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An extension of density functional theory is proposed for degenerate states. There are suitably
selected basic variables beyond the subspace density. Generalized Kohn—Sham equations are
derived. A direct method is proposed to ensure the fixed value of ensemble quantities. Then the
Kohn—Sham equations are similar to the conventional Kohn—Sham equations. But the Kohn—Sham
potential is different for different ensembles. A simple local expression is proposed for the
correlation energy. @005 American Institute of PhysidDOI: 10.1063/1.1871933

I. INTRODUCTION ar
In a couple of recent papérsii was shown that it is 1=2, Wy (3)
=1

possible to choose arbitrary physical quantities as basic vari-
ables to determine the ground-state properties of the system.

An approach presented by Nagy and Parr in the local therand
modynamical formalisfcan be considered a special case of

this general approach. Recently, Betkad Maximoffet al? W
treated degenerate states by a method that can also be re- 7
garded a special case of the theory of Higuchi and Higbchi.

Here, an extension of this general theory is proposed for The superscrip® in n' denotes that it is constructed

=0. (4)

degenerate states. from wave functions that belong to the subsp&e The
subspace densities do not generally have the symniétry

Il. GENERALIZED HOHENBERG-KOHN THEOREM Their symmetry depends on the weighting factarstoo. In

FOR A DEGENERATE STATE principle, any set of weighting factoss,, satisfying condi-

tions(3) and(4) can be used. It was shown that if the weight-
ing factorsw, are all equal, the subspace density has the
gymmetry of the external potential. So, for instance, for at-
oms the subspace density is spherically symmetric. The sub-
space density matrix is defined as

In an earlier paper one of the authbpoposed a for-
malism for degenerate states. Now, we extend this theor
into a more general one.

Consider the lowest-lying solutions of the Schrdédinger

equation
ATy =B (y=1,2,...gp), (1) .
wheregy is the degeneracyOnly one index is used to de- D" =2 w WX, 5
y=1

note the symmetry both in spin and ordinary sppdée

subscript 0 in the energy shows that only the lowest-lying
solution of symmetryl” is regarded. The space of all anti-
symmetric wave functions is divided into disjoint subspace
with different symmetries. The constrained-search technique

Let X denote suitably selected quantity or quantities.
SThe subspace average can be given by

is applied over a subspa&k. The dimension of the subspace ar
is equal to the degeneragy-. xr=> Wy(xp5|)”(|xpg>, (6)
The subspace density is defined by y=1

ar
LEDY va W5 Pdsidx; -+ dxy, (2 whereX is the corresponding operater. In the following
o we omit the superscridf to make the notation simpleiWe
where x stands for both the coordinates and the spin. Theare always treating a given symmelry.
weighting factorsw,, should satisfy the conditions Now the constrained search leads to
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g R o
E[n,X]= mSinE W (W H[W ) S leP=1. (13)
=1 j
g ~
=min} min >, W (W H|P.) Let ¢ denote the orbitals. The density obtained from the
nX | S=(nX) y=1 wave function\lf(; is given by
:T;(n{F[n,XMJ n(r)u(r)dr}, (7) ny=Nf |\If3|2dx2---deda
where the universal function&[n,X] is defined as © o
9 . =N | 23 ¢ cdy &dx, - dxydor
FIn,X]= min X wl(¥.| T+V|V,). (8) i =1
S—(n,X) =1
go
T and V, are, respectively, the kinetic and the electron- :NJ > |c]1?|®7]%dx, - -+ dxydor. (14)
electron repulsion operators(r) denotes the local external i
potential.
Then the generalized Hohenberg—Kohn theorem has th@ne can immediately notice that there is no contribution
form from the product of different determinants. If two determi-
nants differ only in one orbital there might be a contribution;
F[n,X] +f n(ru(r)dr = E, (9) however, it has different symmetry and corresponds to some
v different from v:
which can be readily proved as follows: &P N "
C
n,=2 |c? 2 2+ <2®Y). 15
F[n,X]+J n(r)v(r)dr Y $| ]| ( z—|¢l| i:N2c+l|¢l| ]I ( )

Orbitals in closed shells are doubly occupi€f; is 1 if the
orbital ¢; occurs in the determinanb/, otherwise 0. The
ensemble density has the form

= min tr{Iﬁ('A|'+\A/ee)}+fn(r)v(r)dr
S—(n,X)

= min tr{f)('AI'+\A/+\A/ee)}> Eo, (10
S—(n,X
%) n=> w,n,. (16)
where the last inequality follows from the variational prin- Y
ciple. The variational principle is valid here because lowest- _
lying energy level of a given symmetry is taken. There is anTaking allw, equal we obtain

equality if and only if the trial quantities andX are equal to

the true quantities, and X,,. ’ Ne M
n=>> |ij|2<22 B2+ > |¢i|zﬁ>
y j=1 i=1 i=Ng+1
I1l. GENERALIZED KOHN-SHAM EQUATIONS FOR A Ne M
DEGENERATE STATE =22 |42+ > M| (17)

