

α=−1. (34)

Notice that EN
α is the eigenvalue in Eq. (25)

{T̂rel + αṼee(s1, . . . , sN−1)}ψα = EN
α ψα. (35)

The virial theorem 〈#N
α |T̂ |#N

α 〉 =− 1
2 〈#N

α |αV̂ee|#N
α 〉, yields

EN
α = 1

2 〈#N
α |αV̂ee|#N

α 〉 or

〈
#N

α

∣∣V̂ee
∣∣#N

α

〉
= 2

α
EN

α = 2αEN
−1. (36)

Consequently, according to Eq. (32), the integrand of Eq. (1)
asymptotically approaches forα → −∞ a linear function with
slope 2EN

−1 < 0,

Wα[ρ] → 2αEN
−1 − U [ρ] (α → −∞). (37)

As said, since EN
−1 is the ground-state energy of a free AEC

at α = −1, it cannot depend on details of the density ρ, but
only on the electron number N =

∫
d3rρ(r). We discuss in the

following the limitations of this result.

D. Limitations of the AEC solution

First of all, as already mentioned, the AEC picture breaks
down when the density is composed of several disjointed
subsystems (e.g., stretched molecules). In the case of nonin-
teracting fragments, to be size consistent the limit of Eq. (37)
should apply separately to each subsystem, which is physically
reasonable, but difficult to prove rigorously. The transition
from a jointed to a disjointed system (e.g., during molecular
stretching) remains also unclear.

An even more important point is the following. To be
useful to construct approximations for Wα[ρ], the α → −∞
asymptote of Eq. (37) should be approached in a continuous
and smooth way starting from α = 1 (i.e., without phase
transitions). This is generally not true so that often the state
ψα , which is smoothly connected with the physical (α = 1)
system is not the ground state of the Hamiltonian of Eq. (25).
As a simple example, consider the N atom. At α = 1,
we have N↑ = 5 spin-up electrons and N↓ = 2 spin-down
electrons, but we may expect that the ground state of the
AEC corresponds to N↑ = 4, N↓ = 3, as pairing is usually
energetically advantageous for an attractive interaction, so that
we will have a spin-flip transition at α " 0. As the number
of electrons increases, we may encounter even more difficult
cases with possible “exotic” phases. An interesting point is
that, however, the α → −∞ potential vα

ext([ρ], r) of Eq. (29)
is the same for all the excited states of the cluster, including the
one continuously connected with the physical system, if such
a state exists. Nonetheless, with all these limitations in mind,
we may still expect that the results presented in the previous
section be qualitatively correct for many interesting systems.

In simple cases such as closed-shell two and four-electron
systems with a reasonable compact density, we might expect
a continuous connection between the limit of Eq. (37) and
the α = 1 case. In Sec. III, we construct a simple continuous
interpolation between the two limits α → ±∞ and we use it to
estimate EGL2

c [ρ] for spherical two and four-electron densities.
In the latter case, we will discuss the role of near-degeneracy
effects.
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III. EGL2
c [ρ] FROM THE LIMITS α → ±∞

We now construct an analytic model WAR
α [ρ] (“AR” stands

for “attraction-repulsion” here) that shares the properties (13),
(14), and (37) with the unknown exact functional Wα[ρ]
of Eq. (1), which we assume here to be a continuous and
smooth function of α also for α " 0, even if we keep in mind
the limitations of this assumption discussed in the previous
Sec. II D. In particular, our model will share the correct
density-scaling behavior with the unknown exact functional
Wα[ρ], see Eq. (53) below. Since the inverse function is easier
to model, we write

WAR
α [ρ] = f −1(α). (38)

According to Eqs. (13), (14), and (37), respectively, this inverse
function f (w) must satisfy the conditions

f (w) →
(

W ′
∞

w − W∞

)2

(w → W∞), (39)

f (Ex) = 0 (w = Ex), (40)

f (w) → w + U

2EN
−1

(w → ∞), (41)

where w = f −1(α) and f (w) = f [f −1(α)] = α. Here, we
dropped the functional symbol [ρ] for brevity, as we shall
do in most of the following equations.

