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Three equations are incorrect. First, equation (56) should read

∼− − | − | �( ) /    E U n U t1 1 2, 2C 1
2� (56)

so that it agrees with equation  (B.12). Equation  (114) is 
missing an addition sign and the correct form is
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where we have also clarified that the rhs is evaluated at g  =  g0. 
Lastly, equation (115) reads
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Figure 22.  Error in ( )/ρE UC par,  for different U and t2  as a function of |∆ |n .
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which differs from equation  (115) in the paper by several 
factors of u. Although figure 22 of the paper was reproduced 
using the correct equations, we found that numerical errors 
yielded an incorrect result for the case U  =  0.2. We repro-
duce this figure again to be consistent with the exact results 
obtained using the formulation above.

To clarify, all instances of the argument ( )λ  in section  6 
imply U( )λ .
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1.  Introduction

In condensed matter, the world of electronic structure theory 
can be divided into two camps: the weakly and the strongly 
correlated. Weakly correlated solids are almost always 
treated with density-functional methods as a starting point 
for ground-state properties [28, 31, 36, 49, 110]. Many-body 
(MB) approximations such as GW might then be applied to 

find properties of the quasi-particle spectrum, such as the gap 
[14, 182, 228]. This approach is ‘first-principles’, in the sense 
that it uses the real-space Hamiltonian for the electrons in 
the field of the nuclei, and produces a converged result that 
is independent of the basis set, once a sufficiently large basis 
set is used. Density functional theory (DFT) is known to be 
exact in principle, but the usual approximations often fail 
when correlations become strong [44].
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Abstract
This review explains the relationship between density functional theory and strongly 
correlated models using the simplest possible example, the two-site Hubbard model. The 
relationship to traditional quantum chemistry is included. Even in this elementary example, 
where the exact ground-state energy and site occupations can be found analytically, there is 
much to be explained in terms of the underlying logic and aims of density functional theory. 
Although the usual solution is analytic, the density functional is given only implicitly. We 
overcome this difficulty using the Levy–Lieb construction to create a parametrization of the 
exact function with negligible errors. The symmetric case is most commonly studied, but 
we find a rich variation in behavior by including asymmetry, as strong correlation physics 
vies with charge-transfer effects. We explore the behavior of the gap and the many-body 
Green’s function, demonstrating the ‘failure’ of the Kohn–Sham (KS) method to reproduce 
the fundamental gap. We perform benchmark calculations of the occupation and components 
of the KS potentials, the correlation kinetic energies, and the adiabatic connection. We test 
several approximate functionals (restricted and unrestricted Hartree–Fock and Bethe ansatz 
local density approximation) to show their successes and limitations. We also discuss and 
illustrate the concept of the derivative discontinuity. Useful appendices include analytic 
expressions for density functional energy components, several limits of the exact functional 
(weak- and strong-coupling, symmetric and asymmetric), various adiabatic connection results, 
proofs of exact conditions for this model, and the origin of the Hubbard model from a minimal 
basis model for stretched H2.
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On the other hand, strongly correlated systems are most 
often treated via lattice Hamiltonians with relatively few 
parameters [47, 114]. These simplified Hamiltonians can be 
easier to deal with, especially when correlations are strong 
[47, 53]. Even approximate solutions to such Hamiltonians 
can yield insight into the physics, especially for extended 
systems [212]. However, such Hamiltonians can rarely be 
unambiguously derived from a first-principles starting point, 
making it difficult (if not impossible) to say how accurate 
such solutions are quantitatively or to improve on that accu-
racy. Moreover, methods that yield approximate Green’s 
functions are often more focused on response properties 
or thermal properties rather than on total energies in the 
ground-state.

On the other hand, the ground-state energy of electrons 
plays a much more crucial role in chemical and material sci-
ence applications [152, 166]. Very small energy differences 
determine geometries and sometimes qualitative properties, 
such as the nature of a transition state in a chemical reaction 
[56, 91, 128] or where a molecule is adsorbed on a surface 
[17, 165]. An error of 0.05 eV changes a reaction rate by a fac-
tor of 5 at room temperature. Thus quantum chemical devel-
opment has focused on extracting extremely accurate energies 
for the ground and other eigenstates [64, 88, 111, 197, 249]. 
This is routinely achieved for molecules using coupled-clus-
ter methods (CCSD(T)) and reasonable basis sets [185, 213]. 
Such methods are called ab initio, but are not yet widespread 
for solids, where quantum Monte Carlo (QMC) is more often 
used [60, 226]. DFT calculations for molecules are usually 
much less computationally demanding, but the errors are less 
systematic and less reliable [167].

However, many materials of current technological inter-
est are both chemically complex and strongly correlated. 
Numerous metal oxide materials are relevant to novel energy 
technologies, such as TiO2 for light-harvesting [164] or LiO 
compounds for batteries [83, 218]. For many cases, DFT 
calculations find ground-state structures and parameters, but 
some form of strong correlation method, such as introducing a 
Hubbard U or applying dynamical mean field theory (DMFT), 
is needed to correctly align bands and predict gaps [12, 69]. 
There is thus great interest in developing techniques that use 
insights from both ends, such as DFT  +  U and dynamical 
mean field theory [13, 95, 115, 116, 118, 119].

There are two different approaches to combining DFT 
with lattice Hamiltonians [37]. In the first, more commonly 
used, the lattice Hamiltonian is taken as given, and a den-
sity function(al) theory is constructed for that Hamiltonian 
[81]. We say function(al), not functional, as the density is 
now given by a list of occupation numbers, rather than a con-
tinuous function in real space. The parenthetical reminds us 
that although everything is a function, it is analogous to the 
functionals of real-space DFT. We will refer to this method as 
SOFT, i.e. site-occupation function(al) theory [204], although 
in the literature it is also known as lattice density functional 
theory [101]. While analogs of the basic theorems of real-
space DFT can be proven such as the Hohenberg-Kohn (HK) 
theorems and the Levy constrained search formulation for 
SOFT, it is by no means clear [86] how such schemes might 

converge to the real-space functionals as more and more 
orbitals (and hence parameters) are added. Alternatively, one 
may modify efficient solvers of lattice models so that they 
can be applied to real-space Hamiltonians (as least in 1D), 
and use them to explore the nature of the exact functionals 
and the failures of present approximations [214, 236]. While 
originally formulated for Hubbard-type lattices, SOFT has 
been extended and applied to many different models include 
quantum-spin chains [7], the Anderson impurity model [40, 
221], the 1D random Fermi–Hubbard model [247], and quan-
tum dots [199].

These two approaches are almost orthogonal in philoso-
phy. In the first, one finds approximate function(al)s for lat-
tice Hamiltonians, and can then perform Kohn–Sham (KS) 
DFT calculations on much larger (and more inhomogeneous) 
lattice problems [33], but with all the usual caveats of DFT 
treatments (am I looking at interesting physics or a failure of 
an uncontrolled approximation?). For smaller systems, one 
can often also compare approximate DFT calculations with 
exact results, results which would be prohibitively expen-
sive to calculate on real-space Hamiltonians. The dream of 
lattice models in DFT is that lessons we learn on the lattice 
can be applied to real-space calculations and functional devel-
opments. To this end, work has been done on understanding 
self-interaction corrections [233], and on wedding TDDFT 
and DMFT methods for application to more complex lattices 
(e.g. 3D Hubbard) [105]. And while it is beyond the scope of 
this current review, much work has been done on developing 
and applying density-matrix functional theory for the lattice 
as well [142–145, 195, 196]. While such results can be very 
interesting, it is often unclear how failures of approximate lat-
tice DFT calculations are related to failures of the standard 
DFT approximations in the real world.

There is much interest in extracting excited-state infor-
mation from DFT, and time-dependent (TD) DFT [192] has 
become a very popular first-principles approach [32, 151, 
224]. Because exact solutions and useful exact conditions are 
more difficult for TD problems, there has been considerable 
research using lattices. TD-SOFT can be proven for the lat-
tice in much the same way SOFT is proven from ground-state 
DFT. This generalization is worked out carefully in [55, 220]. 
An adiabatic approximation for TDSOFT was introduced in 
[227]. Applications of TD-SOFT typically involve Hubbard 
chains both with and without various types of external poten-
tials [15, 106, 107, 149, 222]. However, TD-SOFT has also 
been applied to the dimer to understand the effects of the adi-
abatic approximation in TD-DFT [66–68], strong correlation 
[222], and TD-LDA results for stretched H2 in real-space [16]. 
Unfortunately, we will already fill this article simply discuss-
ing the ground-state SOFT problem, and save the TD case for 
future work.

To get the basic idea, consider figure 1. It shows the asym-
metric Hubbard dimer in two different regimes. In this work 
we use asymmetric to mean differing on-site potentials. On 
the left, the Hubbard U energy is considerably larger than the 
difference in on-site potentials and the hopping energy t. This 
is the case most often analyzed, where strong correlations 
drive the system into the Mott–Hubbard regime if U is also 
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considerably larger than t. The on-site occupations are in this 
case close to 1. On the right panel, U is in contrast smaller than 
the on-site potential difference ∆v, and here the dimer stays 
in the charge-transfer regime, where both electrons mostly sit 
in the same deeper well. This is the many-body view of the 
physics of an asymmetric Hubbard dimer.

Now we turn to the KS-DFT viewpoint. Here, we replace 
the interacting Hubbard dimer ( ≠U 0) with a non-interact-
ing (U  =  0) tight-binding dimer, called the KS system, that 
reproduces the Hubbard occupations. In figure 2, we take the 
asymmetric dimer with the same on-site potential difference, 
but we vary U. We plot the occupations, showing how, as U 
increases, their difference decreases. But we also plot the on-
site potentials of the Kohn–Sham model, ∆vS, that are chosen 
to reproduce the occupations of the interacting system with 
a given value of U. As U increases, the KS on-site potential 
difference reduces and the offset from 0 increases. The mid-
dle panel corresponds to the charge-transfer conditions of  
figure 1, while the last panel corresponds to the Mott–Hubbard 
conditions of figure 1. The basic theorems of DFT show that 
if we know the energy as a function(al) of the density, we can 
determine the occupations by solving effective tight-binding 
equations, the KS equations, and then find the exact ground-
state energy. This is not mean-field theory. It is instead a 
horribly contorted logical construction, that is wonderfully 
practical for computations of ground-state quantities. Inside 
this article, we give explicit formulas for the energy functional 
of the Hubbard dimer.

We perform a careful study of the Hubbard dimer, to show 
the differences between SOFT and real-space DFT. We show 
how it is necessary to introduce inhomogeneity into the site 
occupations in order to find the exact density function(al) 
explicitly. In section 2.1 we explain the logic of the KS DFT 
approach in excruciating detail in order to both illustrate the 
concepts to those unfamiliar with the method and to give 
explicit formulas for anyone doing SOFT calculations. We 
elucidate the differences between the KS and the many-body 
Green’s functions in section 4.3. Next, in sections 4 and 5 we 
discuss in detail both concepts and tools for strong correlation, 
and explain how the gap problem appears in DFT. We construct 
the adiabatic connection formula for the exact function(al) in 
section 5.2, showing how it is quantitatively similar to those 

of real-space DFT. We use the theory to construct a simple 
parametrization for the exact function(al) for this problem in 
section 6, where we also demonstrate the accuracy of our for-
mula by finding ground-state energies and densities by solv-
ing the KS equations with our parametrization. In section 7.1, 
we study the broken-symmetry solutions of Hartree–Fock 
theory, showing that these correctly yield both the strongly-
correlated limit and the approach to this limit for strong corre-
lation. In section 7.2 we present BALDA (Bethe-ansatz local 
density approximation), a popular approximation for lattice 
DFT, and in section 7.3 we compare the accuracy of BALDA 
and Hartree–Fock to each other. We discuss fractional particle 
number and the derivative discontinuity in section 8. Finally, 
we end with a discussion of our results in section 9. In table 1 
we list our notation for the Hubbard dimer, as well as many 
standard DFT definitions.

Our purpose here is several-fold. Perhaps most importantly, 
this article is intended to explain the logic of modern DFT to 
our friends who are more familiar with strongly correlated lat-
tice systems. We believe this should be equally useful to any 
researcher interested in many-electron systems such as tradi-
tional quantum chemists, or atomic and molecular physicists, 
since we use and explain the simplest model of strong correla-
tion to illustrate many of the basic techniques of modern DFT. 
There are many more tricks and constructions, but we save 
those for future work.

Secondly, the article forms an essential reference for 
those researchers interested in SOFT, possibly in very dif-
ferent contexts and applied to very different models. It 
shows precisely how concepts from first-principles calcula-
tions are realized in lattice models. Third, we give many 
exact results for this simple model, expanding in many dif-
ferent limits, showing that even in this simple case, there 
are orders-of-limits issues. Fourth, we use DFT techniques 
to find a simple but extremely accurate parametrization 
of the exact function(al) for this model. Even though the 

Figure 1.  Many-body view of two distinct regimes of the 
asymmetric Hubbard dimer. On the left, the charging energy is 
much greater than the difference in on-site potentials. On the right, 
the situation is reversed.

Figure 2.  DFT view: occupations n and potentials v of an 
asymmetric half-filled Hubbard dimer as a function of U. The on-
site potential difference ∆v is shown in black and the KS on-site 
potential difference ∆vS is in red. The second and third panels 
correspond to the situations of figure 1.
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model can be solved analytically, the function(al) cannot 
be expressed explicitly. Thus our parametrization provides 
an ultra-convenient and ultra-accurate expression for the 
exact function(al) for this model, that can be used in the 
ever increasing applications of SOFT. Finally, we exam-
ine several standard approximations to SOFT, including 
both restricted and unrestricted mean field theory, and the 
BALDA, and we find surprising results.

2.  Background

In this section we briefly introduce real-space DFT, and the 
logical underpinnings for everything that follows. Then we 
discuss the mean-field approach to the Hubbard model as well 
as a few well-known results and limits for the Hubbard dimer. 
Throughout this section we use atomic units for all real-space 
expressions so all energies are in Hartree and all distances are 
in Bohr.

2.1.  Density functional theory

We restrict ourselves to non-relativistic systems within the 
Born-Oppenheimer approximation with collinear magnetic 
fields [51]. Density functional theory is concerned with effi-
cient methods for finding the ground-state energy and density 
of N electrons whose Hamiltonian contains three contributions:

ˆ ˆ ˆ ˆ= + +H T V V .ee� (1)

The first of these is the kinetic energy operator, the second is 
the electron–electron repulsion, while the last is the one-body 
potential,

ˆ ( )∑=
=

V v r .
i

N

i
1

� (2)

Only N and ( )v r  change from one system to another, be they 
atoms, molecules or solids. In 1964, Hohenberg and Kohn 
proved that for a given electron–electron interaction, there 
was at most one ( )v r  that could give rise to the ground-state 
one-particle density ( )n r0  of the system, thereby showing that 
all ground-state properties of that system were uniquely deter-
mined by ( )n r0  [98]. The ground-state energy E0 could then be 
found by splitting the variational principle into two steps via 
the Levy–Lieb constrained search approach [129, 132]. First, 
the universal functional F is determined,

[ ] ⟨ ∣ ˆ ˆ ∣ ⟩ [ ] [ ]= Ψ + Ψ = +
Ψ→

F n T V T n V nmin
n

ee ee� (3)

where the minimization is over all normalized, antisymmetric 
Ψ with one-particle density ( )n r . This establishes a one-to-one 
connection between wavefunctions and ground-state densi-
ties, and enables us to define the minimizing wavefunction 
functional [ ]Ψ n0 . Then the ground-state energy is determined 
by a second minimization step of the energy functional E[n],

{ }{ [ ]} [ ] ( ) ( )∫= = +E E n F n r n vr rmin min d .
n n

0
3� (4)

This shows that E0 can be found from a search over one-particle 
densities ( )n r  instead of many-body wavefunctions Ψ, provided 
that the functional F[n] is known. The Euler equation  corre-
sponding to the above minimization for fixed N is simply

[ ]
( )

∣ ( )
( )

δ
δ

= −
F n

n
v

r
r .

n r0

� (5)

Armed with the exact F[n], the solution of this equation yields 
the exact ground-state density which, when inserted back into  
F[n], yields the exact ground-state energy.

