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ABSTRACT: A stochastic minimization method for a real-space wave
function, Ψ(r1, r2...rn), constrained to a chosen density, ρ(r), is
developed. It enables the explicit calculation of the Levy constrained
search, F[ρ] = minΨ→ρ⟨Ψ|T̂ + V̂ee|Ψ⟩, which gives the exact functional of
density functional theory. This general method is illustrated in the
evaluation of F[ρ] for densities in one dimension with a soft-Coulomb
interaction. Additionally, procedures are given to determine the first and
second functional derivatives, δF/δρ(r) and δ2F/[δρ(r)δρ(r′)]. For a
chosen external potential, v(r), the functional and its derivatives are used
in minimizations over densities to give the exact energy, Ev, without
needing to solve the Schrödinger equation.

The electron density, ρ(r), is the central object of density
functional theory (DFT). The foundational theorems1,2

prove the existence of one universal functional in the space of
densities, F[ρ], that contains the necessary information to give
the exact many-body ground-state energy of all possible
systems. In virtually all calculations in the literature, the map is
approximated within the context of a Kohn−Sham (KS)
noninteracting reference3 with approximate functionals such as
PBE and B3LYP.4,5 However, the exact map, F[ρ], utilizes the
exact many body-wave function, Ψ(r1...rN), where ρ(r) =
N∫ |Ψ(r, r2...rN)|2dr2...drN, and does not involve KS. The Levy
constrained search2 is defined by considering only many-body
wave functions that integrate to the same one-electron density,
Ψ → ρ, to define the exact density functional

ρ[ ] = ⟨Ψ| ̂ + ̂ |Ψ⟩
ρΨ→

F T Vmin ee (1)

For each given density, ρ(r), there is a minimizing wave
function, Ψρ

min, and one value of the functional, F[ρ] = ⟨Ψρ
min|T̂

+ V̂ee|Ψρ
min⟩. The whole formalism is constructed to be

completely independent of any potential, v(r), or the more
complicated question of whether the ρ(r) is the ground state of
a potential (v-representability).
However, this one universal functional can be used in a

minimization solely over the space of all possible densities to
give the exact ground-state many-body energy of the
Schrödinger equation for every external potential

{ }∫ρ ρ ρ[ ] = [ ] +
ρ

E F v r r rmin ( ) ( ) dv (2)

These are the foundational equations of DFT; however, they
have not been directly numerically realized. There has been
other work on the exact functional via a Lieb maximization6

which gives the ensemble constrained search result of Valone.7

The Lieb maximizations carry out a search over potentials on
which to carry out a many-body method such as full
configuration interaction (FCI)8−13 and in time-dependent
DFT.14,15 However, the Lieb maximization would fail to
converge if the density is non-v-representable, and the search
over potentials becomes much harder as the density becomes
more strongly correlated.11,16 Also, there have been direct
Monte Carlo proposals to tackle the constrained search.17,18

In this Letter, we develop a method to explicitly carry out
the Levy constrained search over many-body wave functions
that integrate to the same density, Ψ → ρ as in eq 1 and,
furthermore, to carry out the minimization over densities in eq
2, as an alternative to solving the Schrödinger equation. The
importance of the exact functional is demonstrated for strongly
correlated systems.
To carry out the constrained search to a target density,

denoted as ρtarget, we develop a stochastic procedure that
contains four key steps:

(1) Construct an initial wave function, Ψinitial, that integrates
to ρtarget.

(2) Take a trial step in wave function space that maintains
integration to ρtarget.

(3) Evaluate the many-body energy of this trial wave
function.

(4) Accept or reject step and return to step 2 until
convergence.

The fundamental aspect of this method is to define
appropriate movements in wave function space that keep the
integration to the same density in step 2. Consider an N-
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electron Fermionic wave function that can be separated into a
spatial part, Ψ(r1, r2...rN), multiplied by a fixed spin part, σ(s1,
s2...sN). A change in Ψ(R) at one point in Hilbert space R = R1,
R2...RN changes the density at N separate points ρ(R1),
ρ(R2)...ρ(RN). A second chosen point is needed, R′ = R1′,
R2′...RN′ , where Ri′ ≠ R1 or R2 or R3...or RN ∀ i. Next, define a
replacement operator P̂i which replaces Ri by Ri′, and take all
possible replacements of the original wave function, Ψl1l2...lN =
Ψ(Πi = 1