Eqs. (39) and (41) are satisfied by the preliminary choice

f1(w) = w + U

2EN
−1

+
(

W ′
∞

w − W∞

)2

, (42)

which, however, ignores condition (40). In particular,
f1(w) approaches the asymptotic form of Eq. (41) too
slowly, f1(w) = (w + U )/2EN

−1 + O(w−2). Instead, we ex-
pect f (w) = (w + U )/2EN

−1 + O(e−w), or equivalently,

Wα[ρ] = 2αEN
−1 − U [ρ] + O(eα) (α → −∞). (43)

This conjecture is based on Eq. (33), indicating that the size
of the AEC shrinks by the factor |α|−1 as α → −∞, while
the external potential vα

ext([ρ], r) approaches a smooth finite
limit, see Eq. (29). Consequently, the point where the radius of
the AEC becomes smaller than any distance |r| over which
vα

ext([ρ], r) changes appreciably, must be reached at some
moderately negative value α0[ρ] of the parameter α,

Wα[ρ] ≈ 2αEN
−1 − U [ρ] (α < α0[ρ]). (44)

This conjecture is also supported by the numerical data sets
shown in Fig. 3, where α0 takes values ≈ −3.4 (Sp3) and
≈ −1.0 (Sp2). Accordingly, we modify Eq. (42)

f2(w) = w + U

2EN
−1

+
(

W ′
∞

w − W∞

)2

e−(w−W∞)/,. (45)

Note that the exponential factor in Eq. (45) equals 1 at
w = W∞[ρ], thus preserving the correct limit (39). Due to
the general scaling property of the exact Wα[ρ], see Eq. (53),
the parameter , = ,[ρ] must scale the same way as W∞[ρ],
,[ρλ] = λ,[ρ]. Therefore, we set

,[ρ] = |W∞[ρ]|, (46)

2

0

–2

–4

–6

–2 0 2 4

FIG. 2. The functional Wα[ρ] (in Hartree atomic units) as a
function of the dimensionless coupling strength parameter α (solid
curve), as modeled in Sec. III, using the five functionals Ex[ρ], U [ρ],
W∞[ρ], W ′

∞[ρ], and EN
−1 for the Be atom (see Table I).

identifying the unknown number α0[ρ] from Eq. (44) approx-
imately with the zero of Wα[ρ],

Wα0[ρ][ρ] ≈ 0 ⇔ f (0) ≈ α0[ρ], (47)

see Figs. 2 and 3.
To satisfy condition (40) as well, we introduce an extra

factor hB(w) with hB(W∞) = 1,

f (w) = w + U

2EN
−1

+
(

W ′
∞

w − W∞

)2

hB(w) e−(w−W∞)/,. (48)

In terms of the number (with , = |W∞|)

B ≡ Ex + U

−2EN
−1

(
Ex − W∞

W ′
∞

)2

e(Ex−W∞)/, > 0, (49)

1.0

0.5

0.0

–0.5

–1.0

–1.5

–2.0
–4 –2 0 2 4

α

FIG. 3. The functional Wα[ρ] (in Hartree atomic units) as a
function of the dimensionless coupling strength parameter α for the
systems Sp2 and Sp3 defined in the Appendix. The accurate numerical
values (dots) are compared with the model of Sec. III (solid curves).
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we choose for w ∈ [W∞,+∞]

hB(w) =






1 + (B − 1) w−W∞
Ex−W∞

: B ! 1,
[
1 +

( 1
B

− 1
)

w−W∞
Ex−W∞

]−1
: B " 1.

(50)

Then, hB(W∞) = 1, hB(Ex) = B, and hB(w) > 0 is monoton-
ically increasing (B > 1) or decreasing (B < 1).

The function WAR
α [ρ] = f −1(α) has five parameters: EN

−1,
U [ρ], Ex[ρ], W∞[ρ], and W ′

∞[ρ] and it is shown in Fig. 2. As
an illustration, Fig. 3 shows the true integrand Wα[ρ] (dots),
evaluated numerically for the systems Sp2 and Sp3 (see the
Appendix). For these systems, the numerical evaluation of
the exact Wα[ρ] is straightforward since their α-dependent
external potential v

(α)
ext (r) in the Hamiltonian (7) is trivial and

thus known from the beginning.
Since 2EGL2

c [ρ] ≡ d
dα

Wα[ρ]|α=0, our model WAR
α [ρ] yields

a simple prediction ẼGL2
c [ρ] = 1

2
d
dα

WAR
α [ρ]|α=0 = 1

2f ′(Ex) for
the second-order correlation energy EGL2

c [ρ],

ẼGL2
c [ρ] = EN

−1

[
1 + (Ex + U )

(
B ′

Ex − W∞
− 1

W∞

)]−1

(51)

B ′ =
{

1 + 1
B

(B ! 1),
3 − B (B " 1).

