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Abstract. The spectral potential is the dynamical generalization of the Kohn–Sham potential. It targets, in
principle exactly, the spectral function in addition to the electronic density. Here we examine the spectral
potential in one of the simplest solvable models exhibiting a non-trivial interplay between electron-electron
interaction and inhomogeneity, namely the asymmetric Hubbard dimer. We discuss a general strategy to
introduce approximations, which consists in calculating the spectral potential in the homogeneous limit
(here represented by the symmetric Hubbard dimer) and importing it in the real inhomogeneous system
through a suitable “connector”. The comparison of different levels of approximation to the spectral potential
with the exact solution of the asymmetric Hubbard dimer gives insights about the advantages and the
difficulties of this connector strategy for applications in real materials.

1 Observables from reduced quantities

From the solution of the time-independent many-electron
Schrödinger equation it is in principle possible to obtain
the many-electron wavefunction Ψ(r1, . . . , rN ) and hence
the expectation value of any observable calculated with Ψ .
Even though the equation to solve is precisely known, its
exact solution in practice is feasible only for a very limited
number N of electrons [1]. However, besides being hardly
possible, the full knowledge of Ψ is often not even desir-
able [2]. Whereas Ψ is not itself a measurable quantity,
the evaluation of expectation values generally amounts to
integrating over most of the degrees of freedom of Ψ , thus
losing most of its detailed information.

Alternatively, observables can be obtained in principle
with much less effort by working with reduced quanti-
ties. These are functions of a smaller number of degrees
of freedom (independent of N), themselves obtainable
from expectation values of Ψ . Three prominent exam-
ples of reduced quantities are the electronic density n(r1),
the one-particle reduced density matrix γ(r1, r2) and
the one-particle Green’s function G(r1, r2, ω). In each of
these cases, one generally aims to express the searched
observables as functionals of the corresponding basic
variable, giving rise, respectively, to density-functional
theory (DFT) [3,4], reduced-density-matrix functional
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theory (RDMFT) [5], and Green’s-function functional
theory, often approximated within many-body perturba-
tion theory (MBPT) [6–8].

In those frameworks the problem to solve becomes
twofold: the explicit functional form is often not known
for the observable of interest and the simplified equations
needed to determine the key reduced quantity have to
be approximated in practice. The great advantage rests
on the fact that the computational gain can be huge
and the power of analysis of the results can be greatly
enhanced thanks to the introduction of synthetic concepts,
like effective particles, effective interactions, etc. The bal-
ance between simplicity and accuracy is largely won, thus
explaining the great success of strategies based on the use
of reduced quantities.

In many applications the target observable is the
ground-state total energy E0(N), for which variational
principles based on the corresponding basic variables exist
in the three frameworks. The three theories make use
of the different amount of information explicitly gained
by calculating the corresponding key quantity. In MBPT,
knowing an approximated G automatically determines E0

(e.g. through the Galitskii–Migdal formula [9]), whereas
in RDMFT a piece of the energy functional E[γ], namely
the correlation contribution, is unknown and has to be
approximated. In DFT the situation is apparently worse:
the only contributions to E[n] explicitly known in terms
of n are the external-potential and Hartree energies. Nev-
ertheless, DFT is by far the most popular method to
calculate the ground-state energy E0 [10]. One of the main
reasons of its extraordinary success is the idea of Kohn
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and Sham [11] to introduce an auxiliary non-interacting
system that is built in order to yield the exact density
and, concomitantly, to reduce the amount of E[n] that
has to be approximated. In such a way, simple approxi-
mations like the local-density approximation (LDA) [11]
are already quite accurate. The main issue within DFT
remains the possibility to systematically improve the
existing approximations [12]. Designing systematically
better approximations is instead easier within MBPT
thanks to the larger amount of information explicitly car-
ried by G. However, being computationally much heavier,
MBPT is much less competitive to calculate total energies,
so in this context it is often used in an explorative way
[13–16]. On the other side, RDMFT could be a promis-
ing approach to deal with strong correlation [17], which is
a notoriously difficult problem for DFT [18]. The density
matrix γ can be diagonalized to give natural orbitals (the
eigenvectors) and occupation numbers (the eigenvalues).
Since, at zero temperature, γ is an idempotent function
if and only if the corresponding Ψ is a Slater determi-
nant [7], fractional occupation numbers (i.e. not being
strictly 0 or 1) are an explicit measure of electronic cor-
relation. Within RDMFT one could hence benefit from
this explicit information to build accurate approximations
to deal with strong correlation, with the hope to save
computational time with respect to the Green’s function
framework.

Already from this short summary we can understand
that there is always a trade-off between the computational
cost that one is willing to afford and the amount of infor-
mation that one needs to calculate explicitly in order to
get accurate results. Clearly, different problems lead to
different choices. In the following we will address the par-
ticular question of the use of reduced quantities in the
theoretical description of spectroscopy.

Spectroscopy

In any spectroscopy experiment, an external perturbation
drives the sample into an excited state [19]. There-
fore, in order to analyse, understand and predict the
measured spectra, besides the ground state E0(N) one
needs to know also the excitation energies of the sys-
tem. When the perturbation is simulated through a
time-dependent external potential, more efficient alterna-
tives to the solution of the time-dependent many-electron
Schrödinger equation still exist. They are the extensions
to the time-dependent situation of the theories based on
reduced quantities that we have just discussed. In time-
dependent density-functional theory (TDDFT) [20,21],
time-dependent reduced-density-matrix functional theory
[22,23] and in the Keldysh-Green’s function formalism
[24] all the corresponding basic variables become explic-
itly dependent on time. In these frameworks one can
then obtain the reaction to the perturbation also beyond
the linear-response regime and deal with non-equilibrium
situations.

In the rest of the article we will instead focus our
discussion on a different class of excitation spectra [19]:
the removal and addition energies and intensities that
are measured in direct and inverse photoemission (PES)

experiments, respectively [25]. The excitation energies
ελ are formally defined as the differences between the
ground-state energy E0(N) and the energy of an excited
state λ where one electron has been removed/added
from/to the N -electron system in the ground state:

ελ =

{
E0(N)− Eλ(N − 1) if ελ < µ

Eλ(N + 1)− E0(N) if ελ > µ
(1)

with µ the Fermi energy. Addition/removal energies define
the (quasiparticle) band structure of a solid, including its
band gap, and genuine correlation features beyond the
independent-particle picture such as satellites [8]. They
characterise the electronic structure of a material and are
hence of fundamental interest.

In extended systems the direct evaluation of the total-
energy differences in equation (1) is impractical. The
eigenvalues of the Kohn–Sham single-particle hamilto-
nian are largely employed as addition/removal energies
ελ. However, this commonly adopted procedure is not rig-
orous [26–28] (besides µ and the highest-occupied level in
finite systems [29,30]). In practice, this misuse of Kohn–
Sham eigenvalues is at the origin of the so-called “Kohn–
Sham band gap underestimation” in semiconductors and
insulators [8,31]. Despite recent attempts [32–34], also
within RDMFT the calculation of addition/removal spec-
tra remains problematic [35,36], since, as in DFT, they
are difficult to express as functionals of the density matrix
(or its natural orbitals and occupation numbers). Instead,
the one-particle Green’s function is explicitly designed to
give those excitations energies ελ, which are formally the
poles of G in the frequency domain. The spectral function
defined as

A(r1, r2, ω) = − 1

π
sign (ω − µ) ImG(r1, r2, ω), (2)

displays peaks at the energies ελ:

A(r1, r2, ω) =
∑
λ

f∗λ(r1)fλ(r2)δ(ω − ελ), (3)

where fλ are the Lehmann amplitudes.1 The spectral
function is thus the primary quantity to consider in
order to analyse addition/removal spectra. It is not
surprising that popular approximations within MBPT,
such as Hedin’s GW approximation [38], are today the
state-of-the-art method for the calculation of excitation
spectra [8].

