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A. Derivation of Eq. (13)

To derive the exact functional,

FLe — min (U|V,,|¥) (S1)
Uy
consider the minimization over real singlet wavefunctions

U = 7 [A(p1a¢28) + A(p2a¢13)]

+bA(prad1 B) + cA(paagaf3). (52)

in terms of the parameters a,b and c¢ along with the
normalization a? + > + ¢> = 1 and the elements of
the density-matrix v;; = Za<\ll|c;cjg\\ll> giving 11 =
202 4+ a? and y12 = V2 (ba + ac). The two-electron en-
ergy comes only from the (11]11) and (22]22) integrals,
which are U, as all other integrals are 0, so only the sec-
ond determinant with itself and the third determinant
with itself contribute, giving

FW] =U(@®b* +¢*) =U(1 - a?) (S3)
It is also satisfied that
y1—1 =062 (S4)
Therefore, using v,2 gives

(b+c) = % (S5)

and combining with Eq. (S4) leads to

(711 — 1) V2a

-0 = (56)
Now, square Egs. (S5) and (S6), to give
s e
and
—_1)29,42
(b—c)? = M. (S8)
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Figure S1: The plane of all possible density matrices illus-
trating the non-v-representability of many of the allowable ~.
a) The second derivatives of the exact functional showing the
points where the lowest hessian eigenvalue is < 0 from Eqgs
S14-S16 and b) the density matrices, v, achieved in 6552 FCI
calculations for —10 < ¢t < 10 and —10 < Ae < 10.

Adding these two has the result
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Using the normalization, gives
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(-2 = g2+ oy (s10)
which leads to a quadratic equation for a2
—1)2 2 2
(11 2) + 7ia] at— a1 Ji2 _ (S11)
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with solution
9 Vo (1 + \/1 —(m—1)2%- ’Y%z)
a® = (S12)
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Taking the plus combination gives the lowest energy
E =1-a
s (1 +V/1 = (- 1) - 7122>
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This agrees with Eq. (13) of the paper. ated analytically and are used in Fig. S1.
The derivatives of the exact functional can be evalu-
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For the discussion of v-representability, there are two B. Derivation of Léwdin-Shull for Hubbard model
common counterexamples: the first is a one-electron
density with a certain type of cusp, given by Englisch Lowdin and Shull (LS) showed that the natural or-

and Englisch(1]; the other is a spherical p density re- bitals, ¢, that diagonalize the density matrix and wave-
lated to a degeneracy that cannot be given by a single function for two electrons are the same
wavefunction[2]. The non-v-representable density matri-

ces shown here are very different to these two examples U(r,r') = Z crdr(r)dr(r') (S17)
and are only due to the nature of the energy surface of A

the exact functional as shown in Fig. S2. y(r,r') = Z nk ¢ (r)dr(r’) (S18)
k
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Figure S2: Two lines of F™“¥[y] that illustrate non-v-
representable density matrices, due to the non convexity of
the surface along the given line.

where nj = 20%.

2
EMS[W] =" c7 {2k + (iilii)} + 2c1c2(11]22)  (S19)
i=1
For two basis functions the minimum energy wavefunc-
tion comes from the coefficients of ¢; and c¢o having op-

posite signs, ¢; = \/n1/2 and ¢3 = —y/ny/2. Substitut-
ing this into the energy expression for the wavefunction
gives an expression in terms of the natural orbitals and
the natural orbital occupation numbers, ny,

1 1
FUS[y] = ina<aa|aa> + inb<bb|bb> — /nanp{aa|bb).
(S20)
There has been some recent interest in natural orbitals
[3] and natural orbital functionals that, for two electron
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FLS _ (1+5)

systems, must reduce to the Lowdin-Shull expression if
they are to be exact, for example the PNOF5 functional
[4-6].