The generalized Kohn-Sham equations can be derived = =Nt

by minimizing the kmeUc energy .keeplng the e'nsem.blewhere the occupation numbers are
guantitiesn(r) and X fixed. The kinetic energy functional is

defined as o
o ) INEDIDI{ECH (18)
T{nX]= min > w(¥ITVY, (12) il
S—(n,X) y=1

, i ) The noninteracting kinetic energy can be written as
where the superscript O refers to the noninteracting system.

The following step is to express the ensemble quantities with 1
the orbitals. As we have a degenerate state the wave function Tg=-=) \; J & V2, (19
cannot be given by a single Slater determinant even in the 27

noninteracting case. A linear combination of Slater determi-
nants® has to be taken: where)\;=2 for the closed shells. The ensemble quankity

o should also be expressed with the orbitals. To obtain
the generalized Kohn—Sham equations the noninteracting
kinetic energy is minimized with the conditions that the
ensemble quantities and X are fixed and the orbitals are
Because of the normalization of the wave functib[j, orthonormals,

9
V9= o). (12)
J
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.- | ADnr = NI40F) - [ wowa BO=Ba 2 OB ES @

X where E,, is the average energy of the different multiplets
- X[ -2 €ij<5|j ‘J &; (f)d)j(f))df. (200 corresponding to a given configuration. The second term in
b the right-hand side of Eq27) is responsible for the multiplet
where A(r), u(r), ande; are Lagrange multipliers. After a Separation and;" is the correlation energy. Textbooksee,
minimization and a unitary transformation we arrive at the€-g., Ref. 6 provide several methods for obtaining the ex-
one-particle equations pressioanC}-SB}'S from determinants spanning the noninter-
acting subspace correspondinglt8. The explicit form of
[_ %V2+A(r):|¢i +J M(r,)gjfzr)dr, =5, (21) Eq. (27) for the p? electron configuratiofi:
1

. | E(°P) = Ea, ~ F2(PP). (28)
These generalized Kohn—-Sham equations are much more
complicated than the conventional equations. 1Y 3.2
If the ensemble quantitieX are constants, i.e., do not E( D) = Ea * 25F(pp), (29)

depend o, the following direct method can be applied: the ) -
total ensemble energy and from it the Kohn—Sham potential ~ E(*S) = Eq, + 52F4(pp). (30)
are directly constructed with fixed value Xf Then one does

o .
not have to use the Lagrange multipliers and the Kohn—Sharh (PP) is the Slater integral,

equations have the usual form. But we have different Kohn— r2
Sham potential and equations for every valuexof F2(pp) :f f Rgp(rl)Rgp(rz)r—,jdrl dry, (31
>
[- 32+ kD] = & (22)

o o ) ) ] whereRy, is the radial wave function of thep2electronsr -
This direct method is illustrated for atomic multiplets in the meang, if it is smaller thanr, andr,, if it is smaller thanr,
following section. andr- is the greater of, andr,.

As ESis a functional of the ensemble radial wave func-
tions P-5,
IV. APPLICATION TO ATOMIC MULTIPLETS
. . _ ES=E-P, (32)
Using equal weighting factors for a spherically symmet-
ric system, the ensemble noninteracting kinetic energy ishe OPM(Ref. 7) or KLI (Ref. 8 methods can be applied.

given by Here the KLI method is used. Then the Kohn—Sham equa-
N tions have the form
Te=2\ | P BESEURET B (23)
st 27 oz 1|90 1d Ni(i+D) | s\ois_ isois
j=1 _Ed_r2+ 2 +us|PiT= 67PN (33

where P; and \; are the radial ensemble orbitals and the _
occupation numbers corresponding to the given configura- 1he Kohn—-Sham potential
tion, respectively.” denotes second derivative with respect LS_

. X = 4 ytSy LS L kS, LS
to r. The radial ensemble density has the form VksTU TV F U FWER U (34)
N wherev)&S and vts are the exchange and the correlation po-
0= A sz_ (24)  tentials and the potentia¥-S is responsible for the multiplet
=1

separation. The generalization of the KLI method leads to the
What can we choose for the extra variables? While th@ccurate approximatiors,

current densities generally are different from zero the en- LS_ LS LS LS|LS?2
semble current density Ux =Us +;(fi &)k (35
j=2w,, (25  ang
Y
LS
is zero if the weighting factors are all equal. W= S (KS2uS= S (192 Cl_-SidB' (36)
1 | 1
i i i

Instead we can select the angular momertaand S I pLSgps’
Here we do not give the expectation value of the operatbrs

and & with the orbitals and minimize them using Lagrange wherevs® is the Slater potential

multipliers. Instead a direct method is proposkd.and §

are constants of motion and the total ensemble energy can p&Sy) = - 1 f dr’o-S(r") 2 Ir=r|.
given by 2

E-S=EP-). (26) (37

It can also be written as The functionsk-> are defined with

2 K kS(r)
j
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TABLE |. Hartree—Fock, generalized KLI with local Wigner correlation
functional (this work) and experimental total energies for the multipfés
D, and'Sof the C, O, S, and Si aton{in Rydberg.