N P̂i
liR), with li = 0 or 1. Using this collections of wave

functions, it is possible to construct a move that does not

modify the density, Ψ → Ψ + − Δ∑( 1)l l l l l l
l

...
2

...
2

N N
i
N

i
1 2 1 2

for all
binary numbers l1l2...lN from 00···0 up to 11···1. The combined
move changes 2N points of the original wave function (and all
its symmetric or antisymmetric mirrored parts) while
maintaining the integration to ρtarget. This overall procedure
illustrates the principle of many different real-space wave
functions, with different values of ⟨Ψ|T̂ + V̂ee|Ψ⟩, that all yield
identical densities, which is the key to performing the Levy
constrained search.
For other wave functions which are not separable, it is

possible to define similar moves by enforcing antisymmetry on
electrons of the same spin. For example, for a doublet three-
electron wave function, Ψ3e(x1,x2,x3), antisymmetry is enforced
between x1 and x2 and not with x3. In this case, the total
density is given by ρ(x) = 2∫Ψ2(x1, x2, x3)dx2dx3 +
∫Ψ2(x1, x2, x3)dx1dx2, and a sample move would be Ψ000 →
Ψ000

2 + Δ, Ψ1
2 → Ψ1

2 − Δ for Ψ1 = {Ψ100, Ψ010, Ψ001}, Ψ2
2 → Ψ2

2

+ Δ for Ψ2 = {Ψ110,Ψ101,Ψ011} and Ψ111
2 → Ψ111

2 − Δ, as
illustrated in Figure 1b with another possible move in Figure
1c.

To demonstrate this overall method for an explicit Levy
constrained search, we examine densities in one dimension,
ρ(x). The one-dimensional universe is described, as in previous
work,19,20 using a real space grid with a softened Coulomb

interaction, ̂ = − +V x x x x( , ) 1/ ( ) 1ee 1 2 1 2
2 and ̂ = −T

x
1
2

d
d

2

2 .

This main body of work focuses on two-electron systems,
where the overall wave function is antisymmetric and
separable, Ψ(x1s1, x2s2) = Ψ(x1, x2) σ(s1, s2), with spin parts

b e i n g t h e s i n g l e t o r t r i p l e t , σ ( s 1 , s 2 ) =
α β α β∓s s s s( ( ) ( ) ( ) ( ))1

2 1 2 2 1 .

Regarding the construction of Ψinitial in step 1, for the singlet

state ρ ρΨ = Ψ =x x x x( , ) ( ) ( )/2initial 1 2 KS 1 2 , and for the
triplet state a Gilbert construction21 with a direct division of
space gives two orbitals such that 3Ψinitial(x1, x2) =[ϕ1(x1)-
ϕ2(x2) − ϕ ϕ ]x x( ) ( ) / 22 1 1 2 . In this case, to define the
appropriate movements of the wave function in step 2, we
consider R = x1, x2 and move the wave function by a small
amount, ϵx1x2, Ψ

trial(x1, x2) = Ψ(x1, x2) + ϵx1x2, with a change in

the density, Δρx1x2, at two points, x1 and x2 of

ρΔ = ϵ + ϵ Ψ x x2 ( , )x x x x x x
2

1 21 2 1 2 1 2 (3)

Thus, we randomly take another point R′ = x1′, x2′ ≠ x1 or x2,
and consider moves of the wave function at Ψ ′x x( , )trial

1 2 =

Ψ ′ + ϵ ′x x( , ) x x1 2 1 2
, Ψ ′x x( , )trial

1 2 = Ψ ′ + ϵ ′x x( , ) x x1 2 1 2
, and

Ψ ′ ′x x( , )trial
1 2 = Ψ ′ ′ + ϵ ′ ′x x( , ) x x1 2 1 2

. The amount by which the
wave function has to move at each of these points is found by
solving the quadratic equations

ρϵ + Ψ ϵ − Δ =x x2 ( , ) 0x x i j x x x x
2

i j i j i j (4)

with ρ ρ ρΔ = Δ = −Δ′ ′x x x x1 2 1 2
and Δρx1′x2′=Δρ. For the case of x1

= x2 = x, an alternative move is used with Δρx,x′ = Δρx′x =
Δρxx″ = Δρx″x = −Δρ/2 and Δρx′x″ = Δρx″x′ = Δρ/2. The first
of these movements is pictured in Figure 1a. If the solution of
any of the quadratic equations (eq 4) has no real roots, the
whole move is rejected. Otherwise, the trial energy, Etrial =
⟨Ψtrial|T̂ + V̂ee|Ψtrial⟩, is evaluated such that if it is lower than the
current energy, the step is accepted and otherwise it is rejected
(steps 3 and 4). This procedure is carried out many times to
optimize the wave function. The best scheme we have found
initially uses a very small random move in the wave function,
−10−10 ≤ ϵ ≤ 10−10, |ϵ| > 10−14, and if a step is successful, a
simple line-search is carried out by multiplying the size of the
step by 10, but with the same x1, x2, x1′, and x2′ (or x, x′, and
x″), and this is repeated until the move is rejected.
This method allows us to carry out the constrained search