To increase accuracy and construct F[n], modern DFT 
calculations use the Kohn–Sham (KS) scheme that imagi-
nes a fictitious set of non-interacting electrons with the same 
ground-state density as the real Hamiltonian [112]. These 
electrons satisfy the KS equations:

ε{ }( ) ( ) ( )φ φ− ∇ + =v r r r
1

2
,i i i

2
S� (6)

where ( )v rS  is defined as the unique potential that generates 
single-electron orbitals ( )φ ri  that reproduce the ground-state 
density of the real system,

Table 1.  Standard DFT definitions and our Hubbard dimer notation.

Definition Description

Generic DFT
[ ]Ψ n Many-body wfn of density n
[ ]Φ n Kohn–Sham wfn of density n
= +F T Vee Hohenberg–Kohn functional
= − −E F T UXC S H Exchange-correlation energy

⟨ ∣ ˆ ∣ ⟩= Φ Φ −E V UX ee H
Exchange energy

= −E U /2X H Exchange energy for 2 electrons
= +E T UC C C Total correlation energy
= −T T TC S Kinetic correlation energy
= − −U V U EC ee H X Potential correlation energy

( )λ λ= λU U /XC XC
Adiabatic connection integrand

∣λ= − λ
λ=T E Ed /dC C C 1

Method to extract TC from EC

∣λ= λ
λ=U Ed /dC C 1

Method to extract UC from EC

ˆ = −∇ +h v/2S
2

S
Kohn–Sham hamiltonian

= + +v v v vS H XC Kohn–Sham one-body potential

= −E E EC
trad HF Quantum chemical corr. energy

SOFT Hubbard
n n,1 2 Occupations at sites 1, 2
= +N n n1 2 Total number of electrons

∆ = −n n n2 1 Occupation difference

∆ = −m m m2 1 Magnetization difference
v v,1 2 On-site potentials

( )= + =v v v /2 01 2 On-site potential average

∆ = −v v v2 1 On-site potential difference

∆ = −v v vXC XC,2 XC,1 XC potential difference

( )= +∆U U N n /4H
2 2 Hartree energy

( )= +∆E U N n /8HX
2 2 Hartree-Exchange energy

( ∣ ∣)= − − − −∆T t N n2 2S
2 2 Single particle hopping energy

Dimensionless variables
ε = E t/2 Energy in units of hopping
=u U t/2 Hubbard U in units of hopping

ν = ∆v t/2 Pot. diff. in units of hopping

n /2∣ ∣ρ= ∆ Reduced density difference

ρ ρ= −1 Asymmetry parameter
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( ) ∣ ( )∣∑ φ=n rr .
occ

i0
2

� (7)

To relate these to the interacting system, we write

[ ] [ ] [ ] [ ]= + +F n T n U n E n .S H XC� (8)

TS is the non-interacting (or KS) kinetic energy, given by

[ ] ∣ ( )∣ ⟨ ∣ ˆ∣ ⟩∫ ∑ φ= ∇ = Φ Φ
= Φ→

T n d Tr
1

2
min ,

i

N

i
n

S
3

1

2� (9)

where we have assumed the KS wavefunction (as is almost 
always the case) is a single Slater determinant Φ of single-
electron orbitals. The second expression follows from equa-
tion (3) applied to the KS system, it emphasizes that TS is a 
functional of ( )n r , and the minimizer defines [ ]Φ n0 , the KS 
wavefunction as a density functional. Then [ ]U nH  is the classi-
cal electrostatic self-repulsion of ( )n r ,

[ ] ( ) ( )
∣ ∣∫ ∫=
−

′
′
′

U n r r
n nr r
r r

1

2
d d ,H

3 3� (10)

and EXC is called the exchange-correlation energy, and is 
defined by equation (8).

Lastly, we differentiate equation  (8) with respect to the 
density. Applying equation (5) to the KS system tells us

( ) [ ]
( )

δ
δ

= −v
T n

n
r

r
,S

S
� (11)

yielding

( ) ( ) ( ) ( )= + +v v v vr r r rS H XC� (12)

where ( )v rH  is the classical electrostatic potential and

( )
( )
δ
δ

=v
E

n
r

r
XC

XC
� (13)

is the exchange-correlation potential. This is the single most 
important result in DFT, as it closes the set of KS equations. 
Given any expression for EXC in terms of ( )n r0 , either approx-
imate or exact, the KS equations  can be solved self-consis-
tently to find ( )n r0  for a given ( )v r . Under standard conditions, 
and with the exact functional, they always converge [237].

However, we also note that, just as in all such schemes, the 
energy of the KS electrons does not match that of the real sys-
tem. This ‘KS energy’ i.e. the energy of the KS electrons, is

ε[ ] ∑= = +E n T V ,
i

iS S S� (14)

but the actual energy is

[ ] [ ] [ ] [ ] [ ] [ ]= + = + + +E F n V n T n U n E n V n0 0 0 S 0 H 0 XC 0 0
� (15)

where ( )n r0  and [ ]T nS 0  have been found by solving the KS 
equations, and inserted into this expression. Thus, in terms of 
the KS orbital energies, there are double-counting corrections, 
which can be deduced from equations (14) and (15):

[ ] [ ] ( ) [ ]( )∫= − + −E E U n E n r n v nr rd .0 S H 0 XC 0
3

0 XC 0� (16)

We emphasize that, with the exact [ ]E nXC 0 , solution of the KS 
equations  yields the exact ground-state density and energy, 

and this has been done explicitly in model cases [237], but 
is computationally exorbitant. The practical use of the KS 
scheme is that simple, physically motivated approximations 
to [ ]E nXC 0  often yield usefully accurate results for E0, bypass-
ing direct solution of the many-electron problem.

For the remainder of this article, we drop the subscript 0 
for notational convenience, and energies will be assumed to be 
ground-state energies, unless otherwise noted. For many pur-
poses, it is convenient to split EXC into a sum of exchange and 
correlation contributions. The definition of the KS exchange 
energy is simply

[ ] ⟨ [ ]∣ ˆ ∣ [ ]⟩ [ ]= Φ Φ −E n n V n U n .X ee H� (17)

The remainder is the correlation energy functional

[ ] [ ] ⟨ [ ]∣ ˆ ˆ ∣ [ ]⟩= − Φ + ΦE n F n n T V n ,C ee� (18)

which can be decomposed into kinetic TC and potential UC 
contributions (see equations  (75) and (76) in section  5). 
Additionally, all practical calculations generalize the preced-
ing formulas for arbitrary spin using spin-DFT [20].

For just one particle (N  =  1), there is no electron–electron 
repulsion, i.e. =V 0ee . This means

           ( )= − = =E U E N, 0, 1 ,X H C� (19)

i.e. the self-exchange energy exactly cancels the Hartree self-
repulsion. Since there is no interaction, [ ] [ ] [ ]= =F n T n T n0

S , 
and for one electron we know the explicit functional:

∣ ∣ ( )∫= = ∇T T r n nd / 8 ,S
W 3 2� (20)

which is called the von Weisacker functional [240]. For two 
electrons in a singlet (N  =  2),

                ( )= − = =E U T T N/2, , 2 ,X H S
W� (21)

but the correlation components are non-zero and non-trivial.
Many popular forms of approximation exist for [ ]E nXC , the 

most common being the local density approximation (LDA) 
[20, 112, 179], the generalized gradient approximation (GGA) 
[22, 102, 126, 172, 174], and hybrids of GGA with exact 
exchange from a Hartree–Fock calculation [4, 23, 94, 175]. 
The computational ease of DFT calculations relative to more 
accurate wavefunction methods usually allows much larger 
systems to be calculated, leading to DFT’s immense popu-
larity today [183]. However, all these approximations fail in 
the paradigm case of stretched H2, the simplest example of a 
strongly correlated system [18, 44, 92].

2.2. The Hubbard model

The Hubbard Hamiltonian is possibly the most studied, and 
simplest, model of a strongly correlated electron system. It 
was initially introduced to describe the electronic properties 
of narrow-band metals, whose conduction bands are formed 
by d and f orbitals, so that electronic correlations become 
important [61, 100]. The model was used to describe ferro-
magnetic, antiferromagnetic and spin-spiral instabilities and 
phases, as well as the metal-insulator transition in metals 
and oxides, including high-Tc superconductors [47, 127]. The 
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Hubbard model is both a qualitative version of a physical sys-
tem depending on what terms are built in [11, 205] and also a 
testing-ground for new techniques since the simpler forms of 
the Hubbard model are understood very well [26, 27, 96, 97].

The model assumes that each atom in the lattice has a sin-
gle orbital. The Hamiltonian is typically written as [54, 82, 
153, 216]

ˆ ˆ ( ˆ ˆ ) ˆ ˆ†∑ ∑ ∑= − + +
σ

σ σ
σ

σ σ ↑ ↓H v n t c c U n nh.c.
i

i i
i j

ij i j
i

i i i
,

� (22)

where at its simplest the on-site energies are all equal =σv 0i  
as well as the Coulomb integrals Ui  =  U. Further, the hopping 
integrals tij typically couple only nearest neighbor atoms and 
are equal to a single value t.

We note that here the interaction is of ultra-short range, so 
that two electrons only interact if they are on the same lattice 
site. Further, they must have opposite spins to obey the Pauli 
principle. Simple examples of building in more complicated 
physics include using next-nearest-neighbor hoppings or near-
est neighbors Coulomb integrals for high-Tc cuprate calcula-
tions and magnetic properties [48, 50, 138], and varying on-site 
potentials used to model confining potentials [189]. Also, add-
ing more orbitals per site delivers multi-band Hubbard models, 
where Coulomb correlations may be added to some or all of 
the orbitals. The Hubbard model has an analytical solution in 
one dimension, via Bethe ansatz techniques [133, 134].

If the Hubbard U is small enough, a paramagnetic mean-
field (MF) solution provides a reasonable description of the 
model in dimensions equal or higher than two. As an example, 
the Hubbard model in a honeycomb lattice can describe cor-
rectly a number of features of gated graphene samples [93]. 
However, for large U or in one dimension, more sophisticated 
approaches are demanded, which go beyond the scope of this 
article [61, 134].

We describe briefly the well-known broken-symmetry MF 
solution, where the populations of up- and down-spin elec-
trons can differ. The standard starting point for the MF solu-
tion neglects completely quantum fluctuations:

( ˆ ) ( ˆ )          ( )− − =↑ ↑ ↓ ↓n n n n 0, MFi i i i� (23)

where ⟨ ˆ ⟩=σ σn ni i , so that

ˆ ( ˆ ˆ )∑= + −↑ ↓ ↓ ↑ ↑ ↓V U n n n n n n .
i

i i i i i iee
MF

� (24)

The MF hamiltonian is then just an effective single-particle 
problem

ˆ ˆ∑=
σ

σH h ,
i

i
MF eff

� (25)

ˆ ˆ ( ˆ ˆ )†∑= − +σ σ σ σ σh v n t c c h.c. ,i i i
j

i j
eff MF

� (26)

where = +σ σ σv v U ni i i
MF . This Ĥ

MF
 can be easily diagonal-

ized if one assumes space-homogeneity of the occupations 
=σ σn ni, . For large U, the broken symmetry solution (often 

ferromagnetic) has lower energy than the paramagnetic 
solution.

2.3. The two-site Hubbard model

We now specialize to a simple Hubbard dimer model with 
open boundaries, but we allow different on-site spin-indepen-
dent energies by introducing a third term that produces asym-
metric occupations,

ˆ ( ˆ ˆ ) ˆ ˆ ˆ†∑ ∑ ∑= − + + +
σ

σ σ ↑ ↓H t c c U n n v nh.c
i

i i
i

i i1 2� (27)

where we have made the choices = =t t t*12 21  and 
+ =v v 01 2 . Our notation for this Hamiltonian can be found in 

table 1. Specifically, the two-site model is useful in compar-
ing approximate methods [147] or investigating highly local 
properties [34] due to its conceptual simplicity. Recently, the 
two-site model was realized experimentally using ultracold 
techniques with the hopes of experimentally building more 
arbitrary Hubbard models in the future [160]. This model 
was carefully investigated in a DFT context by Requist and 
Pankratov [187, 188].

It is straightforward to find an analytic solution of the 
model for any integer occupation N. However, we specialize 
to the particle sub-space N  =  2, Sz  =  0 in what follows unless 
otherwise stated. We expand the Hamiltonian in the basis set 
[∣ } ∣ } ∣ } ∣ }]↑ ↓ ↑ ↓ ↓ ↑ ↑ ↓1 1 , 1 2 , 1 2 , 2 2 :

ˆ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=

+ −
− −

− +

H

v U t t
t t

t t
t t v U

2 0
0 0
0 0

0 2

1

2

� (28)

The eigenstates are three singlets and a triplet state. The 
ground-state energy corresponds to the lowest-energy singlet, 
and can be found analytically. The expressions are given in 
appendix A. The wavefunction, density difference, and indi-
vidual energy components are also given there. We plot in fig-
ure 3 the ground-state energy as a function of ∆v for several 
values of U, while in figure 4, we plot the occupations.

When U  =  0, we have the simple tight-binding result, for 
which the ground-state energy is

( )                  ( )= − +∆ =E t v U2 0 ,2 2� (29)

Figure 3.  Ground-state energy of Hubbard dimer as a function of 
∆v for several values of U and 2 t  =  1.
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( )            ( )∆ = − ∆ +∆ =n v t v U2 / 2 0 .2 2� (30)

where ∆n is defined in table 1. If there is only one electron, 
these become smaller by a factor of 2. The curves for U  =  0.2 
are indistinguishable (by eye) from the tight-binding result. 
We may simplify the expressions by introducing an effective 
hopping parameter,

˜ ( ( ))= + ∆t t v t1 / 2 2� (31)

which accounts for the asymmetric potential. Then

˜                  ( )
˜

= − =
∆ = −∆
E t U

n v t
2 , 0 ,

/ ,
� (32)

i.e. the same equations as when ∆ =v 0.
In the other extreme, as U grows, we approach the strongly 

correlated limit. For a given ∆v, as U increases, ∆n decreases 
as in figures 2 and 4, see also figure 1 in [187], and the magni-
tude of the energy shrinks. Typically, the ( )∆E v  curve morphs 
from the tight-binding result towards two straight lines for U 
large:

( ) ( )                � �−∆ Θ ∆ −E U v v U U t, 2 ,� (33)

( )                � �∆ − Θ ∆ −n v U U t2 , 2 .� (34)

We also have a simple well-known result for the symmetric 
limit, ∆v  =  0, where

( ) ( )           ( )= − + + ∆ = ∆ =E t U U n v2 /2 /2, 0 .2 2� (35)

This vanishes rapidly with 1/U for large U. Its behavior is dif-
ferent from the case with finite ∆v. Results for various limits 
and energy components are given in appendix A.