Even though the MBPT approach to calculate the
excitation energies ελ is generally successful [8], at the
same time it is intrinsically inefficient. In particular, in
the case of angle-integrated photoemission, the relevant
frequency-dependent spectrum is given by just the trace
of A in (3). In the standard approach one has first to
calculate the full G(r1, r2, ω), although only a limited
part of its information is finally needed. It is therefore

1 Note that expression (2) is valid if the products f∗λ(r1)fλ(r2)
are real, e.g. when they are symmetric under the exchange r1 ↔ r2
[37]. It will be the case here.
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highly desirable to devise an alternative method that tar-
gets directly the variable of interest [39], which in this
case we identify with the diagonal of the spectral func-
tion, A(r1, r1, ω). In the context of band-structure theories
this quantity is usually known as the local density of
states (DOS). Our choice is motivated by the fact that
from A(r1, r1, ω) one can obtain both the density n(r1)
(from an integration over ω) and the integrated DOS
(from an integration over r1), which can be related to
PES experiments. We can understand A(r1, r1, ω) as a
further reduced quantity, whose complexity is intermedi-
ate between n(r1) and G(r1, r2, ω). Here the motivation is
clearly driven by spectroscopy applications and the goal
is to obtain addition/removal spectra in an efficient way.
We also note that there is a general interest in the pos-
sibility of defining also an energy functional in terms of
A(r1, r1, ω) [40]. However, we will not touch upon this
problem here.

In the rest of the article, we will discuss in details a
possible strategy to obtain in practice useful approxima-
tions to the spectral potential, which is the generalization
of the Kohn–Sham potential designed to directly yield
the diagonal of the spectral function A(r1, r1, ω) with-
out passing through the Green’s function G(r1, r2, ω) as
in (2). In Section 2, following reference [39], we will intro-
duce the spectral potential on the basis of a generalization
of the Sham–Schlüter equation [28,41]. In Section 6.5
we will then consider one of the simplest hamiltonians
(defined on a lattice, not in real space) that is repre-
sentative of a real material: the asymmetric Hubbard
dimer with one electron. This very simple hamiltonian
already illustrates the general problem of the interplay
between the electron-electron interaction (i.e. the source
of correlation effects) and the crystal potential (i.e. the
source of inhomogeneities in real materials). Its exact
solution will provide the benchmark to examine a pos-
sible strategy of approximation for the spectral potential
in realistic applications. Section 4 will illustrate the gen-
eral strategy, which will be then followed in Sections 5
and 6.3, where approximations to the spectral poten-
tial will be constructed and tested at different levels.
Finally, Section 7 contains a concise summary and an
outlook.

2 Effective potentials: the generalized
Sham–Schlüter equation

The Kohn–Sham scheme [11] is the paradigm of an auxil-
iary system: a non-interacting system with an effective
potential, i.e. the local and real Kohn–Sham potential
VKS(r1), that is designed to yield the quantity of interest,
namely the density, and in principle nothing else. We can
also understand the one-particle Green’s function formal-
ism within MBPT in the same spirit. In this case the effec-
tive “potential” is the self-energy Σ(r1, r2, ω), which is a
non-local, non-hermitian and frequency-dependent opera-
tor. Similarly to VKS(r1) for the density, the self-energy is
supposed to give G exactly.

In both DFT and MBPT, the exchange-correlation (xc)
parts of the effective potentials, Vxc(r1) and Σxc(r1, r2, ω),

respectively, have to be approximated. Sham and Schlüter
[28,41] established a formal connection between the two.
First of all, one can formally define the Kohn–Sham
Green’s function GKS as the resolvent of the Kohn–Sham
hamiltonian, GKS = (ω − HKS)−1 = (ω − H0 − Vxc)−1,
where H0 is the Hartree Hamiltonian. The connection
between the DFT and MBPT effective potentials is then
given by the fact that the density can be obtained both
from G and GKS as:

n(r1) =

∫
dω

2πi
eiωηG(r1, r1, ω)

=

∫
dω

2πi
eiωηGKS(r1, r1, ω). (4)

Plugging this condition into the Dyson equation relating
G to GKS one finds [28]

∫
dωdr3dr4 e

iωηGKS(r1, r3, ω)[Σxc(r3, r4, ω)

−Vxc(r3)δ(r3 − r4)]G(r4, r1, ω) = 0, (5)

which can be solved for Vxc(r1). The Sham–Schlüter
equation (5) in its linearized form where G is replaced
by GKS everywhere has often been used to derive approx-
imations to Vxc (notably in the context of the optimized
effective potential method [42]) or to study properties of
Vxc (see e.g. [43–46]) for given approximations to Σxc.
It has been employed also in other contexts: for exam-
ple, in the framework of superconducting DFT [47,48]
or within TDDFT where it has been extended to the
time-dependent case for Vxc(r1, t1) [49].

One could wonder whether the same approach could be
followed also in the case of RDMFT to introduce an ansatz
of a non-local and static effective potential VDM(r1, r2)2

for the density matrix:

γ(r1, r2) =

∫
dω

2πi
eiωηG(r1, r2, ω)

=

∫
dω

2πi
eiωηGDM(r1, r2, ω) (6)

with GDM = (ω − H0 − VDM)−1. The answer must be
negative.3 The effective potential VDM would define a non-
interacting system. However, any non-interacting wave-
function Ψ can give rise only to idempotent density
matrices, without the possibility to cover the general cor-
related case of fractional occupation numbers. As a matter
of fact, this implies that the generalized Sham–Schlüter

2 Note that for simplicity of notation VDM here stands only for
the xc part of the total effective potential. The same notation will
be used also for VSF in the following.

3 Note that the generalisation to a degenerate non-interacting
system, where the ground state is an ensemble, is in principle pos-
sible [5,50]. However, this choice also leads to pathologies [5,50]
and will be avoided here. Another possibility is finite-temperature
RDMFT [51].
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equation for the density matrix:∫
dωdr3dr4 e

iωηGDM(r1, r3, ω)[Σxc(r3, r4, ω)

−VDM(r3, r4)]G(r4, r2, ω) = 0, (7)

should have no solution for VDM (except for the case of
a static and real Σxc, for which VDM is trivially equal to
Σxc). This is proved analytically in the Appendix A for
the simple Hubbard dimer at half filling.

Here, instead, we will show that it is possible to use
a generalized Sham–Schlüter equation [39] to define the
local, real and frequency-dependent spectral potential
VSF(r1, ω) that directly yields another part of the full
G that is of interest for us, namely the diagonal of the
spectral function:

A(r1, r1, ω) = − 1
π sign(ω − µ)ImG(r1, r1, ω)

= − 1
π sign(ω − µ)ImGSF(r1, r1, ω) (8)

with GSF = (ω − H0 − VSF)−1. For each frequency, the
following equation

Im

∫
dr3dr4GSF(r1, r3, ω)

[
Σxc(r3, r4, ω)

−VSF(r3, ω)δ(r3 − r4)
]
G(r4, r1, ω) = 0, (9)

defines VSF(r1, ω) in the same manner as the original
Sham–Schlüter equation (5) does for Vxc(r1). The new
potential defines another auxiliary system that represents
the dynamical generalization of the Kohn–Sham scheme
of DFT. By construction, it gives exactly both the
ground-state density and the A(ω) ≡

∫
dr1A(r1, r1, ω)

needed for angle-integrated photoemission. So its use
would allow one to bypass expensive MBPT calculations:
the computational cost would be much reduced since VSF

is real and local like VKS. Equation (9) has been solved for
simple illustrative cases in [39,40,52]. In the following, we
will introduce a strategy of approximation of the spectral
potential VSF to determine the excitation energies of the
Hubbard dimer and we will make a comparison with
the exact solution and various approximations to the
self-energy.

3 The asymmetric Hubbard dimer

One of the simplest models that still exhibits a non-
trivial interplay between the electron–electron interac-
tion and the interaction with an external potential is
the asymmetric Hubbard dimer, occupied by a single
spin-up electron N = 1 (see Fig. 1). Its Hamiltonian
reads:

Ĥ = −t
∑
σ

(
ĉ†1σ ĉ2σ + ĉ†2σ ĉ1σ

)
+
∑
i

ein̂i + U
∑
i

n̂i↑n̂i↓.