Unlike the exact functional EGL2
c [ρ] whose evaluation requires

additional knowledge of all the unoccupied KS orbitals, the
approximation (51) only depends on the N -occupied orbitals
(via Ex[ρ]), on the universal number EN

−1, and explicitly
on the density ρ itself. Nevertheless, the new functional
has the correct scaling behavior of the exact EGL2

c [ρ] (only
valid when the KS system does not become degenerate or
quasidegenerate)

ẼGL2
c [ρλ] = ẼGL2

c [ρ], (52)

where ρλ(r) ≡ λ3ρ(λr) (with λ > 0) is a scaled density. More
generally, the model integrand WAR

α [ρ] has the correct scaling
property [37] of its exact counterpart Wα[ρ],

WAR
α [ρλ] = λWAR

α/λ[ρ]. (53)

This law has a simple graphical interpretation: Plotting
WAR

α [ρλ] versus α amounts to zooming the corresponding
plot of WAR

α [ρ] by the factor λ. This graphical property
is satisfied by the function f (w), Eq. (48) (and then also
for its inverse, WAR

α [ρ]) since we have the general scaling
laws U [ρλ]=λU [ρ], Ex[ρλ]=λEx[ρ], W∞[ρλ]=λW∞[ρ],
and W ′

∞[ρλ]=λ3/2W ′
∞[ρ].

A. Application to N = 2 systems

For a closed-shell two-electron system with a reasonable
compact density, the cluster energy EN=2

−1 needed in Eq. (37)
can be calculated exactly: The AEC defines a positronium-like
problem whose ground-state energy is, for three-dimensional
systems, E2

−1 = − 1
4 Ha. Moreover, in this special case

we expect that the α → −∞ limit is reached smoothly
from α = 1.

In Table I we report the prediction of ẼGL2
c [ρ] from

Eq. (51) for several two-electron densities and we compare
it with accurate values EGL2

c [ρ] from the literature. The sys-
tems denoted “SpD” (D = 2, . . . , 5) correspond to electrons
confined on the surface of a sphere in D dimensions and are
defined in the Appendix A. For these systems exact values are
available [35,38,39]. “Exp” refers to a hypothetic two-electron
atom with ground-state density ρ(r) = e−r/aB /4πa3

B , whose
corresponding accurate EGL2

c [ρ] is taken from Ref. [40].
“Hoo” refers to the Hooke atom, consisting of two electrons
in the external potential vext(r) = k

2 r2, with k = 1
4 . Its exact

density is analytically known [41] and the corresponding
EGL2

c [ρ] is from Ref. [42]. The accurate densities for He
and Ne8+ and the corresponding values of EGL2

c [ρ] are
taken from the work of Colonna and Savin [43]. For all the
densities considered here, the functionals W∞[ρ] and W ′

∞[ρ]
were evaluated using the procedure described, respectively, in
Refs. [26,27].

We see that for all the two-electron systems considered here,
the functional ẼGL2

c [ρ] of Eq. (51) is in very good agreement
with the corresponding accurate values from the literature, with
a maximum error of ∼3 mHa. Notice in particular how, for the
Sp2 system, the unusually high value EGL2

c [ρ] = −227.4 mHa

TABLE I. The AEC energies EN
−1 and the functionals U [ρ], Ex[ρ], W∞[ρ], and W ′

∞[ρ] of the expansions (37), (13), and (14), the
dimensionless parameter B, Eq. (49), and the resulting predictions ẼGL2

c [ρ] of the second-order correlation energy EGL2
c [ρ] for various

D-dimensional N -electron systems. The systems SpD (D = 2, . . . , 5), here with radius R = aB , are defined in the Appendix; “Exp” refers to
a hypothetic two-electron atom with ground-state density ρ(r) = e−r/aB /4πa3

B ; “Hoo” refers to the Hooke atom, consisting of two electrons in
the external potential vext(r) = k

2 r2, with k = 1
4 .