C (0] Si S
°  HF -75.3772 -149.6187 -577.7085 -795.0095
KLI+LW -75.6934 -150.1166 -578.7458 -796.2406
Expt. —-75.6904 -150.1346 -578.7500 -796.2780
D HF —-75.2626  -149.4584 -577.6300 -794.9042
KLI+LW -75.5940 -149.9805 -578.6800 -796.1577
Expt. -75.5979 -149.9900 -578.6926 -796.1938
IS HF -75.0991 -149.2219 -577.5169 -794.7489
KLI+LW -75.4785 -149.8105 -578.5725 -796.0199
Expt. -75.4931 -149.8267 -578.6097 -796.0759
LS _ LS\1/2,, LS
P=(e7)", (38)

where oS is the radial electron subspace densigr>-e>)

J. Chem. Phys. 122, 134107 (2005)

are also shown. We applied the following parameters:
a=-0.028 592,b=0.2679 for>P, a=-0.032 997,b=0.340
for D, and a=-0.068 263,b=1.0658 for!S. Though the
local Wigner expression is a very simple approximation, the
KLI+LW method results in considerable improvement.

Table Il presents multiplet separation. For comparison
the multiplet separation obtained by Bagus and Befhiett
the C atom and Moser and Neslsdbr the O atom are also
presented. These data were obtained by configuration inter-
action and Bethe—Goldstone calculations. The present
method leads to results of similar quality. We have to empha-
size that the correlation potential applied here is the simplest
possible local form that satisfy important coordinate-scaling
requirements®°

The KLI method is a very powerful approach. However,
it is a very delicate problem to find an appropriate correlation
functional, i.e., a correlation functional that performs well
together with the KLI exchange. In the existing approximat-
ing functionals exchange and correlation are treated together

are the differences between the Kohn—Sham and the Hartre@nd if we change only the exchange p@nto KLI) the bal-

Fock one-electron energies,

&= &= (ilvid ) — (1[0 ),

(39)

ance between the exchange and correlation is ruined and we
might receive worse results than in the exchange-only tase.
Gross and co-worket&found that among the existing corre-

wherea)'(4F is the Hartree—Fock exchange potential taken withlation functional the Colle—Salvetti correlation functional is

the density functional orbitals.

V. RESULTS AND DISCUSSION

There is one unknown term in the Kohn—Sham potentia
(34); therefore one has to use an approximation for the cor
relation potentiab>. Here, a simple local Wigner type ex-
pression is applied. The local Wigner correlation energy is

an
E-"n] = f dr, 40
UL (40)
whererg is the Wigner—Seitz radius,
rs= (3/4mn)*3, (41)

The parametera andb depend ol andS.

As an illustration total energies and multiplet separatio
for C, O, Si, and S atoms are presented in Tables | and Il
The results of the present method are denoted by KLI+L
For comparison the Hartree—Fock and experimental valu

TABLE II. Hartree—Fock, generalized KLI with local Wigner correlation
functional (this work), and other calculated and experimental total energy
differences of the term¥D andS from the®P (in Rydberg for the C, O, S,
and Si atoms.

C (@] Si S

p-ID  HF 0.1146  0.1603 0.0785  0.1053
KLI+LW 0.0994 0.1361 0.0658 0.0829
Expt. 0.0929 0.1446 0.0574 0.0842
Other calculations 0.1000 0.1520

5p-1s HF 0.2782 0.3968 0.1916  0.2606
KLI+LW 0.2149 0.3061  0.1733  0.2207
Expt. 0.1973 0.3079 0.1403 0.2021
Other calculations 0.2100 0.3212

n

e

the best. In a lot of cases KLI+Colle—Salvetti gives results
better than any other existing functional. However, the mul-
tiplet separation obtained by KLI+Colle-Salvetti is worse
than the exchange-only KLf. The study of correlation lead-
|ing to correct multiplet separation is a challenge for future
research. Our present approach is the first promising step in
that direction.

In summary, the generalization of density functional
theory presented here provides a systematic way of treating
multiplets. The generalized KLI method with a simple local
Wigner correlation functional leads to excellent total and
multiplet separation energies.
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