(10)

In the Hubbard model (10) the electron–electron interac-
tion is assumed to be only on–site: the electronic repulsion

Fig. 1. A schematic picture of the asymmetric Hubbard dimer,
equation (10). The ground state is a single spin-up electron
which jumps between site 1 and site 2, at energy e1 and e2,
gaining a hopping energy −t. If an additional spin-down elec-
tron enters the system on the same site as the one in which
the former electron is sitting, they interact paying the energy
price U .

is U for two electrons on the same site and 0 otherwise.
Varying the ratio between the Hubbard U and the nearest-
neighbour hopping parameter t is the simplest way to
capture the competition between the tendency of electrons
to delocalise to reduce their kinetic energy and the oppo-
site tendency to localise to reduce the cost of the electronic
repulsion. This competition is the key to describe the Mott
metal-insulator transition [53]. In the large U/t limit, the
Hubbard dimer also corresponds to a minimal-basis-set
representation of the bond dissociation of simple diatomic
molecules. For example, the symmetric dimer (i.e., for
same on-site energies e1 = e2 in (10)) describes the dis-
sociation of the H2 molecule (or H+

2 for the one-electron
case), which is the paradigmatic case of static correla-
tion in quantum chemistry (still a challenging problem
within DFT [18,54]). Moreover, in the asymmetric dimer
the external potential makes that the two sites 1 and 2
are at different energy e1 and e2 (we choose e1 > e2).
The external potential thus introduces an inhomogene-
ity, mimicking the role of the crystal potential in a solid
(which makes it different from the homogeneous electron
gas). As in a real material, one cannot easily disentangle
the effect of the inhomogeneity from the electron-electron
interaction.

Since the model is also exactly solvable, it has been
recently often used (both in its asymmetric and symmet-
ric versions and for N = 1 or N = 2) to study the general
properties and benchmark different approximations in the
various reduced-quantity frameworks that we have con-
sidered so far: DFT [55,56] and several of its extensions
(thermal DFT [57], ensemble DFT [58,59], site occupation
embedding theory [60], and TDDFT [61–67]), RDMFT
[35,36,68–70] (including its time-dependent version [71])
and MBPT [72–74].

In equation (10) the on-site energy term e1n̂1 + e2n̂2

can be recast in the form: Ē (n̂1 + n̂2) + (D/2) (n̂1 − n̂2),
with Ē = (e1 + e2)/2 the average energy and D = e1 − e2

the difference. Through a redefinition of energy (a shift

of Ĥ) we can always choose Ē = 0, setting the zero of
the energy axis; in this way, the parameters that define
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the system are t, U and D, all positive. To simplify the
notation, we measure the energy in units of t, defining the
reduced quantities Ĥ/t → Ĥ, U/t → U and D/t → D.
Thus, the Hamiltonian reads:

Ĥ=−
∑
σ

(
ĉ†1σ ĉ2σ+ĉ†2σ ĉ1σ

)
+ D

2 (n̂1 − n̂2) +U
∑
i

n̂i↑n̂i↓,

(11)

where D can be regarded as an external potential that
alters the symmetry site 1←→ site 2 and creates inhomo-
geneities in the dimer.

In order to solve the Hamiltonian, we make a con-
venient change of basis from the site basis

{
|i, σ〉

}
,

defined and ordered as
{
|1, ↑〉 , |2, ↑〉 , |1, ↓〉 , |2, ↓〉

}
, where

|i, σ〉 represents an electron with spin σ sitting
on the site i, to the bonding–antibonding basis{
|±, σ〉

}
≡
{
|−, ↑〉 , |+, ↑〉 , |−, ↓〉 , |+, ↓〉

}
, where − and +

stand for the bonding and antibonding states respec-
tively. The latter can be obtained by diagonalizing the
Hamiltonian (11):

|−, σ〉 = cos ρ |1, σ〉+ sin ρ |2, σ〉
|+, σ〉 = sin ρ |1, σ〉 − cos ρ |2, σ〉 , (12)

with tan ρ = D
2 +

√
1 + D2

4 . The corresponding eigenval-

ues, which are spin-independent, are e± = ±
√

1 + D2

4 .

Only the lowest energy level e− is occupied, defining
the ground state |GS〉 ≡ |−, ↑〉 and the Fermi energy

µ = e− = −
√

1 + D2

4 . The difference in the occupation

of the two sites is given by

n1 − n2 =
1− tan2 ρ

1 + tan2 ρ
, (13)

which is 0 for D = 0 and tends to −1 for large D, as the
assumption e1 > e2 favours the occupation of the second
site, lower in energy. This means that in the large D limit
the bonding state rather than a covalent bond (where the
electron is equally shared by the two sites) represents a
ionic situation (where the electron is localised on a specific
site).

3.1 The exact Green’s function

The time ordered Green’s function at zero temperature is
defined as:

Gij,σ(t, t′) = −i 〈GS| T̂ ĉiσ(t)ĉ†jσ(t′) |GS〉 . (14)

The Green’s function is trivial for the spin-up case: the
single electron in the ground state can be removed, or
another spin-up electron can be added to the system and
it will go to the antibonding orbital, where it will not
interact with the first electron. As a result, the spin-up
Green’s function has two poles and is always equal to
its non-interacting counterpart: Gij,↑(ω) = G0

ij,↑(ω). The

latter reads:

G0
ij,σ(ω) =

f−ij
ω − e− − iηsignσ

+
f+
ij

ω − e+ + iη
, (15)

with weights defined as

f−ij = [δi1 cos ρ+ δi2 sin ρ] [δj1 cos ρ+ δj2 sin ρ]

f+
ij = [δi1 sin ρ− δi2 cos ρ] [δj1 sin ρ− δj2 cos ρ] ,

and the convention that sign σ = +1 (−1) for σ =↑ (↓).
The spin-down Green’s function is far more interesting,
and it is derived in Appendix B. It does not show any
removal energy, as no spin-down electron is present in the
system, but there are four addition channels describing
the different processes an incoming spin-down electron can
undergo:

Gij,↓(ω) =
4∑

λ=1

fλij
ω − ωλ + iη

. (16)

The poles ωλ and the relative weights fλii of the spin-
down Green’s function are represented in Figure 2 for
different asymmetry values D as a function of the inter-
action strength U . We can characterize these excitations
by referring to the bonding/antibonding orbital where
the additional spin-down electron goes. The first and
the fourth poles ω1 and ω4 are the excitation energies
corresponding to the addition of a spin-down electron
to the bonding state and the second and the third
poles ω2 and ω3 to an antibonding state. We will
come back to the physical interpretation of the poles in
Section 5.

In the non-interacting limit U → 0, ω1 accounts for the
bonding state e−, while ω2 and ω3 merge to the antibond-
ing pole e+. The fourth pole ω4 remains separate from
the others also for U → 0. However it corresponds to an
excitation that is not visible in the non-interacting Green’s
function. Indeed the amplitude of the associated peak (see
Figs. 2b and 2c) goes to zero for U → 0, in such a way
that the non-interacting Green’s function (15) has thus
just the two expected peaks at ε±.

The behaviour of the diagonal elements of the spectral
function

Aij,σ(ω) = − 1
π sign (ω − µ) ImGij,σ(ω), (17)

is shown in Figure 3 for the spin-down case. From the
fact that in the non-interacting limit all the weight of
the bonding peaks is in ω1 and nothing in ω4, the pole
ω1 can be considered as the quasiparticle, while the one
at ω4 its satellite. Moreover, in the non-interacting limit
the poles ω2 and ω3 are degenerate and have the same
amplitudes.

Increasing U , at D = 0, the peak in ω1 loses weight
as the one in ω4 rises up. For large U the four peaks of
the symmetric D = 0 dimer merge into two pairs sep-
arated by a distance of the order of U : they become
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Fig. 2. Positions ωλ and weights fλii (for i = 1, above, and i = 2, below) of the poles of the spin-down Green’s function,
equation (16), as a function of U , in units of t, for different values of D, as indicated.

the two “Hubbard bands”. This is the atomic limit,
where the two possible excitation energies (which have
the same probability) correspond to adding one electron
to an isolated empty atom or to an isolated atom with
one electron. As soon as D 6= 0, the left-right symme-
try is broken and for increasing D the bonding state
tends to localize in the site 2, while the antibonding
one in the site 1. For larger and larger D, it is more
and more likely that the site 2 be occupied, and site 1
empty.