efficiently and to calculate the exact functional for any density.
For example, Figure 2 shows a variety of wave functions that
yield the same target one-dimensional density. The minimizing
singlet and triplet wave functions (Ψρ

min and 3Ψρ
min) are found

by carrying out the constrained search as outlined above.
Convergence is found in 5000 stochastic cycles over the wave
function, each cycle consisting of an attempted move at each
point of the wave function.
We also carry out calculations for some doublet three-

electron and singlet four-electron systems, for which the wave
functions are no longer separable into a space and spin part but
are simply treated by maintaining antisymmetry within the
same spin electrons as described above. A similar procedure as
described for the two-electron case is used, though an
increased number of stochastic steps is needed because of
the greater number of variables in the wave function as the
dimensionality of the system increases. However, we are still
routinely able to achieve convergence to μHartree accuracy in
50 000 stochastic cycles. Similar convergence to the two-
electron case as shown in Figure 2 is obtained with energy

Figure 1. Example moves that maintain integration of a wave function
to a target density: (a) two-electron singlet (bottom right moved
symmetrically), two-electron triplet (bottom right moved antisym-
metrically), and four-electron singlet involving double excitations; (b
and c) three-electron doublet.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.8b02332
J. Phys. Chem. Lett. 2018, 9, 4910−4914

4911

http://dx.doi.org/10.1021/acs.jpclett.8b02332


differences from the FCI energy of 2 × 10−7Eh and 9 × 10−6Eh,
for 3 and 4 electrons, respectively.
Calculation of the Levy constrained search for one density

gives one point of F[ρ], which in its entirety is a unique high-
dimensional surface in the -dimensional space of densities.
For example, in a 100 grid point representation of x, the space
of two-electron densities, ρ(x), would be 99 dimensional, and
F[ρ(x)] can be considered as a 99 dimensional function. Such
a high-dimensional object cannot be visualized, but relevant
cuts in restricted spaces can be considered. For example, in
Figure 3, the landscape of the exact functional is shown for a

two-dimensional slice of densities that are a convex linear
combinations of two He densities at a distance R, ρ(α, R) = N/
2[αρHe(0) + (1 − α)ρHe(R)] (0 ≤ α ≤ 1) (for N = 2, 3, and
4), where ρHe(R) is a 1d-Helium atom density centered at R,
and α corresponds to the electron-transfer coordinate between
the two sites. For two electrons, α = 0 and α = 1 are Helium
atoms centered at different points and α = 0.5 corresponds to
an H2-like density, whereas other values of α give fractional

numbers of electrons on the two centers. As the distance is
increased, the density becomes more strongly correlated,
showing a very large difference between the LDA and exact
values of the functional (ΔF = 0.139Eh = 90 kcal/mol, for R =
7 and α = 0.5), which is exactly the static correlation error of
systems like stretched H2. However, much more important is
the global behavior on varying α. At shorter distances, LDA
behaves similarly to the exact functional, but as the distance is
increased, it exhibits a failure to describe the v-shape of the
exact functional with a qualitatively incorrect second derivative
related to its missing derivative discontinuity.22 It is this failure
in the FLDA[ρ] surface that leads to the incorrect description of
charge transfer in strongly correlated systems with DFT
approximations.23 It is now clear what key feature of the
functional needs to be reproduced to correctly describe
strongly correlated charge transfer.
The inherent complexity of the exact functional, F[ρ], has

often lead to conceptualizing it as an algorithm to give one
number for a chosen density. In addition to this view, it is
important to understand the functional as a surface in the
space of densities, and one of the defining concepts of a surface
is differentiability. Previously, it has been argued that the exact
Lieb functional (and the same would apply to the Levy
functional) is nongateaux differentiable everywhere.24 This
argument, however, does not apply to the density on a finite
grid, and consequently, we show how to calculate the exact

functional derivatives, δ ρ
δρ

[ ]F
x( )

and δ ρ
δρ δρ

[ ]
′

F
x x( ) ( )

2
.

The first functional derivative can be determined from the
converged wave function, as it has been minimized to

variations at fixed density, δ
δ ρΨ( )F =

i
k
jjj

y
{
zzz

δ
δ

ρ

⟨Ψ | ̂ + ̂ |Ψ ⟩
Ψ

ρ ρT Vee
min min

= 0.