System N D EN
−1 U [ρ] Ex[ρ] W∞[ρ] W ′

∞[ρ] B ẼGL2
c [ρ] EGL2

c [ρ] Error
Units – – 1 Ha = 27.21 eV – 10−3 Ha 10−3 Ha

Sp2 2 2 −1.00 2.000 −1.000 −1.500 0.250 2.791 −228.1 −227.4 −0.7(0.3%)
Sp3 2 3 −0.25 1.698 −0.849 −1.198 0.375 1.968 −46.5 −47.6 +1.1(2.3%)
Sp4 2 4 −0.1111 1.6 −0.8 −1.1 0.5 1.702 −18.64 −19.18 +0.5(2.8%)
Sp5 2 5 −0.0625 1.55214 −0.77607 −1.05214 0.625 1.575 −9.87 −10.14 +0.3(2.7%)
Exp 2 3 −0.25 1.250 −0.625 −0.910 0.345 1.167 −43.4 −46.7 +3.3(7.1%)
Hoo 2 3 −0.25 1.030 −0.515 −0.743 0.208 1.682 −47.2 −50.5 +3.3(6.5%)
He 2 3 −0.25 2.049 −1.025 −1.500 0.621 1.649 −48.6 −47.5 −1.1(2.3%)
Ne8+ 2 3 −0.25 12.055 −6.028 −8.794 8.792 1.631 −48.0 −46.7 −1.3(2.8%)
Be 4 3 −1.255 7.217 −2.673 −4.021 2.59 0.6857 −126.4 −128.4 +2.0(1.6%)
Ne6+ 4 3 −1.255 21.742 −7.600 −11.563 12 0.8655 −127.5 −320.4 +193(60%)

012508-6



ADIABATIC CONNECTION AT NEGATIVE COUPLING . . . PHYSICAL REVIEW A 81, 012508 (2010)

is predicted from the unusually high energy E2
−1 = −1 Ha of

the AEC in two dimensions (i.e., the slope of the corresponding
inclined dashed line at α < 0 in Fig. 3). In contrast, the
remaining four functionals U , Ex , W∞, and W ′

∞ in Table I
do not differ dramatically between Sp2 and Sp3. The same
happens for the Sp4 and Sp5 systems: Their lower values of
EGL2

c [ρ] are well predicted by the lower energy of the AEC in
four and five dimensions.

B. Application to the Be series: The effect of near degeneracy

For the Be isoelectronic series, we have closed-shell N = 4
systems so that we may still expect that the α → −∞ limit
of Eq. (37) be approached smoothly from α = 1. However,
as the nuclear charge Ze increases, the 2s and 2p KS-orbital
energies become closer and closer, resulting in a large increase
of EGL2

c [ρ]. Indeed, in this case the scaling property of
Eq. (52), satisfied by the present model of Eq. (51), does not
hold anymore, so that we can expect a failure of Eq. (51) for
large Z.

As an illustration, we applied the model of Eq. (51) to
the Be and the Ne6+ densities. The cluster energy for N = 4
was estimated from a configuration interaction (CI) calculation
[44]. The accurate values of U [ρ], Ex[ρ], and EGL2

c [ρ] are
taken, in both cases, from the work of Colonna and Savin
[43]. Using the same densities of Colonna and Savin [43], we
calculated here the values of W∞[ρ] and W ′

∞[ρ], following
the procedures described, respectively, in Refs. [26,27].

We see that the result for Be is quite accurate, yielding an
estimate of EGL2

c [ρ] with an error of only 2 mH, confirming
the hypothesis that, also in this case, the α → −∞ limit is
reached smoothly from α = 1. However, as the system starts
to display strong near degeneracy as in the case of Ne6+,
we see that the present model fails, making an error of 60%
in the estimate of EGL2

c [ρ]. When Z continues to increase
beyond the value Z = 10 considered here, the ground-state
density becomes no longer pure-state v representable, but only
ensemble v representable [45–50]. At this point, the definition
of both Ex[ρ] and EGL2

c [ρ] should change.