For non-zero values of D at large U (U � D), for
site 1, the poles ω1 and ω2 become the dominant exci-
tations, while ω3 and ω4 are no more degenerate and
lose progressively weight with increasing D. By con-
trast, for site 2, ω3 becomes the most probable excita-
tion. When U < D, for the site 1 the most prominent
peaks are ω2 and ω3, which are related to the electron
addition to the antibonding orbital. In this parame-
ter range, for the site 2 the most probable excitation
is instead ω1, corresponding to the electron addition
to the bonding state. Finally, for very large D with
respect to U , this picture reduces to the non-interacting
situation.

Therefore, we see that by changing the ratio between
the asymmetry D and the interaction strength U it is
possible to explore the different regimes, ranging from a
situation where the static correlation (i.e. left-right degen-
eracy) is essential to the one where the inhomogeneity is
the dominant factor.

3.2 Approximations to the self-energy

The poles of the Green’s function G can alternatively be
obtained from the Dyson equation:

G−1
ij,σ(ω) = G0 −1

ij,σ (ω)−Σij,σ(ω). (18)

The exact self-energy Σij,σ(ω) yields the poles ωλ as the
solutions of the pole equation ω−ωλ(ω) = 0, where ωλ(ω)
are the eigenvalues of h0

ij +Σij,σ(ω) with

h0
ij =

(
D
2 −1
−1 −D2

)
. (19)

From the fact that the off-diagonal elements of the self-
energy are equal, the pole equation reads:

ω −

{
Σ11,σ(ω) +Σ22,σ(ω)

2

±

√√√√[1 −Σ12,σ(ω)
]2

+

[
D

2
+
Σ11,σ(ω) −Σ22,σ(ω)

2

]2}
= 0.

(20)

If the exact self-energy is not at hand, as it is most often
the case, one resorts to approximate expressions for it:
Σij,σ(ω) ≈ Σa

ij,σ(ω).
In the following, we will consider the position of the

poles ωaλ, solutions to equation (20) within a particular
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Fig. 3. Diagonal of the spectral function Aii,↓(ω) for i = 1 (line above) and i = 2 (line below) as a function of ω and U , in
units of t, for different values of the asymmetry parameter D, as indicated. The pictures are drawn with a lorentzian broadening
η = 0.3, for clarity reasons. The behaviour of the poles as a function of U is the one of Figure 2a, while the amplitudes of the
peaks follow Figures 2b and 2c for i = 1 and i = 2 respectively.

approximation Σa
ij,σ(ω) for the self-energy, and compare

them to the exact result. We will focus our analysis on the
spin-down case, which is the most interesting one since, as
pointed out above, the spin-up Green’s function is always
non-interacting.

3.2.1 Hartree approximation

The simplest approximation to the full self-energy is the
Hartree approximation. The Hartree potential is defined
as:4

vH
i = Uni. (21)

From equation (20) with Σa
ij(ω) = vH

i δij , the poles are:

ωH
± =

U

2
±
√

1 + h2, (22)

with

h =
D

2
+ U

n1 − n2

2
. (23)

The resulting spectral function is shown in Figure 4. The
Hartree potential is static, so it can at most shift the posi-
tion of the two peaks ε± of the non-interacting spectral
function, but it is unable to split them. Nonetheless, it is
an improvement with respect to the free-particle approxi-
mation U = 0, in which the position of the poles would be

4 The Hartree potential is here spin-independent, as usual in ab
initio calculations [72]. An alternative definition of a spin-dependent
Hartree potential is also possible (see e.g. [75–77]). We refer to [78]
for an extended discussion.

Fig. 4. The Hartree approximation for A11,↓(ω). The blue
surface is the exact spectral function, the same as in the upper
row of Figure 3, while in white the one evaluated with the
Hartree approximation, equation (21).

U -independent5. Since the Hartree potential vH
i depends

on U , the two peaks ωH
λ of the Hartree spectral function

5 Note, however, that a spin-independent Hartree potential (and,
more generally, any non-zero spin-up self-energy) spoils the spin-up
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Fig. 5. Position of the poles of the spin-down GW Green’s function as a function of U . Solid line, exact results, as in Figure 2a;
dots, GW poles.

interpolate well between the four peaks of the exact spec-
tral function. In particular, the Hartree approximation is
a pretty good approximation for small U , independently
of D. By contrast, for large U , where correlation effects
become important, the correspondence is worse.

3.2.2 The GW approximation

In the GW approximation (GWA) the self-energy Σa
ij(ω)

is obtained from the convolution in frequency space
of the Green’s function and the screened interac-
tion W calculated in the random-phase approximation
(RPA).6 In particular, here we consider the non-self-
consistent version of the GWA where the Green’s func-
tion is the non-interacting G0 and the RPA polariza-
tion ΠRPA

0 ∼ −iG0G0, which dresses the bare interac-
tion U , is also evaluated with non-interacting Green’s
functions:

ΣG0W0
ij,σ (ω) = i

∫
dω′

2π
eiω
′ηG0

ij,σ(ω + ω′)WRPA
ij (ω′). (24)

The GW self-energy, in addition to the Fock exchange
term ΣX

ij,σ = −δσ,↑δijUni (which however acts on the
spin-up channel only), contains a non-local, complex and
frequency dependent contributions, which is derived in
Appendix C. The final result for the spin-down case reads:

ΣG0W0

ij,↓ (ω) =
(−1)(i−j) U2

2l√
1 + D2

4

[
f+
ij

ω − (e+ + l) + iη

+
f−ij

ω − (e− + l) + iη

]
,

part of the Green’s function, which is exact at the non-interacting
level.

6 As already noted for the Hartree approximation, it is possi-
ble to consider a GWA self-energy constructed starting from a
spin-dependent interaction [78]. In that case one obtains that the
exchange self-energy is zero and the spin-up Green’s function is
always exact. Moreover, the GWA would solve exactly the sym-
metric D = 0 model. Here instead we employ a spin-independent
interaction, which is closer to usual GWA in solids. It does treat
spins on the same footing, adding additional poles to the spin-up
Green’s function (15). Moreover, it does not solve exactly the D = 0
system, and this is precisely the interest to employ this formulation,
and not the former, for the following discussion.

with

l2 = 4

(
1 +

D2

4

)
+

2U√
1 + D2

4

. (25)

The poles of the Green’s function evaluated with the GW
self-energy are obtained as the solutions of equation (C.5)
in Appendix C. In Figure 5, they are represented for the
spin-down Green’s function for four values of D, as a
function of U .

The behavior of the GWA has been discussed in detail
for the symmetric case D = 0 in references [72,73]. In that
case, the GWA works well for small interaction U , while
it tends to close the gap between the Hubbard bands
for large value of U . Here we find that, apart from the
fourth pole, its performance improves for larger values
of D, showing that the asymmetry counteracts the effect
of the interaction. The D → ∞ limit corresponds to the
non-interacting U → 0 limit, for which the GWA is exact.

4 The connector strategy

We now come back to the real and frequency-dependent
spectral potential vSF(r, ω) introduced in equation (9),
which is local in real space. In a lattice model it becomes
a site-dependent potential vSF i(ω). It defines the Green’s
function GSF ij of the auxiliary system:

G−1
SF ij(ω) = G0−1

ij (ω)− vSF i(ω), (26)

which is built to exactly yield the diagonal elements of the
spectral function Aii(ω):

− 1

π
sign(ω − µ) ImGSF ii(ω) ≡ ASF ii(ω)

!
= Aii(ω). (27)

In a discrete system this condition is equivalent to repro-
duce the position of the poles, together with the intensities
of the corresponding peaks. In particular, in the dimer we
are interested only in the spin-down part of the spectral
function. Moreover, since the poles are independent of the
particular basis, it is useful to express the previous rela-
tion in the basis (12), where the non-interacting Green’s
function G0 is diagonal, and the spectral potential reads:

vSFαβ(ω) = VSF(ω)δαβ +
∆vSF(ω)√
D2 + 4

(
−D2 1

1 D
2

)
, (28)
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with

VSF(ω) := 1
2

[
vSF 1(ω) + vSF 2(ω)

]
∆vSF(ω) := vSF 1(ω)− vSF 2(ω).