2.4.  Quantum chemistry

Traditional quantum chemical methods (often referred to as 
ab initio by their adherents) usually begin with the solution 
of the Hartree–Fock equations [215]. For our Hubbard dimer, 
these are nothing but the mean-field equations of section 2.2. 
Expressing the paramagnetic HF Hamiltonian of equation (26) 
for two sites yields a simple tight-binding Hamiltonian and 

eigenvalue equation describing a single-particle in an effec-
tive potential:

( ) = +v n v Un /2.i i i i
eff� (36)

with an eigenvalue:

ε ( )( ) ( )= − ∆ +U v t2 /2.eff eff 2 2� (37)

Writing ( )φ = c c, Teff
1 2 , then

( ) ξ
ξ

∆ = − =
−
+

n c c2 2
1

1
,2

2
1
2

2

2� (38)

where = ∆x v t/2eff , and ξ = + −x x12 . Equation (38) is 
quartic in ∆n and can be solved algebraically to find ∆n as 
a function of ∆v explicitly (appendix E). Just as in KS, the 
HF energy is not simply twice the orbital energy, there is a 
double-counting correction:

ε

⎜ ⎟
⎛

⎝
⎜

⎛
⎝

⎞
⎠

⎞

⎠
⎟

= −

= −
∆

− +

E U

U n
t x

2

2
1

2
2 1 .

MF eff
H

2
2�

(39)

These energies are plotted in figure 5. We see that for small 
U, HF is very accurate, but much less so for 2 � �∆t U v. 
In fact, the HF energy becomes positive in this region, unlike 
the exact energy, which we prove is never positive in appen-
dix C. The molecular orbitals often used in chemical descrip-
tions have traditionally been those of HF calculations, despite 
the fact that HF energies are usually far too inaccurate for 
most chemical energetics [25]. (They have now largely been 
supplanted by KS orbitals.) In quantum chemical language, 
the paramagnetic mean-field solution is called restricted HF 
(RHF) because the spin symmetry is restricted to that of the 
exact solution, i.e. Sz  =  0. For large enough U, the broken-
symmetry, or unrestricted, solution is lower, and is labeled 
UHF, which we discuss in section 7.1.

Accurate ground-state energies, especially as a function of 
nuclear positions, are central quantities in chemical electronic 

Figure 4.  Ground-state occupation of Hubbard dimer as a function 
of ∆v for several values of U and 2 t  =  1. Figure 5.  Ground-state energy of the Hartree–Fock Hubbard dimer 

(thick dashed line) and exact ground-state of the Hubbard dimer 
(thin solid line) as a function of ∆v for several values of U and 2 
t  =  1.
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structure calculations [215]. Most such systems are weakly 
correlated unless the bonds are stretched. The correlation 
energy of traditional quantum chemistry is defined as just the 
error made by the (restricted) HF solution:

= −E E E .C
trad HF� (40)

This is plotted in figure  6. This is always negative, by the 
variational principle. Many techniques have been highly 
developed over the decades to go beyond HF. These are called 
model chemistries, and for many small molecules, errors in 
energy differences of less than 1 kcal mol−1 (0.05 eV) are now 
routine [21, 161].

Usually EC
trad is a small fraction of E for weakly correlated 

systems. For example, for the He atom, E  =  −77.5 eV, but 
= −E 1.143C

trad  eV. This is the error made by a HF calculation. 
In figure 6 we plot EC

trad just as we plotted E in figure 5. We 
see that for strong correlation EC

trad becomes large (∼−U/2 for 
�∆v U), much larger than E. However, E is much smaller, 

and so any strongly correlated method should reproduce E 
accurately. In fact, one can already see difficulties for weakly 
correlated approximations in this limit. For weak correlation, 
a small percent error in EC

trad yields a very small error in E, 
but produces an enormous error in E in the strong correlation 
limit. For an infinitely stretched molecular bond, →t 0 while 
U remains finite, so only one electron is on each site. Thus 
→E 0, so we can think of E as the ground-state electronic 

energy relative to the dissociated limit, i.e. the binding energy.
Because HF is accurate for E when correlation is weak, 

and because quantum chemistry focuses on energy differ-
ences, the error is often measured in terms of the accuracy of 
the exchange-correlation together (if both are approximated as 
in most DFT calculations). For 2 electrons having Sz  =  0, the 
exact exchange is trivial, and so we will focus on approxima-
tions to the correlation energy.

Notice the slight difference in definition of correlation 
energy between DFT (equation 18) and quantum chemis-
try (equation (40)) [78, 194, 225]. In DFT, all quantities are 
defined on a given density, usually the exact density of the 
problem, whereas in quantum chemistry, the HF energy is 

evaluated on the density that minimizes the HF energy. For 
weakly correlated systems, this difference is extremely small 
[73], but is not so small for large U. And, one can prove, 

⩾E EC
trad

C
DFT [78], (see appendix C).

We close by emphasizing the crucial difference in philoso-
phy between DFT and traditional approaches. In many-body 
theory, mean-field theory is an approximation to the many-
body problem, yielding an approximate wavefunction and 
energy which are expected to be reasonably accurate for small 
U. In DFT, this treatment arises from approximating F for 
small U, and so should yield an accurate KS wavefunction and 
expectation values for small U. Thus, only one-body proper-
ties that depend only on position are expected to be accurate, 
and their accuracy can be improved by further improving the 
approximation to F. For large U, such an approximation fails, 
but there is still an exact F that yields an exact answer.

3.  Site-occupation function theory (SOFT)

In this section, we introduce the site-occupation function the-
ory for the Hubbard dimer [40, 42, 81, 187, 188, 203, 204]. If 
we want a physical system where this arises, think of stretched 
H2 [154]. We imagine a minimal basis set of one function per 
atom for the real Hamiltonian. We choose these basis func-
tions to be 1s orbitals centered on each nucleus, but sym-
metrically orthonormalized. Then each operator in real-space 
contributes to the parameters in the Hubbard Hamiltonian as 
seen in appendix F.

It is reasonably straightforward to establish the validity of 
SOFT for our dimer. So long as each occupation can come 
from only one value of ∆v, for a fixed U, there is a one-to-one 
correspondence between ∆n and ∆v, and all the usual logic 
of DFT follows. But note that T̂  and V̂  in SOFT do not cor-
respond to the real-space kinetic energy and potential energy. 
For example, the hopping energy is negative, whereas the real-
space kinetic energy is positive. This means that all theorems 
of DFT to be used must be reproven for the lattice model. 
More importantly, the SOFT does not become real-space DFT 
in some limit of complete basis sets (in any obvious way). We 
will however apply the same logic as real-space DFT, with 
the hopping energy in SOFT playing the role of the kinetic 
energy in DFT, and the on-site energy in SOFT playing the 
role of the one-body potential. The interaction term obviously 
plays the role of V̂ee. Many of the elementary equations and 
figures  in these sections  have appeared elsewhere, e.g. [37, 
67, 68, 187, 188], some of them as static versions of time-
dependent results.

3.1.  Non-interacting warm-up exercise

To show how SOFT works, begin with the U  =  0 case, i.e. 
tight-binding of two non-interacting electrons. The ground-
state is always a spin singlet. From the non-interacting solu-
tion, we can solve for ∆v in terms of ∆n

∆ = −
∆

−∆
v

t n

n

2

4
,

2
� (41)

Figure 6.  Correlation energy EC
trad of Hubbard dimer as a function 

of ∆v for several values of U and 2 t  =  1.
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and substitute back into the kinetic energy expectation value 
to find

( ) = −T n n t n n, 2 .1 2 1 2� (42)

This is the universal density function(al) for this non-interact-
ing problem (see equation (3)), and can be used to solve every 
non-interacting dimer.

To solve this N  =  2 problem in the DFT way, we note that 
T is playing the role of ( )F n n,1 2 . So the exact function(al) here 
is

( )              ( )= − =F n t n n U2 , 0 ,1 1 2� (43)

from which we can calculate all the quantities of interest using 
a DFT treatment. Note that everything is simply a function(al) 
of n1 since ( )= −n N n2 1 , or alternatively a function(al) of ∆n. 
When N is fixed the formulas look like usual DFT when we 
use ∆n.

We then construct the total energy function(al):

( ) ( )               ( )= +∆ ∆ =E n F n v n U/2, 01 1� (44)

and minimize with respect to n1 for a given ∆v to find the 
ground-state energy and density:

( )= − +∆E t v2 ,2 2� (45)

( )∆ = − ∆ +∆n v t v2 / 2 .2 2� (46)

Both of these agree with the traditional approach and recover 
equations (29) and (30). The N  =  1 result is half as great as 
equations (45) and (46).

We can deduce several important lessons from this exam-
ple. First, we need to vary the one-body potential (in this case, 
the on-site energy difference) to make the density change 
through all possible values, in order to find the function(al), 
since it requires knowing the one-to-one correspondence for 
all possible densities. Second, if we really change the atoms 
in our 2-electron stretched molecule, of course the minimal 
basis functions would change, and both t and ∆v would differ. 
But here we keep t fixed, and vary ∆v simply to explore the 
function(al), even if we are only interested in solving the sym-
metric problem. (Real-space DFT does not suffer from this 
problem, as the kinetic and repulsion operators are universal). 
Third, we are reminded that the hopping and on-site operators 
in no sense represent the actual kinetic and one-body poten-
tial terms—they are a mixture of each. Finally, although we 
‘cheated’ and extracted the kinetic energy function(al) from 
knowing the solutions, if someone had given us the formula, 
it would allow us to solve every possible non-interacting 
Hubbard dimer by minimizing over densities. And an approxi-
mation to that formula would yield approximate solutions to 
all those problems.

3.2. The interacting functional

For the interacting case, we cannot analytically write down 
the exact function(al) F(n1) at N  =  2 in closed form. Although 
we have analytic formulas for both E and ∆n as functions of 
∆v, the latter cannot be explicitly inverted to yield an analytic 

formula for ( )∆F n . However, we can plot the function(al), by 
simply plotting F  =  E  −  V as a function of n1, and see how it 
evolves from the U  =  0 case to stronger interaction. The spin 
state is always a singlet. We plot in figure 7 the F-function(al) 
as a function of n1 for several values of U. As U increases we 
can see F appears to tend to ∣ ∣−U n1 1 .

For any real problem the Euler equation for a given ∆v is

( )
−
∆
=

F n

n

vd

d 2
0,1

1
� (47)

and the unique ( )∆n v1  is found that satisfies this. Then

( ) ( ) ( )∆ = ∆ +∆ ∆ ∆E v F n v v n v, /2.1� (48)

The oldest form of DFT (Thomas–Fermi theory [57, 219]) 
approximates both T(n1) and ( )V nee 1  and so leads to a crude 
treatment of the energetics of the system. A variation on this 
was used in [33] to enable extremely large calculations.

3.3.  Kohn–Sham method

The modern world uses the KS scheme, and not pure DFT 
[28]. The scheme in principle allows one to find the exact 
ground-state energy and density of an interacting problem by 
solving a non-interacting one. This scheme is what produces 
such high accuracy while using simple approximations in 
DFT calculations today. Next, we see how the usual defini-
tions of KS-DFT should be made for our dimer.

The heart of the KS method is the fictitious system of non-
interacting electrons whose density matches with the ground-
state density of the interacting system. For our two-electron 
system, the KS system is that of non-interacting electrons 
(U  =  0) with an on-site potential difference ∆vS, defined to 
reproduce the exact ∆n of the real system. This is just the 
tight-binding problem with an effective on-site potential dif-
ference, and is illustrated in figure 2.

As stated in section  2.1, in KS-DFT one conventionally 
extracts the Hartree contribution from the electron–electron 
repulsion. There are deep reasons for doing so, which center 

Figure 7.  F-function(al) of Hubbard dimer as a function of n1 for 
several values of U and 2t  =  1.
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on the remnant, the XC energy, being amenable to local and 
semilocal-type approximations [30, 183]. To see how the 
Hartree energy should be defined here, rewrite the electron–
electron repulsion as:

ˆ ( ˆ ˆ ˆ )∑= − −↑ ↓V
U

n n n
2

.
i

i i iee
2 2 2

� (49)

This form mimics the treatment in DFT. The first term depends 
only on the total (i.e. spin-summed) density, akin to Hartree 
in real-space DFT. The remaining terms cancel the self-inter-
action that arises from using the total density for the electron–
electron interaction. For the N  =  2 dimer, this decomposition 
results in

( ) ( )∆ = +U n
U

n n
2

,H 1
2

2
2� (50)

and

( ) ( )∆ = − +E n
U

n n
4

,X 1
2

2
2� (51)

which satisfies = −E U /2X H  for N  =  2 as in real-space DFT for 
a spin singlet, equation (23). Together, the Hartree-Exchange is

( ) ( ) ⎜ ⎟
⎛

⎝
⎜

⎛
⎝

⎞
⎠

⎞

⎠
⎟∆ = + = +

∆
E n

U
n n

U n

4 2
1

2
.HX 1

2
2
2

2

� (52)

In appendix B we see that the leading order in the U expansion 
of the F-function(al) yields the same result. A typical mean 
field treatment of V̂ee also results in equation  (52). In DFT 
there is always self-exchange, even for one or two particles. In 

many-body theory, exchange means only exchange between 
different electrons. Despite this semantic difference, both 
approaches yield the same leading-order-in-U expression for 
the dimer, which we call EHX here (but is often called just 
Hartree in many-body theory).

For the dimer, from equation (42), the KS kinetic energy 
is just

( ) = −T n t n n2 ,S 1 1 2� (53)

so that ( ) ( ) ( )= +F n T n E nHF
1 S 1 HX 1  as in section  2.4. We 

can then define the correlation energy function from equa-
tion (18), so that

( ) ( ) ( ) ( )= − −E n F n T n E n .C 1 1 S 1 HX 1� (54)

In figure 8, we plot the correlation energy as a function of n1. 
For small U,

( ( ) )        �∼− − −E U n U t1 1 /8 2C
2

1
2 5/2� (55)

which is much smaller than the Hartree-exchange contri-
bution, and is a relatively small contribution to E. But as U 
increases,

( ( ) )          �∼− − −E U n U t1 1 /2, 2C 1
2� (56)

with a cusp at half-filling. Combined with EHX, this creates F 
for large U as in figure 7.

Inserting this result into equation (47), we find that the KS 
electrons have a non-interacting Hamiltonian:

εˆ ∣ ⟩ ∣ ⟩φ φ=h ,S S� (57)

where this KS Hamiltonian is

Figure 8.  Plot of exact EC (blue line) and EC,par (red dashed line) for different U and 2 t  =  1.
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ˆ ( ) ( ˆ ˆ ) ( ) ˆ† ∑∆ = − + + ∆h n t c c v n nh.c. .
i

s i iS 1 2 ,� (58)

The KS potential difference is

( ) ( )∆ ∆ = ∆ + ∆ +∆ ∆v n v U n v n/2 ,S C� (59)

where

( )∆ = −v E n n2 d /d ,C C 1 1� (60)

the analog of equation  (13). For any given form of the 
(exchange-)correlation energy, differentiation yields the cor-
responding KS potential. If the exact expression for ( )E nC 1  
is used, this potential is guaranteed [237] to yield the exact 
ground-state density when the KS equations  are iterated to 
convergence via a simple algorithm.