IV. CONCLUSION AND PERSPECTIVES

We present a comprehensive analysis of the DFT adiabatic
connection at negative coupling strengths α. In the extreme
limit α → −∞ we find a simple and physically appealing
solution, which, albeit suffering from limitations due to the
complexity of the many-electron problem with attractive
interaction, can be calculated exactly in the case of reasonably
compact two-electron systems and provides insight also when
N > 2. As a first example of the application of our results, we
show that, for N = 2, the exact information at α → −∞ can
be used, in combination with the opposite α → +∞ limit, to
estimate the second-order correlation energy EGL2

c [ρ] without
using virtual orbitals. The same procedure works very well
also for the Be atom, but breaks down in the case of Ne6+

because of strong near-degeneracy effects.
The analysis carried out here extends our knowledge on

the exact properties of the exchange-correlation functional
Exc[ρ] and can be used to test and improve approximations.
Another possible application of the present results can arise in

the framework of a recently proposed approach to the many-
electron problem that contains a mixture of Hartree-Fock
and Hartee-Fock-Bogoliubov methods [51]. This approach
is based on the splitting of the Coulomb electron-electron
interaction 1/r as −1/r + 2/r . The attractive part −1/r
triggers the Hartee-Fock-Bogoliubov solution. An energy
density functional to describe dynamical correlation is also
needed in the method [51]. For this latter point, the extension
to negative coupling α of the adiabatic connection can prove
useful in defining and constructing the appropriate energy
functional needed in the method.
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APPENDIX: TWO ELECTRONS ON THE SURFACE
OF A SPHERE

Sp2 is a system of two electrons that are confined to the
two-dimensional surface S2 of a sphere with given radius R.
Recently [35,38,39], this system was studied extensively. It
is of particular interest for DFT since its two-dimensional
ground-state density for all values of the interaction strength
α ∈ R is distributed uniformly over the spherical surface.
Consequently, the external potential vα

ext([ρ]; r) in the Hamil-
tonian (7) is trivial and known from the beginning. The
two-dimensional confinement of these electrons, however,
gives rise to an unusually large value [35,38] of

EGL2
c (R) = (4 ln 2 − 3) Ha = −227.4 mHa. (A1)

This effect can be traced (see Fig. 3) to the strongly negative
energy EN=2

−1 of an AEC in D = 2 dimensions. For any
dimension D ! 2, we have [52]

EN=2
−1 (D) = − 1

(D − 1)2
Ha. (A2)

While the value (A1) is independent of the spherical radius R,
the remaining functionals of Table I are

Ex(R) = −e2

R
≡ −1

2
U (R),

W∞(R) = −3
2

e2

R
, (A3)

W ′
∞(R) = 1

4

(aB

R

)3/2 e2

aB

,

with R = aB in Table I.
A similar, but more realistic two-electron system is Sp3,

which has its electrons confined to the three-dimensional
surface S3 of a sphere in four-dimensional space

S3 =
{
(x, y, z, u) ∈ R4

∣∣x2 + y2 + z2 + u2 = R2}. (A4)

Again, the ground-state density is distributed uniformly,
but now in a three-dimensional finite (curved) space S3.
Consequently, we obtain a value very close to the one for
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the He atom (see Table I) [39,53,54]

EGL2
c (R) =

(
4
3

− 368
27π2

)
Ha = −47.6 mHa; (A5)

the exact value was found recently by Loos and Gill [54]. The
remaining functionals of Table I are [53]

Ex(R) = − 8
3π

e2

R
≡ −1

2
U (R),

W∞(R) =
(

1
2

− 16
3π

)
e2

R
, (A6)

W ′
∞(R) = 3

8

(aB

R

)3/2 e2

aB

,

with R = aB in Table I.
Even more generally, we may consider two electrons on the

D-dimensional surface

SD =
{
(x1, . . . , xD+1)

∣∣x2
1 + · · · + x2

D+1 = R2}, (A7)

for D ! 4. For D ∈ {4, 5}, for example, the corresponding
exchange energies are [53]

Ex(4, R) = −4
5

e2

R
≡ −1

2
U (4, R),

(A8)

Ex(5, R) = − 256
105π

e2

R
≡ −1

2
U (5, R).

The remaining coefficients for D ! 4 are given by [53]

W∞(D,R) = e2

2R
− U (D,R),

(A9)
W ′

∞(D,R) = D

8

(aB

R

)3/2
Ha.

For D ∈ {4, 5}, we are comparing in Table I our resulting
predictions for EGL2

c (D,R) with the exact values, recently
found by Loos and Gill [54],

EGL2
c (4, R) =

(
64
75

ln 2 − 229
375

)
Ha,

(A10)

EGL2
c (5, R) =

(
24
35

− 2650112
385875π2

)
Ha.
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