A local potential in the site basis, whose value depends
on the particular site, is not local anymore in the α ≡ ±
basis. In this basis, the equation that defines the auxiliary
system becomes:

G−1
SFαβ(ω) = G0 −1

α (ω)δαβ − vSFαβ(ω), (29)

with G0 −1
α (ω) = ω − eα, eα = e± = ±

√
1 + D2

4 . The pre-

vious equation defines the frequency-dependent effective
Hamiltonian in the auxiliary system, namely:

HSFαβ(ω) = eαδαβ + vSFαβ(ω). (30)

This Hamiltonian, which is not diagonal due to the pres-
ence of the local spectral potential, can be diagonalized
and the poles of the Green’s function GSF ij(ω) can be
determined by the conditions (analogous to Eq. (20)):ω −

[
VSF(ω)−

√
1 +

(D+∆vSF(ω)
2

)2]
= 0

ω −
[
VSF(ω) +

√
1 +

(D+∆vSF(ω)
2

)2]
= 0.

(31)

If vSF i(ω) is the exact spectral potential, these two equa-
tions must possess the four7 solutions ωλ, i.e. the poles of
the Green’s function of the real system. We could therefore
find the exact spectral potential by solving those equa-
tions for vSF i(ω). Those conditions (together with those
deriving from the requirement to match the intensities of
the peaks) would be equivalent to solve the generalized
Sham–Schlüter equation (9) for the dimer.

However, in real applications one does not dispose of the
exact solution of the Hamiltonian. Therefore, in the fol-
lowing we will consider a different strategy. We will aim
to build directly the spectral potential without making
use of the self-energy (or a corresponding spectral func-
tion) and we will use it in equation (31) to calculate the
poles ωSF

λ of the asymmetric dimer. To benchmark our
approach, we will compare the resulting ωSF

λ to the ones
obtained from the exact solution of the Hamiltonian or
from the different approximations to the self-energy that
have been discussed in Section 3.2.

The model system

In order to directly build approximations to the spec-
tral potential, we take inspiration from Kohn–Sham DFT
where in the LDA the xc potential Vxc(r) is imported from
a model system, namely the homogeneous electron gas. In
our case the natural candidate to play the role of model
system is the symmetric Hubbard dimer. In the same way
as for the homogeneous electron gas, in the symmetric

7 Other solutions are allowed if the derivative of the potential
diverges, see the discussion of Section 5.2.

dimer inhomogeneities (or asymmetries) are absent, and
an exact solution is easier to obtain.

Once the potential is at hand in the model system, one
has to import it in the auxiliary system via a suitable “con-
nector”. The connector is a very general prescription that
states what to import and how to do that. For the LDA,
at each point in space r the LDA connector is the local
density n(r) that identifies the uniform density defining
the corresponding homogeneous electron gas, from which
Vxc for that point is imported. Here for the spectral poten-
tial in the dimer we adopt as a connector a pole-by-pole
correspondence. We can imagine that, switching on D
from a D = 0 initial situation, the nature of the poles
be unchanged, and the potential needed to reproduce a
certain pole ωλ can be mapped continuously from the

potential at ω
(D=0)
λ ≡ ωsλ (where s stands for the sym-

metric dimer), even if ωλ 6= ωsλ. Therefore, it is not the
energy ωλ that matters, but the state λ. We use the latter
as a connector, namely we set:

vSF i

(
ωλ
)

= vsSF

(
ωsλ
)
. (32)

We note that the right hand side does not depend on the
site i, as the model system that we have chosen is homo-
geneous. Therefore, vSF in the asymmetric dimer does not
depend on the site either. We note also that the same argu-
ment, namely a continuous behaviour of the position of the
poles of the auxiliary system as a function of D, pushes us
to consider, also for D 6= 0, ω1 and ω4 as bonding poles,
i.e. zeros of the first of equation (31), while ω2 and ω3 as
antibonding poles, i.e. zeros of the second of equation (31).

The first task hence becomes calculating the spectral
potential exactly (and at different levels of approximation)
for the symmetric dimer. This will be the subject of the
next section.

5 The spectral potential for the symmetric
dimer

The Hamiltonian for the symmetric Hubbard dimer8 (with
one spin-up electron) is obtained from equation (11) by
setting D = 0:

Ĥs = −
∑
σ

(
ĉ†1σ ĉ2σ + ĉ†2σ ĉ1σ

)
+ U

∑
i

n̂i↑n̂i↓. (33)

The Hamiltonian has eigenvalues εs± = ±1, corresponding
to the bonding-antibonding eigenstates:

|±, σ〉 =
1√
2

[
|1, σ〉 ∓ |2, σ〉

]
. (34)

The spin-up electron occupies the bonding state
|GS〉 ≡ |−, ↑〉; therefore, the chemical potential is

8 The Green’s function and the GWA for the Hubbard dimer with
one electron have already been discussed elsewhere [72,73,78]. Here
we gather the main results for consistency, noting that in the present
case the on-site energy is e1 = e2 = 0 and the energy is measured in
units of t (i.e. in practice we set t = 1).
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Table 1. Peak positions ωsλ and amplitudes fsλ. Note that

we have defined c =
√

16 + U2.

peak position peak amplitude

1st pole ωs1 = 1 + U−c
2

fs1 = 1
2

+ 2
c

2nd pole ωs2 = 1 fs2 = 1
2

3rd pole ωs3 = 1 + U fs3 = 1
2

4th pole ωs4 = 1 + U+c
2

fs4 = 1
2
− 2

c

µs = εs− = −1 and the antibonding excited state is well
separated with energy εs+ = +1.

5.1 The solution of the model

5.1.1 The Green’s function

We consider the bonding–antibonding basis, where the
Green’s function Gsαβ(t, t′) = δαβG

s
α(t − t′) is diagonal

because the two sites i = 1 and i = 2 have the same on-site
energy. Here, again, since the spin-up Green’s function is
always non-interacting, we are interested in the spin-down
Green’s function only:

Gs−,↓(ω) =
1
2 + 2

c

ω − ωs1 + iη
+

1
2 −

2
c

ω − ωs4 + iη

Gs+,↓(ω) =
1
2

ω − ωs2 + iη
+

1
2

ω − ωs3 + iη
(35)

with c =
√

16 + U2. In the site basis the spin-down
Green’s function in the Lehmann representation:

Gsij,↓(ω) =
(−1)i−j

2

4∑
λ=1

fsλ
ω − ωsλ + iη

, (36)

has four poles ωsλ, which are summarized in Table 1
together with their amplitudes9 fsλ.

The nature of the poles remains the same as in the
asymmetric case, however their physical interpretation

(making reference to the eigenvalues ε
s (N=2)
λ of the Hamil-

tonian with N = 2 electrons – see Appendix B) is more
intuitive than in the asymmetric case:

– The pole ωs1 represents the addition of a spin-down
electron to the already-occupied bonding orbital;
since they are on the same orbital, electrons interact
with an effective interaction10 Ũ−− = 2 + 1

2

(
U − c

)
.

Hence ε
s (N=2)
λ=1 = −2 + Ũ−− = 1

2

(
U − c

)
and

ωs1 = 1 + 1
2

(
U − c

)
.

– The pole ωs2 describes two electrons sitting on two
different sites and occupying two different orbitals
(therefore, no interaction), namely a bonding and

9 In the notation of equation (16), fs λij ≡
1
2

(−1)i−jfsλ.
10 U is the interaction term for two electrons on the same site, Ũ

is the interaction for two electrons in the same orbital: sites and
orbitals are just two different basis, and if the electrons are not
interacting in a basis, they are not in the other basis either: for this
reason, Ũ always goes to zero in the limit of zero bare interaction U .

an antibonding orbital, giving a total energy

ε
s (N=2)
λ=2 = −1 + 1 = 0, and ωs2 = +1.