In figure 9, we plot several examples of the dependence 
of the potentials in the KS system as a function of n1, which 
range from weakly (U  =  0.4) to strongly (U  =  10) correlated 
cases. In each curve, the black line is the actual on-site poten-
tial difference as a function of occupation of the first site. The 
blue line is the KS potential difference, which is the on-site 
potential needed for two non-interacting (U  =  0) particles to 
produce the given n1. This is found by inverting the tight-
binding equation for the density, equation (41). Their differ-
ence is the Hartree-exchange-correlation on-site potential, 
denoted by the red line. Finally, the green line is just Hartree-
exchange, which ignores correlation effects. For U  =  0.4, we 
see that the difference between blue and black is quite small, 
and almost linear. Indeed the Hartree-exchange contribution 
is always linear (see equation  (59)). Here the red is indis-
tinguishable by eye from the green, showing how small the 
correlation contribution to the potential is. This means the 
HF and exact densities will be virtually (but not quite) identi-
cal. When we increase U to 2 t, we see a similar pattern, but 
now the red line is noticeably distinct from the green. For 
any given n1, the blue curve is smaller in magnitude than the 
black. This is because turning on U pushes the two occupa-
tion numbers closer, and so their KS on-site potential differ-
ence is smaller. Again, the red curve is larger in magnitude 
than the green, showing that HF does not suppress the density 
difference quite enough. In our final panel, U  =  20 t, and the 
effects of strong correlation are clear. Now there is a huge 
difference between black and blue curves. Because U is so 

strong, the density difference is close to zero for most n1, 
making the blue curve almost flat except at the edges. In the 
KS scheme, this is achieved by the red curve being almost 
flat, except for a sudden change of sign near n1  =  1. These 
effects give rise to the ∆vS values shown in figure  2. This 
effect is completely missed in HF.

To emphasize the role of correlation, in figure  10, we 
plot the correlation potential alone, which is the difference 
between the red and green curves in figure 9. Values from the 
blue curves for ∆ =v 2 were used to make figure 2. ∆vC is an 
odd function of n1. In the weak- and strong-coupling limits 
we can write down simple expressions for ∆vC (see appendix 
B.2):

( ( ) )       ( )�∆ ≈
∆

− ∆v
U n

t
n U t

5

32
1 /2 2C

2
2 3/2� (61)

( ∣ ∣) ( )      ( )�∆ ≈ − ∆ ∆v U n sgn n U t1 /2 2 .C� (62)

These correspond to the 1st and 4th panels in figure 10. For 
small U, it is of order U2 (see appendix B), and has little 
effect. As U increases, it becomes proportional to U, and 
becomes almost linear in U, with a large step near n1  =  1. 
If we now compare this figure with figure 8, we see that it is 
simply the derivative of the previous ( )E nC 1  curve, as stated in 
equation (60).

The self-consistent KS equations, equations  (57) and 
(58), have, in this case, precisely the same form as those of 
restricted HF (or mean-field theory), equations (26) and (36), 
but with whatever additional dependence on n1 occurs due to 

( )∆v nC 1 . When converged, the ground-state energy is found 
simply from:

( ) ( ) ( ) ( ) ( )= + + +E n T n V n U n E n .1 S 1 ext 1 H 1 XC 1� (63)

The energy can alternatively be extracted from the KS orbital 
energy via equation (16):

ε ( )= + −∆ ∆ −E E v n E2 /2 ,S C C HX� (64)

where the second term is the double-counting correction. But 
note the crucial difference here. We consider HF an approxi-
mate solution to the many-body problem whereas DFT, with 
the exact correlation function(al), yields the exact energy and 
on-site occupation, but not the exact wavefunction.

Figure 9.  Plots of ∆vS (blue) and its components, ∆v (black), ∆U n/2 (red), and ∆ + ∆v U n/2C  (green) plotted against n1 for various U and 
2 t  =  1. The arrows indicate the occupations used in figure 2. (See also figures 5 and 6 of [187]).
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4. The fundamental gap

Now that we have carefully defined what exact KS DFT is for 
this model, we immediately apply this knowledge to investi-
gate a thorny subject on the border of many-body theory and 
DFT, namely the fundamental gap of a system.

4.1.  Background in real space

Begin with the ionization energy of an N-electron system:

( ) ( )= − −I E N E N1� (65)

is the energy required to remove one electron entirely from a 
system. We can then define the electron affinity as the energy 
gained by adding an electron to a system, which is also equal 
to the ionization energy of the (N  +  1)-electron system:

( ) ( )= − +A E N E N 1 .� (66)

In real-space, I and ⩾A 0. For systems which do not bind an 
additional electron, such as the He atom, A  =  0. The charge, 
or fundamental, gap of the system is then

= −E I A,g� (67)

and for many materials, Eg can be used to decide if they are 
metals (Eg  =  0) or insulators (Eg  >  0) [109]. The spectral 
function of the single-particle Green’s function has a gap 
equal to Eg. For Coulombic matter, Eg has always been found 
to be non-negative, but no general proof has been given.

Now we turn to the KS system of the N-electron system. 
We denote the highest occupied (molecular) orbital as ε HOMO 
and the lowest unoccupied one as ε LUMO. Then the DFT ver-
sion of Koopmans’ theorem [8, 9, 39, 176, 177, 208] shows 
that

ε = −I ,HOMO� (68)

by matching the decay of the density away from any finite sys-
tem in real space, in the interacting and KS pictures. However, 
this condition applies only to the HOMO, not to any other 
occupied orbitals, or unoccupied ones. The LUMO level is not 
at  −A, in general. Define the KS gap as

ε ε= −E .gs
LUMO HOMO� (69)

Then Egs does not match the true gap, even with the exact XC 
functional [19, 193]. We write

= +∆E Eg gs XC� (70)

where ∆ ≠ 0XC , and is called the derivative discontinuity 
contribution to the gap (for reasons that will be more appar-
ent later) [171, 173]. In general, ∆XC appears to always be 
positive, i.e. the KS gap is smaller than the true gap. In semi-
conductors with especially small gaps, such as germanium, 
approximate KS gaps are often zero, making the material a 
band metal, but an insulator in reality. The classic example 
of a chain of H atoms becoming a Mott–Hubbard insulator 
when the bonds are stretched is demonstrated unambiguously 
in [214].

While this mismatch occurs for all systems, it is especially 
problematic for DFT calculations of insulating solids. For 
molecules, one can (and does) calculate the gap (called the 
chemical hardness in molecular systems [166]) by adding and 
removing electrons. But with periodic boundary conditions, 
there is no simple way to do this for solids. Even with the 
exact functional, the KS gap does not match the true gap, and 
there’s no easy way to calculate Eg in a periodic code. In fact, 
popular approximations like LDA and GGA mostly produce 
good approximations to the KS gap, but yield ∆ = 0XC  for 
solids. Thus there is no easy way to extract a good approxima-
tion to the true gap in such DFT calculations. The standard 
method for producing accurate gaps for solids has long been 
to perform a GW calculation [14], an approximate calculation 

Figure 10.  Plot of ∆vC for different U and 2 t  =  1.
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of the Green’s function, and read off its gap. This works very 
well for most weakly correlated materials [200]. Such calcula-
tions are now done in a variety of ways, but usually employ 
KS orbitals from an approximate DFT calculation. Recently, 
hybrid functionals like HSE06 [94] have been shown to yield 
accurate approximate gaps to many systems, but these gaps 
are a mixture of the quasiparticle (i.e. fundamental) gap, and 
the KS gap. Their exchange component produces the funda-
mental gap at the HF level, which is typically a significant 
overestimate, which then compensates for the ‘too small’ KS 
gap. While this balance is unlikely to be accidental, no general 
explanation has yet been given.

4.2.  Hubbard dimer gap

For our half-filled Hubbard dimer, we can easily calculate 
both the ±N 1-electron energies, the former via particle-hole 
symmetry from the latter [40]. In figure 11, we plot  −I,−A, 
ε HOMO, and ε LUMO for U  =  1 when 2 t  =  1, as a function of 
∆v. We see that A (and even sometimes I) can be negative 
here. (This cannot happen for real-space calculations, as elec-
trons can always escape to infinity, so a bound system always 
has ⩾A 0.) The HOMO level is always at  −I according to 
equation (68) but the LUMO is not at  −A. Here it is smaller 
than  −A, and we find this result for all values of U and ∆v. 
The true gap is I  −  A, but the KS gap is ε + ILUMO , which is 
always smaller. Thus ⩾∆ 0XC , just as for real systems.

Figure 11 is typical of weakly correlated systems, where 
∆XC is small but noticeable. In figure 12, we repeat the calcu-
lation with U  =  10 t, where now �E Eg gs at ∆ =v 0, but we 
still see the difference become tiny when ∆ >v U. In both fig-
ures, ∆XC is the difference between the red line and the green 
dashed line. In all cases, ⩾∆ 0XC , and this has always been 
found to be true in real-space DFT, but has never been proven 
in general.

4.3.  Green’s functions

To end this section, we emphasize the difference between the 
KS and many-body approaches to this problem by calculat-
ing their spectral functions [163]. We define the many-body 
retarded single-particle Green’s function as

( ) ( )⟨ ∣{ˆ ( ) ˆ ( )} ∣ ⟩†θ− = − − Ψ Ψ′ ′ ′σσ σ σ′ ′G t t t t c t c ti ,ij i j0 0� (71)

where i, j label the site indices, σ, σ′ the electron spins, and 
{A, B}  =  AB  +  BA. For the Hubbard dimer at N  =  1 and 3, 
∣ ⟩Ψ0  is a degenerate Kramers doublet and we choose here the 
spin-↑ partner. Fourier transforming into frequency, we find 
for the diagonal component:

( ) ( ) ∣ ∣

∣ ∣

∑

∑

ω ω
ω δ

ω δ

= =
+ − +

+
− + +

σ σσ
α

σ
α

α

α

σ
α

α

+

−

G G
M

E E

L

E E

i
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11
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1

�
(72)

where ⟨ ∣ ˆ ∣ ⟩†ψ ψ=σ
α

α σ
+M cN N

1
1

1 0 , ⟨ ∣ ˆ ∣ ⟩ψ ψ=σ
α

α σ
−L cN N

1
1

1 0 , and 
δ> 0 is infinitesimal. Here, α runs over all states of the 

±N 1-particle systems. The other components have analogous 
expressions. From any component of G, we find the corre-
sponding spectral function

A G /( ) ℑ ( )ω ω π= −� (73)

We represent the spectral function δ-function poles with lines 
whose height is proportional to the weights. Via a simple sum-
rule [58], the sum of all weights in the spin-resolved spectral 
function is 1. There are four quasi-particle peaks for N  =  2. 
These peaks are reflection-symmetric about ω = U /2 for the 
symmetric dimer.

We also need to calculate the KS Green’s function, 
( )ωGS . This is done by simply taking the usual definition, 

equation (71), and applying it to the ground-state KS system. 
This means two non-interacting electrons sitting in the KS 
potential. The numerators vanish for all but single excitations. 
Thus the energy differences in the denominators become sim-
ply occupied and unoccupied orbital energies. Since there are 

Figure 11.  Plot of  −A, −I, ε HOMO, and ε LUMO as a function of ∆v 
with U  =  1 and 2 t  =  1.

Figure 12.  Plot of  −A, −I, ε HOMO, and ε LUMO as a function of ∆v 
with U  =  5 and 2 t  =  1.
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only two distinct levels (the positive and negative combina-
tions of atomic orbitals), there are only two peaks, positioned 
at the HOMO and LUMO levels, with weights:

( )
    ( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= +

∆

∆ +
σ
αM

v

v t

1

2
1

/2

/2
, KS1

S

S
2 2

� (74)

and the sign between the contributions on the right is negative 
in the L term. Thus the symmetric dimer has KS weights of 
1/2.

In figure  13 we plot the spectral functions for the sym-
metric case, for U  =  1, when 2 t  =  1. Each pole contributes a 
delta function at a distinct transition frequency, which is rep-
resented by a line whose height represents the weight. The 
sum of all such weights adds to 1 as it should, and the peaks 
are reflection-symmetric about U/2  =  0.5. The gap is the dis-
tance between the highest negative pole (at  −I) and the lowest 
positive pole (at  −A). We see that the MB spectral function 
also has peaks that correspond to higher and lower quasi-
particle excitations. If we now compare this to the exact KS 
Green’s function GS, we see that, by construction, GS always 
has a peak at  −I, whose weight need not match that of the 
MB function. It has only two peaks, the other being at ε LUMO, 
which does not coincide with the position of the MB peak. 
This is so because the KS scheme is defined to reproduce the 
ground-state occupations, nothing else. But clearly, when U is 
sufficiently small, it is a rough mimic of the MB Green’s func-
tion. The larger peaks in the MB spectral function each have 
KS analogs, with roughly the correct weights. One of them is 
even at exactly the right position. Thus if a system is weakly 
correlated, the KS spectral function can be a rough guide to 
the true quasiparticle spectrum.

On the other hand, when �U t2 , the KS spectral func-
tion is not even close to the true MB spectral function, as 
illustrated in figure 14. Now the two lowest-lying MB peaks 
approach each other, as do the two highest lying peaks, there-
fore increasing the quasi-particle gap. In addition, the weights 
tend to equilibrate with each other. In fact, when →∞U  and/
or →t 0, those two lowest-lying peaks gather together at 

ω = 0, having both the same weight of 1/4. And similarly the 
two highest-lying peaks merge at ω = U, also with a weight of 
1/4. They are the precursors of the lower and upper Hubbard 
bands with a quasi-particle gap equal to U. If more sites are 
added to the symmetric dimer, other quasi-particle peaks 
appear, that also merge into the lower and upper Hubbard 
bands as →∞U . Notice that the spectral function has sig-
nificant weights for transitions between states that differ from 
the HOMO and LUMO, and are forbidden in the KS spectral 
function for large U. In figure 14, we see that not only there is 
a large difference between the gaps in the two spectral func-
tions, but also the KS weights are not close to the MB weights. 
The only ‘right’ thing about the KS spectrum is the position 
of the HOMO peak.

In figure 15, we plot the spectral functions for ∆ =v 2 and 
U  =  1 for 2 t  =  1, to see the effects of asymmetry on the spec-
tral function. Now the system appears entirely uncorrelated, 
and the KS spectral function is very close to the true one, much 
more so than in the symmetric case. Here ∆XC is negligible. 
The asymmetry of the potential strongly suppresses correla-
tion effects. In figure 16, we see that the effects of strong U 
are largely quenched by a comparable ∆v. Here ∆XC is small 

Figure 13.  Spectral function of symmetric dimer for U  =  1, 
∆ =v 0, and 2 t  =  1. The physical MB peaks are plotted in blue, the 
KS in red. Here I  =  0.1, A  =  −1.1, and ε = 0.9LUMO , corresponding 
to ∆ =v 0 in figure 11.

Figure 14.  Same as figure 13, but now U  =  5. Here I  =  −0.3, 
A  =  −4.7, and ε = 1.3LUMO , corresponding to ∆ =v 0 in figure 12.