The eigenvalues

711 Y12
are
(712 (2—711) ) :

(1 —n)((2=71—n) =75, =
n® —2n+ 2y — ’7121 _’Y%z =

of the density matrix ~ =

(S21)
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ny = (—2 + \/4 —4(y1 —1)2 + 47%2> /2 (S23)

ny =ngn = 144/(y11 —1)2+7,.  (S24)
The (pplqq) integrals are in the natural orbital basis
and the coefficients of the natural orbitals (C,;) are
found by substituting in the natural orbital numbers e.g.
(’yn — np) Cp1 +’}/120p2 =0or (also using Cy; = C(a/b)i)
(v =1 £Vl —1)? +1
Y12

Ci1 = Cio and C%,4+C%, =1

(525)
So overall, C3; = a2/ (7}, +a%) and C3, =73 /(a3 +
v%,) and hence

1 1
FIS = —n,(CY +CL)U + 5n,,(C{}l + C)U

2
—/Nany (C%,CE + C2,C3)U. (S26)

For convenience, replace + = (y;1 — 1) and S =
/1% +7%,, to obtain the following expression

(1-5)
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This equation could be simplified further but we have
checked, by numerical evaluation with Fortran code, that
it gives identical results to Eq. (13).

Vi + (r+8)2 4+ (r— 85)?

7122 ’7%2 :| (827)

vy + (r+8)2 9%, + (r = 9)?

(
C. Complex

The constrained search ¥ — + can be expanded over
complex wavefunctions where the parameters, a,b, ¢, in
the wavefunction

- %[A(@a@ﬂwma@ﬁ)]
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Figure S3: The exact functional allowing the wavefunction to
be complex in the Levy search.

+bA(P1a018) + cA(p202f) (528)

are allowed to be complex

a = a,+1a;
b = b, +ib;
c = ¢ +ic;

In terms of these parameters there are the following con-
straints:

1 =a’+al+b2+b+c+c}
Y11 = 202+ 2a? + b2 4 b?
%(712) = \/E(aTbT + aibi + brcr + bici)

The imaginary part $(y12) can be anything as it does
not enter the energy expression. A fourth constraint can
be included if the overall phase of the wavefunction is set
to zero.

We now carry out a search over all possible wavefunc-
tions minimizing F and a given 11 and R(y12), which
gives Fig. S3. We do this by an explicit grid search
over the two remaining variables for each 711,712 that
is specified. The resulting energy functional gives the
same result as the Hubbard expression Eq. (13) for
all density matrices except the non-v-representable set.
For all possible FCI density matrices it is, of course, in
agreement with F™K[v,]. For the non-v-representable
set, F&ﬁlﬁlex [v] can be lower in energy, though this does
not change any physics as these points can never be
minima of any Hamiltonian. In this case, the func-
tional numerically agrees with the ensemble functional
considered by Saubénere and Pastor|7] given by a den-
sity matrix that is an ensemble of two wavefunctions
I =a|U ) (.| +b|Tp)(Tp|. It should be noted that when
F cLoCmvf,lex [v] is lower than Eq. (13) the solutions have a
current and this may give a connection to the exact func-
tional in current DFT (CDFT) [8, 9].

D. Lieb maximization

FLieb_FLevy

complex With F1e® from 6552 FCI calculations

S
R

N
NHHniiw

NMHHunk

TR
NhH ik
RO
2 04 Nt 0.0006
i N

-0.0008
-0.001

Energy Difference

Figure S4: Functional F“®[p] from Lieb maximization using
6552 FCI calculations

Another way to to calculate a bound for the functional
is to perform the Lieb maximization[10],

FUeb[y) = sup {E, — v.v} (S29)
v

which is a supremum (a smallest upper bound which for
any finite set would just be a maximum) on the set of v.
This means for a finite set it would actually be a lower
bound to the true minimum FY¢[y] < FLeW[y]. The
Lieb maximization is carried out using 6552 FCI calcu-
lations for v, with —10 < ¢ < 10 and —10 < Ae < 10.
Over a grid of density matrices, we compare directly with
Fg:iglex from complex wavefunctions as in the region of
non-v-representable densities it is closest to the complex
or ensemble form. Carrying out the maximization of Eq.
(S29) gives the results in the left hand side of Fig. S4 and
the difference to Fg;f;i;lcx is shown in the right-hand side.
This difference is small and negative which illustrates
that the Lieb maximization only gives a lower bound to
the true functional that in this case is known exactly.
Obviously, with more and more FCI calculations FiP
would approach closer to the correct result. The FL¢P[y]
should not be used in minimizations in the same way
as FL®[y] as it is a lower bound rather than an upper
bound. Finally it should be noted that FY[y] is every-
where convex by construction and cannot, for example,
contribute to the discussion on v-representability.