– The pole ωs3 is associated with two electrons occu-
pying the same site but in two different orbitals; the

total energy is therefore ε
s (N=2)
λ=3 = −1 + 1 +U = U ,

and the position of the pole is ωs3 = 1 + U .
– Finally, the pole ωs4 represents two electrons occu-

pying the same antibonding orbital with an effective
interaction Ũ++ = −2 + 1

2

(
U + c

)
: a spin-down elec-

tron enters the system in the bonding orbital, where
a spin-up electron was already sitting; the former
excites the latter, and both end up in an excited
state, the antibonding state, where they interact via
Ũ++. This process results in a total energy of the

two-electron state equals to ε
s (N=2)
λ=4 = 2(−1) + 4 +

Ũ++ = 1
2

(
U + c

)
; the pole is ωs4 = 1 + 1

2

(
U + c

)
.

The effective interaction that we have just introduced
is hence Ũαβ = 0 if electrons occupy different sites with
〈n̂i,↑n̂i,↓〉 = 0, whereas if the electrons have a non-zero
probability to be on the same site 〈n̂i,↑n̂i,↓〉 6= 0, the
effective interaction reads:

Ũαβ =

(
Ũ−− Ũ−+

Ũ+− Ũ++

)
=

(
2 + U−c

2 U
U −2 + U+c

2

)
. (37)

5.1.2 The spectral function

Since both sites are equal, the Green’s function is symmet-
ric under exchange of the site indices. The diagonal ele-
ments of the spectral function are the same and equal to:

Asii,↓(ω) =
∑
λ

fsλ
2
δ
(
ω − ωsλ

)
. (38)

5.1.3 The self-energy

As in the asymmetric case, the spin-up self-energy is zero
as an additional spin-up electron cannot interact, while
the spin-down self-energy can be obtained more easily in
the bonding-antibonding basis where the Green’s func-
tions are diagonal. From the inverted Dyson equation
Σs
α(ω) = Gs0

−1
α (ω) − Gs−1

α (ω), with Gs0
−1
α (ω) = ω − εsα,

one has:

Σs
−,↓(ω) =

U

2
+

U2

4

ω −
(
3 + U

2

)
+ iη

Σs
+,↓(ω) =

U

2
+

U2

4

ω −
(
1 + U

2

)
+ iη

. (39)

From the relation ω − εsα − ReΣs
α(ω) = 0 one obtains

ωs1 and ωs4 when considering the bonding state α = −,
and ωs2 and ωs3 when considering the antibonding α = +.
The weights fsλ of the Green’s function in equation (35)
are nothing but the renormalization factors Zsλ :=

(1− ∂ ReΣs
α(ω)/∂ω)

−1
ω=ωsλ

. They are:

Zs1 =
1

2
+

2

c
Zs2 = Zs3 =

1

2
Zs4 =

1

2
− 2

c
. (40)
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Moving to the site basis, the self-energy reads:

Σs
ij,↓(ω) =

U

2
δij +

U2

8

[
(−1)i−j

ω −
(
1 + U

2

)
+ iη

+
1

ω −
(
3 + U

2

)
+ iη

]
. (41)

As expected, Σs
ij,↓ goes to zero in the limit of U → 0

except for Σs
−,↓(ω4)

U→0−→ 4, which is the energy needed
to excite the system to the pole ω4, a process which
is suppressed for U = 0 but is nonetheless present for
small interaction U . Note that this is a truly non-local
self-energy in the site basis, with a non-zero imaginary
part.

In the next section, we will exactly get the diagonal of
the spectral function Asii,↓(ω) (38) by replacing the non-

local and complex-valued self-energy (41) with a real and
local (in the site basis) potential.

5.2 The exact spectral potential

The auxiliary system is requested to provide the same
local spectral function as equation (38). Since the spin-
symmetry is broken by the choice of a spin-up ground
state, we will furthermore consider a spin-dependent
spectral potential; for reproducing the spin-up spectral
function, a zero spectral potential will trivially do the
job, as Σs

ij,↑(ω) = 0. We will henceforth focus on the
spin-down sector, dropping the ↓ notation. The auxil-
iary system is defined by the following inverted Dyson
equation:

Gs−1
SF ij(ω) = Gs−1

0 ij (ω)− vsSF i(ω)δij , (42)

where we have introduced the local spectral potential
vsSF i(ω); since the two sites are equivalent, the potential
takes the same value vsSF(ω) on both sites, and the equa-

tion can be written as Gs−1
SF ij(ω) = Gs−1

0 ij

(
ω − vsSF(ω)

)
:

GsSF ij(ω) =
1
2

ω − (−1 + vsSF(ω)) + iη

+
(−1)(i−j) 1

2

ω − (1 + vsSF(ω)) + iη
. (43)

Instead of working in the site basis, we can move
to the bonding–antibonding basis |±〉 where, by virtue
of the symmetry of the problem, everything is diag-
onal. Moreover, in the bonding–antibonding basis the
value of the potential is the same,11 as vsSF(ω) can be
considered as a frequency–dependent energy shift, no
matter the basis. Therefore, the bonding–antibonding

11 Indeed, considering a local potential vi, we have:(
v−− v−+

v+− v++

)
=

1

2

(
1 1
1 −1

)(
v1 0
0 v2

)(
1 1
1 −1

)
=

1

2

(
v1 + v2 v1 − v2
v1 − v2 v1 + v2

)
=

(
v 0
0 v

)

character is settled by the non-interacting Green’s
function Gs−1

0 ± (ω) = ω − εs± only, and the inverted
Green’s function in the bonding–antibonding basis simply
reads:

Gs−1
SF ±(ω) = ω − εs± − vsSF(ω). (44)

By definition the Green’s function in the site basis,
equation (43), must have the same local spectral func-
tion as the one defined in terms of the full Green’s
function (38):

− 1

π
sign(ω − µ) ImGsSF ii(ω) ≡ AsSF ii(ω)

!
= Asii(ω). (45)

Since we are in a discrete system, this equation means
that both the positions and the amplitudes of the peaks
must be reproduced by the auxiliary system.

5.2.1 Position of the peaks

Since their position does not depend on the basis, and we
are in a discrete system, the poles of GsSF ±(ω) and Gs±(ω)
must be the same, namely:

ω − εs± − vsSF(ω)
∣∣
ω=ωsλ

= 0 (46)

with ωsλ the four poles of Table 1. For small interac-
tion U � 1, the effect of the potential will be to slightly
move the poles from their U = 0 position; we assume
that, since its effects are small, the spectral potential be
small too in this regime. It is therefore natural to assume
that the nature of the poles be unchanged, namely that
(anti)bonding poles of the real system be reproduced by
(anti)bonding poles of the auxiliary system. Therefore, the
previous relation could be split into the following two:

ω − εs− − vsSF(ω)
∣∣
ω=ωs1,ω

s
4

= 0

ω − εs+ − vsSF(ω)
∣∣
ω=ωs2,ω

s
3

= 0 (47)

(with εs± = ±1) from which the value of vsSF(ω) at the
poles is:

vsSF(ωs1) = 2 + U−c
2

vsSF(ωs2) = 0

vsSF(ωs3) = U

vsSF(ωs4) = 2 + U+c
2 , (48)

which are shown in Figure 6a. Note that two equations
analogous to equation (47) hold with Σs

±(ω) in place of
vsSF(ω):

ω − εs− −Σs
−(ω)

∣∣
ω=ωs1,ω

s
4

= 0

ω − εs+ −Σs
+(ω)

∣∣
ω=ωs2,ω

s
3

= 0. (49)

where in the last equality we implemented the site-symmetry prop-
erty v1 = v2 := v; therefore, the mixed terms are zero and both the
bonding v−− and antibonding v++ potentials are equal to v, too.
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Fig. 6. Spectral potential vSF(ω) and (minus) its first deriva-
tive (in logarithmic scale) −dvSF(ω)/dω at the poles ωsλ.