Figure 15.  Same as figure 13, but now U  =  1, ∆ =v 2. Here 
I  =  0.27, A  =  −1.27, and ε = 1.25LUMO , corresponding to ∆ =v 2 
in figure 11.
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compared to the gap, but not all KS peak heights are close to 
their MB counterparts.

The situation is interesting even for the ‘simple’ case, 
N  =  1, in which the ground-state is open-shell [76]. Here the 
interacting spin-↑ and -↓ Green’s functions differ. To under-
stand why, we choose the N  =  1 ground state to have spin 

↑. This state has energy ( ) ( )= − + ∆E t v1 /22 2 . Adding a 

↓-spin electron takes the system to the different singlet states 
at N  =  2, and to the triplet state with Sz  =  0. One of them is 
the ground state at N  =  2 whose energy E(2)  <  0 is given in 
equation (A.1) in the appendix. In contrast, adding an ↑-spin 
electron takes the interacting system to the triplet N  =  2 state 
with Sz  =  1, whose energy is trivially given by ( ) =E 2 0trip . 
Annihilating an ↑-spin electron takes the system to the vacuum, 
while it is impossible to annihilate a ↓-spin electron. These 
clearly illustrates that the number and energy of the poles in 
↑G  and ↓G  is different: ↑G  has only two quasi-particle peaks, 

with trivial energies ( ) ( ) ( )− = + ∆E E t v2 1 /2trip
2 2  and 

E E t v1 0 /22 2( ) ( ) ( )− = − + ∆ . This last expression corre-
sponds to the ionization energy I E E t v0 1 /22 2( ) ( ) ( )= − = + ∆ .  

↓G  has four quasiparticle peaks, all corresponding to adding 
a ↓-spin electron, with non-trivial energies. The lowest of 

these corresponds to the electron affinity A  =  E(1)  −   E(2)   

( ) ( )= − + ∆ −t v E/2 22 2 . In other words, ionization involves 
either removing an ↑-spin electron (hence seen as a pole in ↑G ) 
or adding a ↓-spin electron (hence seen as a pole in ↓G ). The 

interacting gap is ( ) ( )= − = + ∆ +E I A t v E2 /2 2g
2 2 .

We turn now to the KS Green’s function. For N  =  1, the 
KS on-site potentials equal the true on-site potentials, ±∆v/2. 
So the ground-state (chosen again to have spin ↑) has energy 

( ) ( )= − + ∆E t v1 /2S
2

S
2 . Since the other state has energy 

( )E 1S , and a second ↑-electron occupies that state, the total KS 
energy is ( ) ==E 2 0S 1z . On the other hand, annihilating the ↑ 
electron costs an energy E(1). This shows that the ↑-spin KS 
and interacting Green’s functions are identical to one other 

and trivial for N  =  1. Thus ε ( )= − = + ∆I t v/2HOMO 2 2 . 
This result is specific to this model.

Removing a ↓-spin KS electron is impossible, just as 
in the interacting case. However, adding it means hav-
ing either two opposite-spin KS electrons with the same 

energy ( )− + ∆t v /22
S

2 , or having one with energy 

( )− + ∆t v /22
S

2  and another with energy ( )+ ∆t v /22
S

2 . 
The first case corresponds to the KS ground-state with energy 

( )− + ∆t v2 /22
S

2 , while the second one is an excited state 
with energy 0. The KS value for the electron affinity is 

( ) ( ) ( )= − = + ∆A E E t v1 2 /2S S S
2

S
2 , which differs from 

the interacting value. Furthermore, the KS gap Egs  =  0 is 
clearly an incorrect estimate of the true interacting gap, which 
is given by = ∆I xc.

Figures 17 and 18 show the spectral function associated 
with ↓G  for the many-body and KS Green’s functions for 
N  =  1 and ∆ =v 2. In the first, U  =  1, so it is relatively asym-
metric, whereas in the second, U  =  5, making it close to sym-
metric. Thus the HOMO is at the lowest red line, and matches 
exactly the LUMO, with a KS gap of zero. Thus ∆XC is the 
gap of the interacting system. We see that in the first figure, 

Figure 16.  Same as figure 15, but now U  =  5, ∆ =v 5. Here 
I  =  −1.8, A  =  −3.2, and ε = 3LUMO , corresponding to ∆ =v 5 in 
figure 12.

Figure 17.  Spin-↓ resolved spectral function for N  =  1 and 
U  =  1, ∆ =v 2, (2 t  =  1). Here I  =  1.12, A  =  0.27, and 
ε ε= = −1.12LUMO HOMO .

Figure 18.  Spin-↓ resolved spectral function for N  =  1 and 
U  =  5, ∆ =v 2 (2 t  =  1). Here I  =  1.12, A  =  −0.90, and 
ε ε= = −1.12LUMO HOMO .
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correlations are weak and the KS spectral function mimics the 
physical one, but in the second figure (U  =  5), they differ sub-
stantially, even though N  =  1!

The difference in expressions for spin species is illustrated 
further by work analyzing Koopmans’ and Janak’s theorems 
for open-shell systems [75–77, 79]. Self-energy approxima-
tions beyond GW have been performed on the Hubbard dimer 
[190, 191], as well as a battery of many-body perturbation 
theory methods [162] though only for the symmetric case.

The bottom line message of this subsection is that the KS 
spectral function does not match the quasiparticle spectral 
function, because it is not supposed to. However, the main 
features of a weakly correlated system are loosely approxi-
mated by those of the KS function, with the gap error shift-
ing the upper part of the spectrum relative to the lower part. 
This is the motivation behind the infamous scissors operator 
in solid-state physics. A very accurate DFT approximation 
can (at best) approximate the KS spectral function, not the 
many-body one. The exact XC functional does not reproduce 
the quasiparticle gap of the system. For strongly correlated 
systems, there are often substantial qualitative differences 
between the MB and KS spectral functions. These are some 
of the limitations of KS-DFT. that, e.g. DMFT is designed to 
overcome [69].

5.  Correlation

5.1.  Classifying correlation: strong, weak, dynamic, static, 
kinetic, and potential

There are as many different ways to distinguish weak from 
strong correlation as there are communities that study electronic 

structure. Due to the limited degrees of freedom (namely, one), 
these all overlap in the Hubbard dimer. We will discuss each.

The most important thing to realize is that correlation 
energy comes in two distinct contributions: kinetic and poten-
tial. These are entirely well-defined quantities within KS-DFT. 
The kinetic correlation energy is:

= −T T TC S� (75)

for a given density. Note that we could as easily call this the 
correlation contribution to the kinetic energy. The potential 
correlation energy is:

= −U V E ,C ee HX� (76)

and could also be called the correlation contribution to poten-
tial energy. For future notational convenience, we also define 
=U EX X, i.e. there is no kinetic contribution to exchange. 

Then, from equation (18), we see

= +E T U .C C C� (77)

We can now use these to discuss the differences between 
weak and strong correlation. First note that, by construction, 
and as shown for our dimer in appendix C,

        < > <E T U0, 0, 0.C C C� (78)

In figures 8 and 19, we plot both EC and TC, respectively, for 
several values of U (with 2 t  =  1). When U is small, ≈−T EC C. 
However, for �U t2 , we see that although EC becomes very 
large (in magnitude), TC remains finite and in fact, TC never 
exceeds 2 t as proven in appendix C. We can define a measure 
of the nature of the correlation [29]:

∣ ∣
β ≡

T

E
.corr

C

C
� (79)

Figure 19.  Plot of exact TC (blue line) and TC,par (red dashed line) for different U and 2 t  =  1.
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As →U 0, β → 1corr , while as →∞U , β → 0corr . Thus βcorr 
close to 1 indicates weak correlation, β small indicates strong 
correlation. We plot βcorr as a function of U for several values 
of ∆v in figure 20. Although βcorr is monotonically decreas-
ing with U for ∆ =v 0, we see that the issue is much more 
complicated once we include asymmetry. The curve for each 
∆v remains monotonically decreasing with U. But consider 
U  =  2 and different values of ∆v. Then βcorr at first decreases 
with ∆v, i.e. becoming more strongly correlated, but then 
increases again for ∆ >v U, ultimately appearing less corre-
lated than ∆ =v 0.

Quantum chemists often refer to dynamic versus static 
correlation. Our precise prescription in KS-DFT loosely cor-
responds to their definition, replacing dynamic by kinetic, 
and static by potential. Thus, considering an H2 molecule 
with a stretched bond, the Hubbard model applies. As the 
bond stretches, t vanishes, and U t/2  grows. Thus β → 0corr  as 
→∞R . The exact wavefunction, the Heitler-London wave-

function [90], has only static correlation in this limit. In many-
body language, it is strongly correlated. In DFT language, the 
fraction of correlation energy that is kinetic is vanishing.

5.2.  Adiabatic connection

With the various contributions to correlation well-defined, we 
construct the adiabatic connection (AC) formula [80, 124] for 
the Hubbard dimer. The adiabatic connection has had enor-
mous impact on the field of DFT as it allows both construction 
[4, 23, 23, 52, 175, 181], and understanding [29, 168, 174], of 
exact and approximate functionals solely from their potential 
contributions.

In many-body theory, one often introduces a coupling-
constant in front of the interaction. In KS-DFT, a coupling 
constant λ is introduced in front of the electron–electron 
repulsion but, contrary to traditional many-body approaches, 
the density is held fixed as λ is varied (usually from 0 to 1). 
Via the Hohenberg–Kohn theorem, as long as there is more 
than 1 electron, this implies that the one-body potential must 
vary with λ, becoming ( )λv r . By virtue of the density being 

held fixed, ( ) ( )=λ=v vr r0
S  while ( ) ( )=λ=v vr r1 . Thus λ 

interpolates between the KS system and the true many-body 
system. Additionally, λ→∞ results in the strictly correlated 
electron limit [70, 140, 148, 206, 207] which provides useful 
information about real systems that are strongly correlated.

The adiabatic connection for the Hubbard dimer is very 
simple. Define the XC energy at coupling constant λ by sim-
ply multiplying U by λ while keeping ∆n fixed:

( ) ( )λ∆ = ∆λE U n E U n, , .XC XC� (80)

Application of the Hellman–Feynman theorem [59] yields 
[80, 87, 124, 125]:

( ) ( )λ
λ

λ
λ

∆
=

∆E U n U U nd ,

d

,
,XC XC� (81)

where ( )∆U U n,XC  is the potential contribution to the XC 
energy, i.e. =U EX X and

( ) ( ) ( )λ λ λ= −U U V U E U .C ee HX� (82)

Thus, we can extract TC solely from our knowledge of ( )E UC  
via

T E U E
Ed

d
.C C C C

C

1λ
= − = −

λ

λ=
� (83)

Thus, any formula for EC, be it exact or approximate, yields 
a corresponding result for TC and UC, and vice versa [46]. We 
may then write

( ) ( )∫
λ
λ

λ∆ = ∆E U n U U n,
d

, ,XC
0

1

XC� (84)

and this is the infamous adiabatic connection formula of DFT 
[80, 124]. We denote the integrand as ( )λUC , defined as

( ) ( ) ( )
λ

λ
λ

λ
λ

= =U
U U E Ud

d
.C

C C
� (85)

Plots of ( )λUC  from equation (85) are called adiabatic connec-
tion plots, and can be used to better understand both approxi-
mate and exact functionals. In figure 21, we plot a typical case 
for =U t2  and ∆ =v 0. They have the nice interpretation that 

Figure 20.  Plot of ∣ ∣β = T E/corr C C  as a function of U with 2 t  =  1.

Figure 21.  Adiabatic connection integrand divided by U for various 
values of U. The solid lines are ∆ =v 2 and the dashed lines 
∆ =v 0. Asymmetry reduces the correlation energy but increases 
the fraction of kinetic correlation.
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the value at λ = 1 is the potential correlation energy, UC, the 
area under the curve is EC, and the area between the curve and 
the horizontal line at ( )U 1C  is −TC. Furthermore, one can also 
show [130]

( )λ
λ

<
Ud

d
0,XC

� (86)

from known inequalities for ( )λTC  and ( )λEC . This is proven 
for our problem in appendix C. Interestingly, such curves have 
always been found to be convex when extracted numerically 
for various systems [65, 186], but no general proof of this 
is known. The Hubbard dimer also exhibits this behavior. A 
proof for the dimer might suggest a proof for real-space DFT.

In figure 21 we plot ( )λU U/C  for ∆ =v 0 and ∆ =v 2, with 
various values of U. From the above formulas, one can deduce 
that the area between the curve and the horizontal line at ( )U 1C  
is −TC. Thus as U grows, the curve moves from being almost 
linear to decaying very rapidly, and βcorr varies from 1 down 
to 0.

In figure 21, we show U up to 10 (for 2 t  =  1), to show the 
effect of stronger correlation. Not only has the magnitude of 
the correlation become larger, but the curve drops more rap-
idly toward its value at large λ. �β 0.9corr  for ∆ =v 0 and 
U  =  1, but �β 0.2corr  for ∆ =v 0 and U  =  10, reflecting the 
fact that the increase in correlation is of the static kind.

The weakly correlated limit has been much studied in 
DFT. Perturbation theory in the coupling constant is called 
Goerling-Levy perturbation theory [74]. For small λ,

( )    ( )( ) ( )λ λ λ λ= + + →U U U U ... 0 .C
2

C
2 3

C
3� (87)

In appendix B.2, we show that
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and

( )( ) ⎜ ⎟ ⎜ ⎟
⎛
⎝
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for the dimer. This yields, for TC,

( ) ( ) ( )λ λ λ= − − − −T U U U
1

2

2

3

3

4
...C

2
C
2 3

C
3 4

C
4� (90)

showing that β→ 1 as U (or λ) vanishes. For any system, ( )UC
2  

determines the initial slope of ( )λUC .
On the other hand, in the strongly correlated limit, in real-

space [71, 140].

( )     ( )λ λ λ λ→ + + →∞− −E B B B ... ,C 0
1/2

1
1

2� (91)

where Bk (k  =  0, 1, 2...) are coupling-invariant functionals of 
( )rn  [141]. The dominant term is linear in U. Physically, it 

must exactly cancel the Hartree plus exchange contributions, 
since there is no electron–electron repulsion to this order 
when each electron is localized to separate sites. Correctly, 
such a term cancels out of TC, so that its dominant contribution 
is O(1). From appendix B.2, we see that the Hubbard dimer 
has a different form, involving only integer powers of λ:

˜ ˜     ( )λ λ λ→ + + + →∞E B B B / ...C 0 1 2� (92)

where

( ) ( )∆ = − +∆B n U n1 /2 /2,0
2� (93)

( ) ( )∆ = +∆ −∆ − −∆B n t n n n˜ 2 1 /2 1 /2 ,1� (94)

and

˜ ( ) ( )∆ = +∆B n n t U1 /2 / .2
2� (95)

But both this term and the next cancel in the total energy (at 
half filling), so that the ground-state energy is O(1/U), i.e. 
extremely small as U grows:

→−E
t

U

4 2

� (96)

This illustrates that, although the KS description is exact, it 
becomes quite contorted in the large U limit (see figure 2). 
This has been implicated in convergence difficulties of the KS 
equations, even with the exact XC functional, because the KS 
system behaves so differently from the physical system [235].

6.  Accurate parametrization of correlation energy

Although the Hubbard dimer has an exact analytic solution 
when constructed from many-body theory, the dependence 
of ( )∆F n  (or equivalently ( )∆E nC ) is only given implicitly. 
While this is technically straightforward to deal with, in prac-
tice it would be much simpler to use if an explicit formula is 
available. In this section, we show how the standard machin-
ery of DFT can be applied to develop an extremely accurate 
parametrization of the correlation energy functional.