E. Approximate Density Matrix Functionals

We consider various approximate density matrix
functionals including Hartree-Fock as a density ma-
trix functional, Muller[11], Power [12].  Here the
value of the natural orbital occupation numbers 0 <
n; < 2 and the two-electron integrals (pq|rs) =
I &5(x)pr(r) Vee (r, x') % (r') g (x')drdr’  which in the
asymmetric two-site Hubbard model just work out to be
(pq|rs) = Zi:m CpiCqiCriCy; in terms of the orbitals

coefficients Cyp; (|p) = 32— 5 Cpicl|vac))
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In the paper we use a value aw = 0.675 that has recently

been used for Mott insulators

F. Gutzwiller approximate wavefunction

The Gutzwiller wavefunction [13] is a parametrized
wavefunction of the form

v o= %[A(¢1a¢25)+«4(¢2a¢15)]

+9[A(Pr10918) + A(p20¢2)]

When g = 1 it is the Hartree-Fock wavefunction for or-
bitals ¢ = %(qﬁl + ¢3). The basic idea is that in an Hy
like system as g — 0 it goes to the Heitler-London wave-
function. In the asymmetric two-site Hubbard model we

consider an orbital of the form ¢ = ci1¢1 + /1 — 3¢
and a Gutzwiller wavefunction

— 3
POWA _ W;?[Awla@mwwzwlm]

+g [l A(d1a¢18) + (1 = ¢f) A(p20620)]

If we consider all possible values of ¢; and —1 < g <1
we get the following density matrices and

<\IIGWA|Vee|\I/GWA>

GWA] _
FIU=™] = (GGWA [ GWA)

For other values of |g| > 1 the wavefunction is no longer
a ground state wavefunction.

G. Functional for N =0,1,2,3 and 4

The functional is calculated for different integer num-
bers of electrons (N = 0,1,2,3 and 4), where the trace
of the density matrix v;1 + 722 = N. At N = 0,
F[y] = 0 and there is only one allowed density matrix
71 = 12 = 0. For N = 1, F[y] = 0 as there is no
electron-electron interaction, however, the allowable den-
sity matrices from a pure state wavefunction are now de-

fined by a circle y15 = \/(’Yn — 0.5)2 — 0.52. Inside this
circle are ensemble- N-representable density matrices but

Gutzwiller 0<g<1  +
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Y12

Figure S5:

they cannot come from a pure-state wavefunction. For
N =2, F[] is that of Eq. (13). For N =3, F[y] =1 at
the allowed pure-state density matrices defined by a dif-
\/(’711 —1.5)> = 0.52. Also at N = 4,
F[y] = 2 at density matrix y11 = 2, 712 = 0. All these
integer parts of the exact functional are pictured in the
supplementary information.S6
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Figure S6: F[y] for N =0,1,2, 3,4 electrons
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Figure S7: The exact functionals of Egs (S30) and (S31) for
N = 1.5 electrons, which gives back the exact energy of every
system with 1.5 electrons.

H. Exact functional for N = 1.5 electrons

The exact functional for fractional number of electrons
(N +6) from Perdew, Parr, Levy and Balduz is given by
a constrained search over density matrices

min  Tr[TyysVee, (S30)

INts—y

Fnys[y] =

The Hohenberg-Kohn version of the fractional exact func-
tional can be calculated from the linear combiantion of
FCI energies at N and N +1

(1= 6)Ey ' [N] + 6ES'[N +1]
— [ =&)Y + 6yt w

FySslv] =
(S31)

In the consideration of fractional numbers of electrons
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bining pure state wavefunction for N = 0, 1, 2, 3 electrons
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