Indeed, for a discrete system (not in the thermodynamic
limit), the self-energy is real at the poles [37], and in par-
ticular the spectral potential is nothing but the self-energy
at the poles:

vsSF(ωsλ) =

{
Σs
−(ωsλ) if ωsλ = ωs1, ω

s
4

Σs
+(ωsλ) if ωsλ = ωs2, ω

s
3

. (50)

On the contrary, vsSF(ω) 6= ReΣs
ii(ω), as one could have

naively guessed, because in the site basis the self-energy
is non-local.

From these relations or directly from equation (48), the
spectral potential can be interpreted as the additional
energy which the auxiliary system needs to mimic the
behaviour of the full solution. In particular, vsSF(ωsλ) is
related to the effective interactions that we introduced in
equation (37):

vsSF(ωs1) = Ũ
〈n̂i,↑n̂i,↓〉6=0
−−

vsSF(ωs2) = Ũ
〈n̂i,↑n̂i,↓〉=0
αβ

vsSF(ωs3) = Ũ
〈n̂i,↑n̂i,↓〉6=0
+−

vsSF(ωs4) = 4 + Ũ
〈n̂i,↑n̂i,↓〉6=0
++ . (51)

Only vsSF(ωs4) differs from the corresponding effective

interaction Ũ++ by 4 (in units of t): indeed, 4t is the
energy that must be provided to the two electrons to

go from the bonding to the antibonding state, where
they are then free to interact with an energy Ũ++;
the spectral potential, like the self-energy, provides the
system with both the activation energy 4t and the inter-
action Ũ++, so that (in units of t): vsSF(ωs4) = Σs

−(ωs4)

= 4 + Ũ++.12

5.2.2 Amplitude of the peaks

The spectral potential vsSF(ω), besides their positions,
has to reproduce also the amplitudes of the peaks
of the diagonal spectral function AsSF ii(ω). For the
symmetric dimer, the absolute value of the Lehmann
weights fs λij ≡ 1

2 (−1)(i−j)fsλ is independent of i and j,
and also, modulus 1/2, independent even of the par-
ticular basis. Therefore, we can simply match, in the
bonding–antibonding basis, the positive weights fsλ =
Zsλ with the corresponding ones of the auxiliary system

ZsSFλ. Through the identification (Zsλ)
−1 ≡ (ZsSFλ)

−1
=(

1− dvsSF(ω)
dω

)
ω=ωsλ

we obtain the values of the derivatives

of vsSF(ω) evaluated at ωsλ:

dvsSF(ω)

dω

∣∣∣∣
ω=ωsλ

=



2
c −

1
2

2
c + 1

2

if ωsλ = ωs1

−1 if ωsλ = ωs2

−1 if ωsλ = ωs3
2
c + 1

2
2
c −

1
2

if ωsλ = ωs4

. (52)

Their behaviour as a function of U is shown in Figure 6b.
We note that the requirement that equation (46) do

not have any other solutions than ω = ωsλ can be actu-
ally relaxed: indeed, other poles ωs

λ̃
can show up as

additional crossings of the two lines ω− εs± with the func-
tion vsSF(ω), provided that their weight Zs

SF λ̃
be zero,

namely that
dvsSF(ω)
dω

∣∣∣
ω=ωλ̃

diverge. Therefore, the poten-

tial – univocally fixed with its derivative by equations (48)
and (52) wherever the spectral function is non-zero –
can be arbitrarily defined also where Asii(ω) = 0 pro-
vided that, if it crosses the lines ω − εs±, its tangent be
vertical.

With equations (48) and (52) the problem is solved.
We note that, in particular, the spectral function is

reproduced in the non-interacting limit U = 0 (trivial),
and also in the atomic limit U → ∞. In the latter case,
the potential assumes the values vsSF(ω) = 0 in ωs1 and ωs2,
and vsSF(ω) = U in ωs3 and ωs4, yielding the two separated
Hubbard bands exactly. On the contrary, the Kohn–Sham
eigenvalues of DFT by definition cannot be interpreted
as excitations energies. Even within MBPT the GW

12 Taking the limit is a continuous operation from positive val-
ues of U to U = 0; since the process described by the pole ωs4 is
actually suppressed for U = 0, one could decide to redefine “by
hand” Σs−,↓(ω

s
4)|U=0 := 0 and nothing would change. As a result,

also vsSF(ωs4) would be redefined at U = 0 as vsSF(ωs4)|U=0 := 0.
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Fig. 7. A schematic picture of the general strategy.

approximation fails qualitatively to describe the atomic
limit [72].

5.2.3 More than expected?

With the choice of equations (48) and (52), we have
obtained the following results:

AsSF±(ω) = As±(ω) AsSF ij(ω) = Asij(ω). (53)

Actually, equation (53) contains far more than what
we expected: the spectral potential vsSF(ω), indeed, has
the duty of reproducing only the diagonal of the spec-
tral function in the site basis, namely AsSF ii(ω) = Asii(ω).
The reason why in this way we actually get also the off-
diagonal elements is due to the fact that the matrix of
change of basis is fixed; therefore, since the spectral func-
tion is reproduced in a basis (i.e. the bonding-antibonding
one), it will be fully reproduced also in the other, both for
diagonal and off-diagonal elements.

One question remains: why is the bonding-antibonding
spectral function fully reproduced? The reasons are three:
1) for the symmetry of the problem (i.e. the two sites are
equivalent), vsSF(ω) is just a frequency-dependent number
in any basis, and in particular in the bonding-antibonding
basis; 2) in a discrete system the number of poles is
finite and their position is independent of the basis; their
assignment to the correct bonding or antibonding charac-
ter is done on the basis of continuity with the U = 0 case;
3) in the bonding-antibonding basis the spectral function
is diagonal and, in particular, positive, as the target Asii(ω)
is diagonal and positive too; the difference in their weights
(the 1/2 factor) is completely accounted for by the change
of basis matrix.

As a consequence, in a discrete translationally invari-
ant system in which vsSF(ω) is not site-dependent, the
whole spectral function in any diagonal basis (if any)
is fully reproduced; therefore, not only the diagonal but
even the off-diagonal elements of the site-basis spec-
tral function are exactly reproduced. So is the density
matrix, too.

6 Approximations in practice

Now that the spectral potential is available in the sym-
metric dimer, the question is how to use it in practice in
the asymmetric dimer for all possible D values. In the fol-
lowing we will discuss our strategy, which is schematically
represented in Figure 7.

6.1 Corrections to import

We will adopt an approximation a yielding the poles ωaλ
in the asymmetric dimer. These poles can be obtained
either by using the approximate self-energy Σa or the cor-
responding spectral potential vSF a. We will then import
some corrections to the spectral potential from the model
symmetric dimer. Finally, with this corrected spectral
potential we will calculate the new poles of the asymmetric
dimer solving equation (31).

Concretely, for each pole ωλ the exact spectral poten-
tial vSF i in the asymmetric dimer can be split into an
approximated part vSF a i plus a correction Ξa i:

vSF i(ωλ) = vSF a i(ω
a
λ) +Ξa i(ωλ). (54)

We note that the correspondence is set by the state λ and
not by its energy ωλ. Indeed, in general the position of the
poles is not the same: ωλ 6= ωaλ.

Analogously, in the symmetric dimer we can define:

vsSF(ωsλ) = vsSF a(ωa sλ ) +Ξsa(ωsλ), (55)

where the approximation a is the same as in the asymmet-
ric dimer. The correction Ξa i in the asymmetric dimer,
i.e. in equation (54), is then imported from the model
symmetric dimer (see Eq. (32))

Ξa−dynCA
a i (ωλ) = Ξsa(ωsλ) , (56)

where, as already said, the connection is made through
the state label λ, which is indeed the only quantity which
is shared by both sides. Moreover, we note that the
imported correction is the same for both sites i as the
model is symmetric. We call this the dynamical connector
approximation (dynCA).