An arbitrary antisymmetric wavefunction is characterized 
by 3 real numbers where ∣ ⟩12  means an electron at site 1 and 
site 2, etc:

∣ ⟩ (∣ ⟩ ∣ ⟩) ∣ ⟩ ∣ ⟩ψ α β β= + + +12 21 11 22 .1 2� (97)

Normalization requires α β β+ + =2 12
1
2

2
2 . In terms of these 

parameters, the individual components of the energy are 
rather simple:

( )
( )

( )

α β β

β β

β β

= − +

= +

= −∆ −

T t

V U

V v

4

,

1 2

ee 1
2

2
2

1
2

2
2

� (98)

so that the variational principle may be written as

( )α β β=
α β β
α β β= + +

E Emin , , .
, ,

1 2
1 2

1 2 2
1
2

2
2

� (99)

The specific values of these parameters for the ground-state 
wavefunction are reported in appendix A.

For this simple problem, we are fortunate that we can 
apply the Levy–Lieb constrained search method explicitly. 
A variation of this method was used for the derivation of 
the exact functional of the single- and double-site Anderson 
model and the symmetric Hubbard dimer [40], and a numer-
ical version of this was used by Fuks et al [66]. Similar 
results were obtained by an alternative methods in [187]. 
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The functional F[n] is defined by minimizing the expecta-
tion value of ˆ ˆ+T Vee over all possible wavefunctions yield-
ing a given ( )n r . In real-space DFT, there are no easy ways 
of generating interacting wavefunctions for a given density. 
But here,

( )β β∆ = −n 2 ,2
2

1
2� (100)

which allows us to simply eliminate a parameter, e.g. β1 in 
favor of ∆n. Thus

[ ] [ ( ) ( )]
∣ ∣

⎜ ⎟
⎛
⎝

⎞
⎠

α β α β∆ = ∆ + ∆
α β+ = +

∆
F n T n V nmin , , , , .

n1
2

1
2

2 ee 2
2

2
2

� (101)
With normalization and the density constraint, only one 
parameter is left free. There exist several possible choices for 
this. If we choose ( )α β β= +g 2 1 2  which corresponds to the 
hopping term, then after some algebra the function(al) can be 
written nicely as

( ) ( )ρ ρ=F f gmin ,
g� (102)

with the intermediate quantity

( ) ( )ρ ρ= − +f g t g Uh g, 2 , ,� (103)

and

( )
( )

( )
ρ

ρ ρ

ρ
=

− − − +

+
h g

g g

g
,

1 1 2

2
.

2 2 2 2

2 2
� (104)

Note that both t and U appear linearly in ( )ρf g, . The minimi-
zation yields a sextic polynomial, equation (B.1), that g must 
satisfy. The weak-coupling, strong-coupling, symmetric, and 
asymmetric limits of g are given in appendix B.

Our construction begins with a simple approximation to 
( )ρg :

( ) ( ) ( ( ( ) ( )))
( ) ( )

ρ
ρ ρ ρ ρ

ρ ρ
=

− + + +
+ +

g
ua u

ua u

1 1 1 1 ,

1 1 ,0

3
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3
2

� (105)

where

( ) ( ) ( )ρ ρ ρ= +a u a u a, ,i i i1 2� (106)

and
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ρ ρ ρ

ρ
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= − =
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1

2
1 /2 , 1 ,

1

2
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1

12 22 12

�
(107)

These forms are chosen so g0 is exact to second- and first- 
order in the weak- and strong-coupling limits respectively, 
and to first- and second- order in the symmetric and asymmet-
ric limits respectively. Use of this g0 to construct an approxi-
mation to F, ( ( ) )ρ ρf g ,0 , yields very accurate energetics. The 
maximum energy error, divided by U, is 0.002.

But for some of the purposes in this paper, such as calcula-
tions of TC, even this level of error is unacceptable. We now 
improve on ( )ρg0  using the adiabatic connection formula of 
section 5.2. Like F, we can define functions of two variables 
for each of the correlation components. Write

( ) ( ) ( ) ( )ρ ρ ρ ρ= − −e g f g T E, , .C S HX� (108)

where TS and EHX are from equations (53) and (52), respec-
tively. The kinetic and the potential correlation are given by

( )( )ρ ρ= − = − − −t g T T t g, 2 1C S
2� (109)

( ) [ ( ) ( ) ]ρ ρ ρ= − = − +u g V E U h g, , 1 /2 ,C ee HX
2� (110)

and their sum yields ( )ρe g,C . If we insert ( )ρg , the exact min-
imizer of ( )ρf g, , into any of these expressions, we get the 
exact answers.

But recall also that one can extract UC from the derivative 
of EC with respect to the coupling constant λ, i.e.

( ) ∣λ λ= λ=U Ed /d .C C 1� (111)

Now for any g and ( )e gC , we can find the λ dependence by 
replacing U by λU. Thus

( ) ( ) ( )λ
λ

λ
λ

λ
λ

=
∂
∂

+
∂
∂

∂
∂

e g E E

g

gd ,

d
C C C

� (112)

Since TS and EHX do not depend on g, the minimization of 
f reduces to ∂ ∂ =e g/ 0C , so for the exact g the second term 
on the right of equation (112) is always zero. But it does not 
vanish for g0.

Equating equations (111) and (112) and using the defini-
tions, we find the following self-consistent equation for g:

g
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t t
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g

2
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2
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1
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= − +
∂
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� (113)

We may use this to improve our estimate for g. Simply evalu-
ate the right-hand side at g0, to find:
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The new Fpar and EC,par are then obtained by using g1 in 
equations (103) and (108). Using g1, ∂ ∂ ≠E g/ 0C,par  still, but 
the error with g1 is much lower than with g0. We plot the the 
relative error, ( )−E E U/C C,par  for several U in figure 22. The 
maximum relative error is reduced by almost two orders of 
magnitude (from × −2 10 3 to × −5 10 5) in the region ≈ −U 2 6, 
∣ ∣∆ ≈n 0.25, where g0 has the largest error. The other regions 
are also improved. For ( )−T T U/C C,par  and ( )−U U U/C C,par  the 
improvement is just of one order of magnitude (from × −2 10 2 
to × −2 10 3 in both cases relative to the maximum), with dif-
ferent sign, so there is an error cancellation that yields the 
larger reduction of the EC error. We anticipate that g could be 
improved even further by iteration.

To test the validity of our parametrization, we use it in the 
KS scheme to calculate the correlation energy of our Hubbard 
dimer self-consistently. If our parametrization were perfect, 
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we would recover the exact densities and energies from our 
KS calculation without having to solve the many-body prob-
lem. These are plotted in figures 23, together with the absolute 
errors committed by the parametric function(al). Notice that 

in figures 8 and 19 the results obtained from the parametric 
function(al) are indistinguishable from the exact results. We 
recommend the use of g0 for routine use, and g1 for improved 
accuracy. We hope the methodology developed here might 

Figure 22.  Error in ( )ρE U/C,par  for different U and 2 t  =  1.

Figure 23.  Top row: error in density as a function of ∆v. Bottom row: error in ground-state energy as a function of ∆v and 2 t  =1.
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prove useful to improve accuracy of correlation functionals 
in other contexts, e.g. using DFT to improve sampling in a 
Quantum Monte Carlo calculation [211].

We can define the starting point of our parametrization in 
a multitude of ways. In this section we defined it such that the 
parameter corresponds to the hopping term. Another possible 
choice favors the electron–electron term. Define

( )( )ρ ρ ρ= − − + + − +f f t f f f U f, 2 1 .2� (116)

Another choice captures the asymmetric limit. Define,

( )ρ ρ
ρ

= − − − +
+

f l t l l U
l

l
, 2 2

2
.3

2 2
2 2

� (117)

Then,

( ) ( ) ( )ρ ρ ρ= =F f f f lmin , min , .
f l

2 3� (118)

These also yield high order polynomial equations when mini-
mized. The present parametrization, equation (105), is quanti-
tatively superior for nearly all values of U, and ∆v of interest.

7.  Approximations

The usefulness of KS-DFT derives from the use of approxi-
mations for the XC functional, not from the exact XC which 
is usually as expensive to calculate as direct solution of the 
many-body problem (or more so). While the field of real-
space DFT is deluged by hundreds of different approximations 
[150] (relatively few of which are used in routine calculations 
[183]), few approximations exist that apply directly to the 
Hubbard dimer. The two we explore here are illustrative of 
many general principles.

7.1.  Mean-field theory: broken symmetry

Since time immemorial, or at least the 1930’s, folks have real-
ized the limitations of restricted HF solutions for strongly 
correlated multi-center problems, and performed broken-sym-
metry calculations [45]. For example, in many-body theory, 
Anderson solved the Anderson impurity model for a magnetic 
atom in a metal [10] by allowing symmetry breaking, several 
years before Kondo’s ground-breaking work [113]. In quan-
tum chemistry, Coulson and Fischer identified the Coulson-
Fischer point of the stretched H2 molecule where the broken 
symmetry solution has lower energy than the restricted solu-
tion [45]. Modern quantum chemists like to spin-purify their 
wavefunctions, but DFT hardliners [178] claim the broken-
symmetry solution is the ‘correct’ one (for an approximate 
functional). The exact KS functional, as shown in all previ-
ous sections, yields the exact energy and spin densities, while 
remaining in a spin singlet.

If we do not impose spin symmetry, the effective potential 
in mean-field theory becomes (section 2.2):

= +σ σv v U n ,i i i
eff

�
(119)

with σ = +1 for spin up, σ = −1 for spin down and 
σ σ= − , because the change in the effective field is caused by 

the other electron. Writing = +↑ ↓n n ni i i, , , = −↑ ↓m n ni i i,  and 
∆ = −m m m2 1, and defining

( )σ∆ = ∆ + ∆ − ∆σv v
U

n m
2

,eff� (120)

and

( )= + ∆σ σt t v t1 /2 ,eff eff 2� (121)

we find the eigenvalues are:

( )σ= − ±σ
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N M
t

e
4 2

,,
MF

eff

� (122)

where N  =  2 is the number of particles and M is the total mag-
netization. We find the ferromagnetic solution (M  =  2) to be 
everywhere above the antiferromagnetic solution (M  =  0), 
and for M  =  0:

E
U n m

t t
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2
,

2 2
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∆ −∆
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where ∆ =m 0 is the paramagnetic (spin singlet) solution, and 
corresponds to our original mean-field or restricted Hartree–
Fock solution. We minimize this energy with respect to ∆n 
and ∆m, given by

   ∑ ∑ σ∆ = −
∆

∆ = −
∆
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These antiferromagnetic (AFM) self-consistency equa-
tions always have the trivial solution ∆ =m 0, which corre-
sponds to the restricted MF solution(RHF). However, there 
exists a non-trivial solution ∆ ≠m 0 for sufficiently large val-
ues of U.

In figure 24, we plot ∆n for both restricted and unrestricted 
HF solutions for U  =  5. The solutions coincide for large ∆v, 
but below a critical value of ∆v, they differ. The UHF solu-
tion has a significantly lower ∆n, which is much closer to the 
exact ∆n.

In figure 25, we plot the energies, showing that the UHF 
solution does not rise above zero, and mimics the exact solu-
tion rather closely. For large U, at n1  =  1, we can compare 
results analytically:

  ( )     ( )     ( )→ − − −E
U

t
t

U

t

U2
2 RHF ,

2
UHF ,

4
exact

2 2

� (125)

confirming that the UHF energy is far more accurate than the 
RHF energy, and recovers the dominant term in the strongly 
correlated limit. Note that the symmetric case is atypical: The 
constant terms vanish, both exactly and in UHF, so the leading 
terms is O(1/U), and its coefficient in UHF is underestimated 
by a factor of 2. The slope of the exact result is two times larger 
than UHF. Of course, the exact solution is a spin-singlet, so 
the symmetry of the UHF solution is incorrect, but its energy 
is far better than that of RHF. This is called the symmetry 
dilemma in DFT [178]: Should I impose the right symmetry 
at the cost of a poor energy? Note that the exact KS wave-
function is also a singlet, so a broken-symmetry DFT solution 
produces the wrong symmetry for the KS wavefunction.
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7.2.  BALDA

In real-space DFT, the local density approximation (LDA) 
was first suggested by Kohn and Sham [112], in which the 
XC energy is approximated at each point in a system by that 
of a uniform gas with the density at that point. Another way 
to think of this is that one decides to make a local approxima-
tion, and then chooses the uniform gas XC energy density to 
ensure exactness in the uniform limit. On the lattice, we must 
switch our reference system to incorporate Luttinger-liquid 
correlations instead of Fermi-liquid correlations [84]. The 
infinite homogeneous Hubbard chain plays the role of the uni-
form gas. This can be solved exactly via Bethe ansatz [134], 
and the corresponding LDA was first constructed and tested 
in [204]. Later, Capelle and collaborators [38, 63, 136, 137, 
248] used the exact Bethe ansatz solution to create an explicit 
parametrization for the energy per site, and called this Bethe 
Ansatz LDA, or BALDA.

Since its inception, BALDA has been applied to many dif-
ferent problems including disorder and critical behavior in 
optical lattices [35, 241], spin-charge separation [231, 232] 
and effects of spatial inhomogeneity [135, 210] in strongly 
correlated systems, confined fermions both with attractive 
and repulsive interactions [33], current DFT on a lattice [6], 
electric fields and strong correlation [5], and various criti-
cal phenomena in 1D systems [2, 62]. Extensions to include 
spin-dependence (BALSDA) have been principally used for 
studying density oscillations [234, 242], and fermions in con-
finement [99, 243, 244]. A thermal DFT approximation on the 
lattice has been constructed using BALDA [245]. BALDA has 
also been used as an adiabatic approximation in TD-DFT to 
calculate excitations [108, 121, 131, 223, 227, 229] and also 
transport properties [123, 230], as well as using BALDA as 
a gateway to calculate time-dependent effects in 3D [105]. 
There has been significant interest in using BALDA to under-
stand the derivative discontinuity in both DFT and TD-DFT 
[123, 245, 248, 252]. Additionally, the BALDA approach 
has been developed for other BA-solvable fermionic lattice 

systems aside from the Hubbard model [3, 156, 198, 246], 
such as the Anderson model [24, 122, 139], as well as bosonic 
systems [85, 238, 239].

We use here the semi-analytical approach to BALDA [137, 
248] where the expressions are given in appendix D. In fig-
ure 26 we plot the BALDA ground-state energy as a function 
of ∆v for several values of U. At first glance, it seems to do 
a good job in all regimes. In particular, for either very weak 
correlation (U  =  0.2) or very strong correlation (U  =  100), it 
is indistinguishable from the exact curves. However, for mod-
erate correlation ( � �U1 5) where �∆v U, it appears to sig-
nificantly underestimate the magnitude of E.