Thus, differentiation with respect to Ψ(x1,x2) gives the
Schrödinger-like equation:

i
k
jjjjj

y
{
zzzzz

δ
δρ

δ
δρ

̂ + ̂ Ψ = + ΨT V x x
F
x

F
x

x x( ) ( , )
( ) ( )

( , )ee 1 2
1 2

1 2
(5)

Multiplying by Ψ(x1,x2) and integrating (summing) over x2
gives a matrix equation

∑=h M dx
x

x x x1

2

1 2 2
(6)

where = δ
δρ

dx
F
x( )2 2
, ρ δ= Ψ +M x x x( , ) ( )x x x x

2
1 2

1
2 11 2 1 2

, and hx1
= ∫Ψ(x1, x2)(T̂ + V̂ee)Ψ(x1, x2) dx2. Solution of these
simultaneous equations at Ψ(x1, x2) = Ψρ

min(x1, x2) by
inversion of the M matrix gives the functional derivative.
Another way to calculate the first derivative is to make a set

of changes {Δi} to the density, defined by

l

m
oooooo

n
oooooo

ρ
ρ

ρ
Δ =

Δ =

Δ =
− −

−
∀ ≠

−

−x

x

x
x

x
x j i

( )

( ) 10

( )
2 ( ) 10

2 ( )
( )

i

i i

i j
i

i
j

6

6

(7)

This is a small movement in the density at xi that is
compensated by moving all other points of the density the
opposite way, such that the overall normalization does not
change, ∫Δi(x) dx = 0. The vectors of the finite difference
approximation are formed

Figure 2. Convergence of the energy of the Levy constrained search
to the FCI energy during the stochastic optimization of the wave
function for 100 different randomly chosen molecular densities.
Highlighted is the convergence for H2 at R = 5 with singlet wave
functions (red) and He with triplet wave functions (black).

Figure 3. Cut of the landscape of the exact density functional for
ρ(α,R) = N/2[αρHe(0) + (1 − α)ρHe(R)], compared with the LDA
functional. This highlights how the derivative discontinuity22 of F[ρ]
develops with increasing separation between two atoms. The top
three figures are at R = 5 for different numbers of electrons, N = 2, 3,
and 4.
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l
mo
no

|
}o
~o ∫ρ ρ δ ρ

δρ
[ + ϵΔ ] − [ ]

ϵ
= = [ ] Δ

ϵ→

F F
F

F
x

x xlim
( )

( ) di
i i

0 (8)

giving the set of equations

∑= ΔF vk
x

x kx
(9)

that is solved by construction of the pseudoinverse, Δkx
−1, and

applying it on the Fk vector. The same machinery enables the
calculation of the second derivatives

l
m
oooo

n
oooo

|
}
oooo

~
oooo

∫ δ ρ
δρ δρ

−

ϵ
= [ ] Δ

δ ρ
δρ

δ ρ
δρ

ϵ→

[ + ϵ Δ ] [ ]
F

x y
y ylim

( ) ( )
( ) d

F
x

F
x

i
0

( ) ( )
2i

(10)

By constructing the potential vi(x) corresponding to the
density ρ + Δi, the second-derivative Hessian matrix is built

δ ρ
δρ δρ

[ ] = Δ [ − ]−F
x y

v x v x
( ) ( )

( ) ( )ky k

2
1

(11)

The Hessian matrix can be diagonalized, and if a negative
eigenvalue is found, the functional would be concave and it
would correspond to a non-v-representable density (see for
example the Supplemental Material of ref 25).
The minimization of the energy in eq 2 can now be carried

out and treated as a general optimization problem using the

analytic first and second derivatives, = − δ ρ
δρ

[ ]gy
F

y( )
and

= δ ρ
δρ δρ

[ ]Hxy
F

x y( ) ( )

2

. Therefore, for a given potential, vy = v(y), to

best change ρ(x) to minimize the energy, a Newton step, H−1g,
is taken

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzzρ δ

δρ δρ
δ

δρ
Δ = − − +

−

x m
F

x y
F
y

v y C( )
( ) ( ) ( )

( )
2 1

(12)

where the constant, C, enforces that the density is normalized,
∫Δρ(x) dx = 0. Usually m = 1, though if the step is not valid,
i.e., , a scaled down step with m = 0.1 is taken.
This is needed only in the first few steps of the optimization.
None of the optimizations we have performed have needed
more than 35 steps, and all of them have converged no matter
what the starting density is, as illustrated in Figure 4.
In conclusion, we have explicitly carried out the Levy

constrained search using a stochastic optimization to give the
exact functional of DFT, F[ρ]. Millions of many-body wave
functions are searched, all integrating to the same ρ(r), and the
minimizing wave function that yields that ρ(r) and gives the
lowest possible value of ⟨Ψρ|T̂ + V̂ee|Ψρ⟩ is found. Moreover,
from this minimizing wave function, the first and second
functional derivatives are constructed and used in a direct
optimization of the total energy in density space for any
external potential. Thus, the exact many-body energy is
obtained without solving the Schrödinger equation, and rapid
convergence is seen from any starting density, including
strongly correlated systems. It is important to view the exact
functional as a calculable surface in density space, as illustrated
in Figure 3, highlighting many avenues for future investigation,
from the adiabatic connection26 to the critical question of how
to build more accurate approximations to F[ρ].
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