Even for the strong correlation regime, its behavior is not 
quite correct. For the symmetric case:

       ( )� �⎜ ⎟
⎛
⎝

⎞
⎠π

− >E t U t2
4

1 0 2BA� (126)

Thus, for ∆ =v 0 and U  =  100 in figure 26, BALDA is in seri-
ous error, but this cannot be seen on the scale of the figure. The 
origin of this error is easy to understand. BALDA’s reference 
system is an infinite homogeneous chain, and we are applying 
it to a finite inhomogeneous dimer. The error is in the correla-
tion kinetic energy, which comes from the difference between 
the exact and KS kinetic energies. The tight-binding energy 
for an infinite homogeneous chain is different from that of 
the dimer, and this difference is showing up (incorrectly) in 
the correlation energy. We could, of course, reparametrize 
BALDA to use the homogeneous dimer energy, but the analog 
of real-space DFT is to use the homogeneous extended system 
(infinite Hubbard chain).

7.3.  BALDA versus HF

Lastly we compare BALDA and both the restricted and 
unrestricted Hartree–Fock approximations. In figure  27, we 
plot the errors made in the ground-state energy of all three 

Figure 24.  Plots of ∆n for HF and BALDA as a function of ∆v for 
U  =  5 and 2 t  =  1. The crossover from the charge-transfer to the 
Mott–Hubbard regime happens at ≈∆U v.

Figure 25.  Ground-state energy of the unrestricted Hartree–Fock 
(thick dashed line), restricted Hartree–Fock (dot dashed line), 
and exact ground-state (thin solid line) of the Hubbard dimer 
as a function of ∆v for several values of U and 2 t  =  1. The dot 
shows the Coulson–Fischer point at which the symmetry breaks 
spontaneously. For smaller ∆v the UHF energy is below RHF while 
for larger ∆v they are the same.
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approximations. For ⩽U 1, HF does not break symmetry, and 
so UHF  =  RHF. For very small U, the energy error is compa-
rable to HF. For U  =  1, BALDA is better than HF. For larger 
U, UHF produces a lower energy than HF, and almost every-
where is more accurate than BALDA. The sole exception is at 
precisely ≈∆U v, where BALDA is much better. In figure 24, 
we compare BALDA and UHF densities to the exact density 
for U  =  5 as a function of ∆v. Although BALDA does not 
have a symmetry-breaking point, it unfortunately has a critical 
value of ∆v where ∆n vanishes incorrectly. This is the origin 
of the cusp-like features in the BALDA energies of figures 26 
and 27. In fact, the BALDA density appears somewhat worse 
than UHF for most ∆v. But keep in mind that the main pur-
pose of BALDA is to produce accurate energies without the 
artificial spin-symmetry breaking of UHF.

8.  Fractional particle number

We will now show a way that one can extract the physical gap 
from ground-state DFT. This is done simply by changing the 
number of electrons, but now continuously, rather than just at 
integers. In fact, we already used this technology implicitly in 
section 4, but here we make this much more explicit.

8.1.  Derivative discontinuity

An extremely important concept in DFT is that of the deriva-
tive discontinuity [43, 123, 157–159, 176, 177, 202, 250]. This 
is most famous for its implication for the Kohn–Sham gap of 
a solid, ensuring that the gap (in general) does not match the 
true fundamental (or charge) gap of the solid, as we saw in 
section 4. The expression itself refers to a plot of ground-state 

energy versus particle number N at zero temperature. In semi-
nal work [171, 176, 177], it was shown that ( )NE  consists of 
straight-line segments between integer values, where N  is a 
real variable, where all quantities are now expectation values 
in a grand-canonical ensemble at zero temperature:

N( ) ( ) ( ) ( )= − + +E w E N w E N1 1 ,� (127)

and

N ( ) ( ) ( ) ( )= − + +n w n w nr r r1 ,N N 1� (128)

where N = +N w, i.e. both energy and ground-state density 
are piecewise linear, with a sudden change at integer values.

Then the chemical potential is

N N
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        ( )

µ = = − <
= − >

E I N

A N

d /d

.
� (129)

When we evaluated everything at N  =  2 in section 4, we really 
meant N  =  2−. Then Janak’s theorem [103] shows that, for the 
KS system,

ε

ε

N N

N

        ( )
        ( )

µ = = <
= >

E N

N

d /d HOMO

LUMO� (130)

This is the proof of the equivalence of I and ε− HOMO.
Because the energy is in straight-line segments, the slope 

of ( )NE , the chemical potential, ( )Nμ , jumps discontinuously 
at integer values. Hence the name, derivative discontinuity. 
The jump in μ across an integer N is then Eg  =  I  −  A, the 
fundamental gap. In the KS system, since the energy is given 
in terms of orbitals and their occupations, that jump is sim-
ply the KS HOMO-LUMO gap, Egs. Since the KS electrons 
have the non-interacting kinetic energy, and the external and 
Hartree potentials are continuous functionals of the density, 

Figure 26.  Ground-state energy versus ∆v for several U, with 2 t  =  1. The BALDA energies are evaluated self-consistently.
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the difference is an XC effect. Moreover, it implies that vXC 
jumps by this amount as one passes through N, an integer.

For solids, addition or removal of a single electron has an 
infinitesimal effect on the density, but the XC discontinuity 
shifts the conduction band upward by ∆XC when an electron is 
added, contributing to the true gap. Since local and semilocal 
approximations to XC are usually smooth functionals of the 
density, they produce no such shift. They do yield accurate 
approximations to the KS gap of a solid, but not to the gap cal-
culated by adding and removing an electron, because of this 
missing shift. Thus we have no general procedure for extract-
ing accurate gaps using LDA and GGA. An important quality 
factor in more sophisticated approximations is whether or not 
they have a discontinuity. Orbital-dependent functionals, such 
as exact exchange (EXX in OEP) [72, 117, 120, 209, 217, 
251] or self-interaction corrected LDA (SIC) [89, 104, 169, 
170, 180], often capture effects due to the discontinuity quite 
accurately.

8.2.  Hubbard dimer near integer particle numbers

In figure 28, we plot E( )N  for our Hubbard dimer. Real-space 
curves have always been found to be convex, although this has 
never been proven to be generally true. The vital part for us 
is that this equivalence of the HOMO level and  −I links the 
overall position of the KS levels to those of the many-body 
system. For fixed particle number, only the KS on-site energy 
difference is determined by the need to reproduce the exact 
site occupancies. But this condition also fixes the mean value 
of the KS on-site energy, vS, which in general is non-zero, 

even though we chose the actual mean on-site energy to be 
zero always. In figure 2, this is visible in the mean position of 
the two KS on-site potentials.

Another way to think about this is that function(al) deriva-
tives at fixed N  leave an undetermined constant in the poten-
tial, whereas that constant is determined if the particle number 
is allowed to change. We can write many equivalent formulas 
for the discontinuity:

ε ε
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all of which are true. Thus another way to find the gap from 
a KS system is to occupy it with an extra infinitesimal of an 
electron, and note the jump in potentials or eigenvalues. To 
illustrate this, in figure 29 we replot figure 11, but now for 
N  =  2+ , showing that now the LUMO matches  −A, and the 
difference between the HOMO and  −I is ∆XC.

In figure 30 we plot ∆XC for N  =  2 for various U, as a func-
tion of ∆v, scaling each variable by U. We see that the dis-
continuity always decreases with increasing ∆v. In fact, the 
larger U is, the more abruptly it vanishes (on a scale of U) 
when ∆ >v U. In this sense, the greater the asymmetry, the 
less discontinuous the energy derivative is, and the KS gap 
will be closer to the true gap.

The situation is reversed when N  =  1, as shown in fig-
ure 31. Now the discontinuity grows with increasing ∆v. In 

Figure 27.  Plots of the RMF, UMF, and BALDA ∆ = −E E Eapprox exact as a function of ∆v for =U 0.2, 1, 5, and 10. For small U the RMF 
and UMF results are indistinguishable. Here 2 t  =  1.
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this case, a large asymmetry puts the electron mostly on one 
site. When an infinitesimal of an electron is added, it goes to 
the same site, but paying an energy cost of U. On the other 
hand, if ∆v is small, the first electron is spread over both sites, 
and so is the added infinitesimal, reducing the energy cost by 
a factor of 2. So ∆ →U /2XC  in the weakly correlated near-
symmetric limit.

8.3.  Discontinuity around n1  =  1 for N  =  2

The derivative discontinuity manifests itself in many differ-
ent aspects of DFT. We have already seen how it affects both 
energies and potentials as N is continuously moved across an 
integer. Here we explore how it appears even at fixed particle 
number, as correlations become strong.

For our Hubbard dimer, with any finite ∆v, if �∆U v, we 
know each ni is close to 1. The overwhelmingly large U local-
izes each electron on opposite sites. In the limit as →∞U , 
all fluctuations are suppressed, and the dimer becomes two 
separate systems of one electron each. For large but finite U, 
and finite ∆v, one is on the integer deficient side, and the other 

has slightly more than one electron. All the statements made 
above about N  passing through 2 now apply as n1 passes 
through 1.

We can see the effects in many of our earlier figures. In 
figure 7, the slope of F for U  =  10 appears discontinuous at 
n1  =  1. F contains the discontinuity in both TS and EXC in the 
limit →∞U . However, in reality, this curve is not really dis-
continuous. Zooming in on F near n1  =  1, one sees that on a 
scale of O(1/U), F is rounded.

The classic manifestation already appears in figure 4, the 
occupation difference as a function of ∆v. To emphasize the 
point, in figure 32, we plot several curves for U  =  100. This 
is the discontinuous change from having 1 particle on each 
site to 2 on one site that occurs. This is important because the 
common approximate density functionals miss this discon-
tinuity effect. Explicit continuous functionals of the density 
cannot behave this way. For the SOFT case, this is embod-
ied in the HF curves of figure 9: No matter how strong the 
value of U, these curves are linear. In RHF, ∆n versus ∆v 
never evolves the sudden step discussed above, as shown in 
figure 24. On the other hand, the BALDA approximation con-
tains an explicit discontinuity at n1  =  1 in its formulas, and 

Figure 28.  Plot of N( )E  for U  =  1, ∆ =v 0 and 2 t  =  1.

Figure 29.  Same as figure 11 except with N  =  2+ instead of 
N  =  2−.

Figure 30.  Derivative discontinuity as a function of ∆v for U  =  1, 
and U  =  5.

Figure 31.  Derivative discontinuity for N  =  1 as a function of ∆v 
for U  =  1, and U  =  5.

J. Phys.: Condens. Matter 27 (2015) 393001



Topical Review

26

so captures this effect, at least to leading-order in U. In this 
sense, both BALDA and UHF capture the most important 
effect of strong correlation. On the other hand, as discussed 
in section 7.3, UHF ‘cheats’, while BALDA retains the cor-
rect spin singlet. If BALDA’s effects could be (legally) built 
into real-space approximations, they would be able to accu-
rately dissociate molecules, overcoming perhaps approximate 
DFT’s greatest practical failure.

However, in figure 33, we simply zoom in on the region of 
the plot near ∆ =v U. In fact, the exact curve is S-shaped, with 
a finite curvature on the scale of t. Now we see that, although 
both UHF and BALDA reproduce the discontinuous effect, the 
details are not quite right. UHF is admirably close in shape to 
the accurate curve, but its slope is too great at n1  =  1. BALDA 
is accurate to leading order in 1/U, and captures beautifully 
the region ∆v a little larger than U, but is quite inaccurate 
below that. The presence of the gap in the BALDA potentials 
leads to the incorrect discontinuous behavior near ∆ =v 98. 
But once again we emphasize that the important feature is that 
these approximations do capture the dominant effect, and that 
BALDA does so without breaking symmetry.

9.  Conclusions and discussion

So, what can we learn from this exercise in applying DFT 
methods to the simplest strongly correlated system? Perhaps 
the most important point is that there is a large cultural differ-
ence between many-body approaches and DFT methodology, 
and a considerable barrier to communication. In section 3.3, 
we saw that even the definition of exchange is different in the 
two communities. The greatest misunderstandings come not 
from using different words for the same thing, but rather from 
using the same word for two different things.

We can also see that the limitations of DFT calculations are 
often misunderstood in the broader community. For example, 
the exact ground-state XC functional has a HOMO-LUMO 
gap that does not, in general, match the fundamental gap. The 
KS eigenvalues are not quasiparticle eigenvalues in general, 

and are in fact, much closer to optical excitations [1]. Even the 
purpose of a DFT calculation is quite foreign to most solid-
state physics. The modern art of DFT is aimed at producing 
extremely accurate (by physics standards) ground-state ener-
gies, and the many properties that can be extracted from those, 
rather than the response properties that are probed in most 
solid-state experiments, such as photoemission. (Flipping the 
coin, most quantum chemists would never describe DFT ener-
gies as extremely accurate, as traditional quantum chemical 
ab initio methods are hyper accurate on this scale.)

We also mention many aspects that we have not covered here. 
For example, time-dependent DFT is based on a distinct theorem 
(the Runge-Gross theorem [192]), and provides approximate 
optical excitations for molecular systems [32]. The Mermin the-
orem [155] generalizes the HK theorem to thermal ensembles 
[184]. There are many interesting features related to spin polari-
zation and dynamics, but very little is relevant to the system dis-
cussed here. There are also many non-DFT approaches, such as 
GW, which could be tested on the asymmetric dimer.

We also take a moment to discuss how SOFT calculations 
can be related to real-space DFT. One can easily add more 
orbitals to each site and create an extended Hubbard model. 
For the H2 molecule, adding just pz orbitals and allowing them 
to scale yields a very accurate binding curve. But such an 
extension (beyond one basis function per site) is extremely 
problematic for SOFT [86, 201], because it is no longer clear 
how to represent the ‘density’. With 2 basis functions, should 
one use just the diagonal occupations, or include off-diago-
nal elements? In fact, neither one is satisfactory, as neither 
approaches the real-space density functional in the infinite 
basis limit. An underlying important point of DFT is that it 
is applied to potentials that are diagonal in r, i.e. ( )v r , and not 
diagonal in an arbitrary basis. This is a key requirement of the 
HK theorem, and is the reason why the one-body density ( )n r  
is the corresponding variable on which to build the theory, and 
why the local density approximation is the starting point of all 
DFT approximations.

This inability to go from SOFT calculations to real-space 
DFT calculations should be regarded as a major caveat for 
those using SOFT to explore DFT. Here we have shown many 

Figure 33.  Same as figure 32.Figure 32.  Plots of ∆n in HF and BALDA as a function of ∆v for 
U  =  100 (2 t  =  1). The crossover from the charge-transfer to the 
Mott–Hubbard regime happens at about ≈∆U v.

J. Phys.: Condens. Matter 27 (2015) 393001



Topical Review

27

similarities in the behavior of SOFT functionals compared 
to real-space functionals. We have also proven some of the 
same basic theorems as those used in real-space DFT. But any 
results (especially unusual ones) that are found in SOFT cal-
culations might not generalize to real-space DFT. The only 
way to be sure is to find a proof or calculation in real-space. 
On the other hand, SOFT calculations can be safely used to 
illustrate the basic physics behind real-space results [214].

Another limitation of SOFT can be seen already in our 
asymmetric Hubbard dimer. In a real heterogeneous diatomic 
molecule, say LiH with a pseudopotential for the core Li elec-
trons, the values of U would be different on the two sites. But 
the real-space DFT is applied to interactions that are the same 
among all particles. And even if SOFT applies when both U 
and t become site-dependent, i.e. a one-to-one correspond-
ence can be proven, it is unlikely that such studies would yield 
behavior that is even qualitatively similar to real-space DFT. 
Minimal models are usually designed to capture universal fea-
tures and our Hubbard dimer captures the essential physics of 
the strongly correlated limit. However the SOFT function(al) 
is not the same as the DFT one.

Finally, we wish to emphasize once again the importance 
of testing ideas on the asymmetric Hubbard dimer. Much (but 
not all) of the SOFT literature tests ideas on homogeneous 
cases. The essence of DFT is the creation of a universal func-
tional. i.e. F[n] is the same no matter which specific problem 
you are trying to solve. The symmetric case is very special 
in several ways, and there are no difficulties in applying any 
method to the asymmetric case. We hope that some of the 
results presented here will make that easier.
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Appendix A.  Exact solution, components, and 
limits

In all appendices, we use dimensionless variables for brevity. 
Hence ε = E t/2 , =u U t/2 , and ν = ∆v t/2 . All the results in 
this appendix are already known, e.g. [187]. Then, the energy 
of the singlet-ground-state is

ε ⎜ ⎜ ⎟⎟
⎛
⎝

⎛
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⎠
⎞
⎠θ

π
= − +u w

2

3
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where

[ ]ν= + +w u3 1 ,2 2� (A.2)

and

( ) ( ( ) )θ ν= − − u u wcos 3 9 1/2 / .2 2 3� (A.3)

The coefficients of the minimizing wavefunction, equa-
tion (97), are

ε
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The ground-state expectation values of the density difference 
and of the different pieces of the Hamiltonian are

ε( )ν∆ = −n c u4 2
�

(A.6)
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For fixed asymmetry ν, we can expand ε in the weakly and 
strongly correlated limits:
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where ˜ ( )ν= +u u/ 1 2 3/2. In the strongly correlated limit:

ε ( ) ( )ν= − + − +− − −u u O u1 .st 1 2 3 5� (A.11)

We can also expand for fixed u around the symmetric limit:
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where = +r u 42 . And the asymmetric limit:

ε ( ) ( )( )ν ν ν ν= − + − − + −− − −u u u2 /2 1 4 2 .asy 1 2 2 3� (A.13)

Appendix B.  Many limits of F n( )∆

In this appendix we derive the limits that our parametrization 
in section  6 satisfies. Minimizing F̃ of equation  (103) with 
respect to g, we obtain a sextic equation for g:

( ) ( ( ) )
( ( ) ( ))

( ) ( )

ρ
ρ ρ ρ
ρ ρ ρ ρ

+ + + −
+ + + − +
− − − − =

u g u g

u g u u g
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4 /4 3 1

2 3 2

2 1 1 0

2 6 2 2 4

2 3 2 2 2 2 2

2 2 4 2

�
(B.1)

where we define ∣ ∣ρ= ∆n /2. The solution defines ( )ρgm , and 
( ) ( ( ) )ρ ρ ρ=F F g ,m . Next we expand in several limits. and 

[ ] ˜[ ]ρ ρ=F U F U g, , , m . However, equation  (B.1) can not be 
solved analytically in general.

B.1.  Expansions for ( )ρg u,

We expand g in 4 different limits, which are built into g0 of 
equation (105) in section 6.
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The weakly correlated limit corresponds to �u 1. We thus 
expand ( )ρg u,  in powers of u for fixed ρ,

( ) ( )( )∑ρ ρ=
=

∞

g u g u n, / ! ,
n

n n

0
� (B.2)

and insert the expansion into equation (B.1). The coefficients 
g(n) are found by canceling each term order by order in equa-
tion (B.1), yielding
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Notice that ( )∓ ρ= ∆n n1 sign1,2  so that to first order in U, 
equation (103) yields the non-interacting kinetic energy func-
tional of equation (42).

For strongly correlated systems, we expand g in powers of 
1/u while holding ρ fixed
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and substitute back into equation (B.1) to find the coefficients. 
The result is
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Notice that this expansion breaks down at the symmetric point 
ρ = 0.

The other kind of limit keeps u fixed. The symmetric limit 
is equivalent to ρ→ 0. We expand g in powers of ρ while hold-
ing u fixed.
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and substitute back into equation (B.1) to find the coefficients. 
The result is
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where ( )= +r u1 /2 2 .
The asymmetric limit is equivalent to ρ→ 1. We expand g 

in powers of ρ ρ= −1  for fixed u:
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and substitute back into equation (B.1). The result is
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B.2.  Limits of the correlation energy functional

Now that we have expressions for g in all four limits we can 
use our expression for F, equation (103), TS, and UH to com-
pute EC in each regime:
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An alternative expansion is to fix u and expand in ρ. As ρ→ 0, 
→e eC C
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As ρ→ 1, →e eC C
asym, where
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where ρ ρ= −1 .

B.3.  Order of limits

Finally, we look at how these expressions behave when both 
parameters are extreme. The weakly correlated limit has no 
difficulties near the symmetric point:

( ) ( )
⎛
⎝
⎜
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In the asymmetric limit, there are also no problems:

( ) ( )
⎛
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Thus, the expansion in powers of u is well-behaved, and there 
are no difficulties using it for sufficiently small u. In the sym-
metric case, one sees explicitly that the radius of convergence 
of the expansion is u  =  2.

On the other hand, the strong coupling limit is more prob-
lematic. Expanding the strong-couping functional around the 
symmetric limit, we find

( ) ⎜ ⎟
⎛
⎝

⎞
⎠ρ ρ ρ→ = − + − − + +e

u

u
u

u
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2
1

1

4
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while reversing the order of limits yields:
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Note the difference beginning in the third terms, i.e. at first-
order in 1/u, even for ρ = 0. Thus for the Hubbard dimer, 
approximations based on expansions around the strong-cou-
pling limit are likely to fail for some values of the density.

Appendix C.  Proofs of energy relations

Using the notation established in section 6, we prove some 
simple relations about the energy and its components. Start 
with the general expression for the energy, equation  (103) 
and (104),

ε [ ( ) ]ρ νρ= − + −
ρ

g uh gmin , .
g,� (C.1)

First take ρ→ 0. The second term reduces to ( )− −u g1 1 /22 . 

Then let →g 0, resulting in →h 0. This yields ε→ 0 and there-
fore the exact ε⩽ 0. This process corresponds to choosing a 
trial wavefunction, and by Rayleigh-Ritz, the ground-state 
wavefunction will produce a value equal to or below the trial 
result.

In Hartree–Fock, g reduces to ρ= −g 1HF
2. Then,

ε ε ε( ( ) ) ⩾ρ ρ=
ρ

gmin , .HF
HF� (C.2)

This shows that ε ε ε ⩾= − 0C
trad HF , as in figure 6. The mini-

mization can be performed analytically though it involves 
solving the quartic polynomial

ρ

ρ
ρ ν

−
+ − =u

1
0.

2� (C.3)

Similarly, a DFT exact exchange (EXX) calculation is 
defined by

ε ε ε( ( ) ) ⩾ ( ( ) )ρ ρ ρ ρ=
ρ

g g, min ,m m
EXX

HF HF� (C.4)

where ρm is the minimizing density for the many-body prob-
lem. This yields ε ε ε= −C

DFT EXX, and ε ε⩾C
trad

C
DFT [78].

For the kinetic energy alone, ( )ρ= −t g m , and

[ ( )]ρ ρ= − = − −
ρ→

t gmin 1 .
u

S
0,

2
� (C.5)

This results in ⩾t 0C  since the KS occupation difference is 
defined to minimize the hopping energy. This combined with 
the above implies ⩽u 0C , as in equation (78).

For the adiabatic connection integrand, take a derivative of 
equation (110):

( )
λ

ρ λ
λ

λ
λ

= +
∂
∂
∂
∂

λu u
u

h

g

gd

d

,
.C C� (C.6)

The first term is less than zero by definition but the second 
needs more unraveling. To begin, from equation (103),

∂
∂
= − +

∂
∂

f

g
u
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g
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so, at the solution

∂
∂
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For λ near 1, Suppose ( ) ( ) ( ) ( )�λ λ+ − ′g g g1 1 1 , and 
expand ∣ ( )∂ ∂ λh g/ g  in ( )λg  around g(1):
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The first term on the left is ( ) ( )λ λ≈ −u u1/ 2 / . After some 
algebra,
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Since the hopping term of f is linear in g, ∂ ∂ = ∂ ∂f g h g/ /2 2 2 2. 
The energy is a minimum at g so ∂ ∂ >f g/ 02 2 , thus λ∂ ∂ >g/ 0. 
Together, this results in

λ<λUd /d 0,C� (C.11)

the adiabatic connection integrand is monotonically decreas-
ing as seen in figure 21.

Appendix D.  BALDA derivation

For an infinite homogeneous Hubbard chain of density 
n  =  1  +  x, the energy per site (in units of 2 t) is given approx-
imately by

ε̃ ( ) ( ( ))θ α β= +u x x x U,unif� (D.1)

where ( )θ x  is the Heaviside function and

( ) ( ( ∣ ∣) )α β
β
π

π β π= − −x x, sin 1 / / .� (D.2)

The function ( )β u  varies smoothly from 1 at u  =  0 to 2 as 
→∞u  [137], and satisfies

( ) ( ) ( )
[ ( ))]∫α β ξ
ξ ξ

ξ ξ
= −

+

∞ J J

u
0, 4 d

1 exp0

0 1
� (D.3)

This simple result is exact as →u 0, →∞u  and at n  =  1, and 
a good approximation (accurate to within a few percent) else-
where [137] to the exact solution via Bethe ansatz [134]. In 
principle, β depends on n, and this dependence has been fit 
in later work [63]. Here, we use the simpler original version 
of a function of u only. In fact, the solution to equation (D.3) 
can be accurately fit (error below 1%) with a simple rational 
function,

( )β =
+ +
+ +

u
au bu

cu bu

2

1
fit

2

2� (D.4)

with coefficients π= −a c2 /4 and ( )= −b a c /log 2 chosen 
to recover the small-u behavior to first-order, and the large u 
behavior to first order in 1/u, and =c 1.197 963 is fit to ( )β u . 
This is useful for quick implementation of BALDA.
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At u  =  0, the hopping energy per site is just

˜ ( ( ∣ ∣))π π= − −t xsin 1 / ,S
unif� (D.5)

while the Hartree-exchange energy per site is a simple local 
function:

˜ =u u n /4.HX
unif 2

�
(D.6)

Thus the correlation energy per site is just

ε ε˜ ˜ ˜ ˜= − −t u .C
unif unif

S
unif

HX
unif

�
(D.7)

The BALDA approximation is then

ε ε ε˜ ( ) ˜ ( )= +n U n U, , .XC
BALDA

XC
unif

1 XC
unif

2�
(D.8)

Since the exchange is local, BALDA is exact for that con-
tribution, and only correlation is approximated. Since 

∓= ∆n n1 /21,2 , ∓= ∆x n/2 for sites 1 and 2 respectively. 
The BALDA HXC energy is then:

ε ( ( ) ( )) ∣ ∣α α= ∆ − ∆ + ∆n U n u n2 /2, /2, 0 /2,HXC
BALDA� (D.9)

and was inserted into the KS equations (section 3.3) to find the 
results of section 7.2.

Appendix E.  Mean-field derivation

The MF hamiltonian for the Hubbard dimer can be written in 
the number basis ∣ σ σ1 , 2  as follows
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with σ =± 1 for spin up and down respectively. Setting 
= +M m m1 2 and = +N n n1 2 as the total magnetization and 

particle number of the system, the eigenvalues are
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The total energy of the system is

= + −− ↑ + ↑E e e UFM
, , H� (E.3)

= + −− ↑ − ↓E e e U ,AFM
, , H� (E.4)

where the Hartree term is written as
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Depending on whether EAFM is larger or smaller than EFM, 
the ground-state of the system may be ferromagnetic (N  =  2, 
M 2∣ ∣= ) or antiferromagnetic (N  =  2, M  =  0, ∣ ∣ ⩾∆m 0). The 
paramagnetic state is a specific case of the AFM state with 
∆ =m 0. Explicitly, for the ferromagnetic state we have the 
eigenstate energies and self-consistency equations

∆ = ∆ = −∆ +∆n m v t v/ 4 2 2� (E.6)

∓∓ = +∆↑e t v4 /2,
2 2� (E.7)

On the other hand, the M  =  0 state (∣ ∣∆ >m 0 is AFM, 
∆ =m 0 is PM) corresponds to the eigenvalues,

( )     ( )= − ∆ = −− ↑ − ↓ ↑e U t n e U t/2, /2,,
eff

,
eff� (E.8)

and self-consistency equations
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and the expressions for ∆ σv
eff and σt

eff are given in equa-
tion (23). The self-consistency procedure needs to be carried 
out numerically in this case.

The total energy can also be written as
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In the PM case, the expressions can be simplified to give
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for the occupations and
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Appendix F.  Relation between Hubbard model and 
real-space

To show how SOFT and real-space DFT are connected, begin 
with the one-electron dimer, +H2 , with the protons separated by 
R. Use a basis of the exact atomic 1s orbitals, one on each site. 
This is a minimal basis in quantum chemistry. Then

ˆ
∣ ∣

= − ∇ − −
−

h
r Rr z

1

2

1 12� (F.1)

where the bond is along the z-axis. Then the matrix elements 
of ĥ in the basis set of atomic orbitals are:

ε ε( )    ( ) ( )= = + = +v v j R t s R k R,A A1 2� (F.2)

where εA is the atomic energy (one Rydberg here) and
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yielding the textbook eigenvalues (for the generalized eigen-
value problem):

ε ε ( ) ( )= + ± ±± j k s/ 1 .A� (F.4)

Of course, the orbitals can always be symmetrically orthogo-
nalized in advance [146], in which case
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ε ( ) ( )= + − + −v j ks s/ 1 ,Aortho
2� (F.5)

( ) ( )= − − −t sj k s/ 1 .ortho
2� (F.6)

Although physics textbooks often set the overlap to zero, this 
is inconsistent, as the size of the overlap is comparable to 
k(R), say. Setting the on-site potential to zero (but re-adding 
its value to the energy) and using tortho, makes the solution 
equation (29) of the text produce the exact electronic energy 
in this minimal basis.

But quantum chemistry textbooks note that this calculation 
is horribly inaccurate, yielding a bond-length of 2.5 Bohr and 
a well depth of 2.75 eV. Inclusion of a pz orbital on each site, 
and allowing the lengthscale of each orbital to vary, produces 
almost exact results of 2.00 Bohr and 4.76 eV. Thus, even in 
this simple case, more than one orbital per site is needed to 
converge to the real-space limit.

Next we consider repeating the minimal-basis calculation 
with one nuclear charge replaced by value Z. This yields an 
asymmetric tight-binding problem for which the orbitals can 
be orthogonalized and values of ∆v and t deduced as a func-
tion of R. But note that changing Z will change both ∆v and 
t simultaneously, unlike our asymmetric SOFT dimer, where 
only ∆v changes. In real-space DFT, the kinetic energy func-
tional remains the same, TS

W of equation  (20), for all R and 
every Z.

The situation is even more complicated for H2 and its 
asymmetric variants. Clearly U becomes a function of R, but 
there are also several independent off-diagonal matrix ele-
ments that are R dependent. Again, all change as a function of 
both R and Z, but none of this occurs in SOFT. In real-space 
DFT, TS is still the von Weisacker functional, UH is always 
the Hartree energy, and the exact [ ]E nXC  is independent of R 
and Z, but always produces the exact energy when iterated in 
the KS equations. In [41], they take a different approach by 
including a nearest-neighbor Hubbard U.
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