We will benchmark the results obtained in this way
with the exact results for the asymmetric dimer from Sec-
tion 6.5. The performance will of course depend on the
starting approximation chosen in the asymmetric dimer.
We expect the connector approach to work better in sit-
uations in which most of the inhomogeneity is treated
exactly within the asymmetric dimer, and all higher
orders interaction corrections are provided by the model
system.

6.2 Starting from a free-particle approximation

The simplest case is starting from a very crude
approximation. We do not take into account any
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Fig. 8. Position of the poles of the spin-down Green’s function as a function of U starting from the free-particle approximation.
Solid line, exact results; dashed lines, the poles in equation (58).

explicit spectral potential in the asymmetric dimer,
i.e. we assume vSF a i(ω) = 0. As a consequence also
vsSF a(ω) = 0 in the symmetric model, and the correc-
tion that we import is the whole spectral potential of
the model system: Ξs0(ωsλ) = vsSF(ωsλ). The prescription
reads:

v0−dynCA
SF i (ωλ) = vsSF(ωsλ). (57)

This is a global potential, independent of the site i. Still,
inhomogeneity is accounted for by the external potential
term that modifies the free-particle Green’s function. By
plugging the expression (57) in the pole equation (31), and
by using the same equation also in the model system, we
get the four poles in this approximation:

ω0−dynCA
λ = ωsλ ±

(√
1 + D2

4 − 1

)
, (58)

where the upper (lower) sign is for ω2 and ω3 (ω1 and ω4).
This approximation leads to a complete disentanglement
of interaction, accounted for by ωsλ, and inhomogene-
ity, which results from the second term. Apart from the
pole ω4, the results are exact in the U → 0 limit. Also
for small non-vanishing U , the performances of this rel-
atively simple approach are pretty good, see Figure 8.
However, this expression is extremely simple and does not
well reproduce the position of the poles for larger values
of D or U .

6.3 Starting from the Hartree approximation

A better approximation is to have an explicit local depen-
dence in the spectral potential for the asymmetric dimer,
and import from the model system a smaller term. This
is possible if the Hartree potential vHi = Uni is treated
exactly in the asymmetric dimer, and therefore just the
exchange-correlation part of the spectral potential is
imported from the symmetric dimer.

Indeed, from the separation vSF i(ω) = vHi + ΞHi (ω)
introduced above we take the correction ΞHi (ω) from the
model system. There, the Hartree potential is simply U/2,
hence ΞHs (ω) = vsSF(ω)−U/2. Using the state λ as a con-
nector, the equation analogous of equations (54) and (56)

reads:

vH−dynCA
SF i (ωλ) = Uni + vxc sSF (ωsλ). (59)

This is another connector approximation, which again
reduces to the exact result for D → 0, and it explicitly
treats some inhomogeneities in the interaction through the
Hartree potential of the real system.

Plugging this potential into equation (31) to find the
position of the poles, we get:

ωH−dynCA
λ = ωsλ ±

(√
1 + h2 − 1

)
, (60)

where h = D/2 + [U(n1 − n2)]/2, see equation (23).
Equation (60) is very similar to equation (58), but now
the interaction U enters also the square root, creating
an interplay between inhomogeneity and interaction in
the position of the poles (see Fig. 9). Still, as in the
previous case, the pole ω4 is not well described by this
approximation for non-zero values of D.

We finally note that this approximation is an improve-
ment with respect to:

1. The Hartree approximation itself, equation (22).
Indeed, with a frequency-dependent potential, the
two poles (22) can be split. Furthermore, they are
in good agreement with the expected result, at least
for small D, because the correction is imported from
the model symmetric dimer.

2. The free-electron starting point, for small values of
U . For large U , starting from the Hartree approxi-
mation worsens the result.

6.4 Starting from the GW approximation

We already evaluated the position of the poles in the
asymmetric dimer in the GW approximation, see Figure 5
and equation (C.5) in Appendix C. These poles stem

from the non-local and complex self-energy ΣG0W0
ij (ω) or,

equivalently, from the local and real spectral potential
vG0W0

SF i (ω).
The spectral potential in the symmetric dimer that

corresponds to the GW approximation, evaluated at the
poles, is given by the relation (see Eq. (47)):

vG0W0 s
SF (ωG0W0 s

λ ) = ωG0W0 s
λ ∓ 1. (61)

https://epjb.epj.org/


Eur. Phys. J. B (2018) 91: 192 Page 15 of 22

Fig. 9. Position of the poles of the spin-down Green’s function as a function of U starting from the Hartree approximation.
Solid line, exact results; dashed lines, the poles in equation (60).

Fig. 10. Position of the poles of the spin-down Green’s function as a function of U starting from the GW approximation.
Solid line, exact results. Small dots, the G0W0 poles of equation (C.5) and Figure 5. Large dots, the poles ωG0W0−dLCA

λ in
equation (65), within the G0W0–dynCA approach.

Table 2. Exact and GW poles of the spin-down Green’s
function in the model symmetric dimer. Note that c =√
U2 + 16 and l is defined in equation (25).

λ ωsλ ωG0W0 s
λ

1 1 + U−c
2

l+U
2

2
− 1

2

√(
l + 2 − U

2

)2
+ 2U2

l

2 1
l+U

2
2

− 1
2

√(
l − 2 − U

2

)2
+ 2U2

l

3 1 + U
l+U

2
2

+ 1
2

√(
l − 2 − U

2

)2
+ 2U2

l

4 1 + U+c
2

l+U
2

2
+ 1

2

√(
l + 2 − U

2

)2
+ 2U2

l

It is reported in Table 3. In equation (61) the GW

poles ωG0W0 s
λ of the symmetric dimer are given by

equation (C.4):

ωG0W0 s
λ =

l + U
2

2
± 1

2

√(
l ± 2− U

2

)2

+
2U2

l
. (62)

with l defined in equation (25). They are gathered in
Table 2.

The differences between the exact spectral potential and
the one approximated at the level of the GWA:

ΞsG0W0
(ωsλ) = vsSF(ωsλ)− vG0W0 s

SF (ωG0W0 s
λ ), (63)

are the quantities that will be imported from the symmet-
ric dimer. Their expressions are contained in Table 3.

The correction terms ΞsG0W0
(ωsλ) (63) are imported

from the model symmetric dimer and added on top of
the GW spectral potential vG0W0

SF i (ωλ) for the asymmetric
dimer. In this way one obtains:

vG0W0−dynCA
SF i (ωλ) = vG0W0

SF i (ωλ) +ΞsG0W0
(ωsλ). (64)

Here the GW spectral potential vG0W0

SF i (ωλ) is the spec-
tral potential that yields the GW poles in the asymmetric
dimer, see equation (C.5). In principle, it is found as the
solution of the generalized Sham–Schlüter equation when
the self-energy is ΣGW . However, in practice we do not
need its explicit form to calculate the poles corresponding

to the approximate vG0W0−dynCA
SF i (ωλ). Indeed, plugging

equation (64) into equation (31) and using the fact that

ωG0W0

λ are the solutions of equation (31) when the spec-

tral potential is vG0W0

SF i (ωλ), we obtain the following simple
expression for the poles:

ωG0W0−dynCA
λ = ωG0W0

λ +ΞsG0W0
(ωsλ), (65)

which is still exact in the limit of D → 0. These poles are
represented in Figure 10.

For small D, the GWA in the asymmetric dimer
decreases the gap between the Hubbard bands and yields
poles that are blue-shifted in the lower band (ω1 and
ω2) and red-shifted for the upper band (ω3 and ω4) with
respect to the exact result, see Figure 5. Adding the
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Table 3. Exact and GW potentials that give the poles of Table 2, in the model system. Also their difference
ΞsG0W0

(ωsλ) = vsSF(ωsλ)− vG0W0 s
SF (ωG0W0 s

λ ) is shown.

λ vsSF(ωsλ) vG0W0 s
SF (ωG0W0 s

λ ) ΞsG0W0
(ωsλ)

1 2 + U−c
2

l+U
2

2
− 1

2

√(
l + 2 − U

2

)2
+ 2U2

l
+ 1 1 +

U
2
−c−l
2

+ 1
2

√(
l + 2 − U

2

)2
+ 2U2

l

2 0
l+U

2
2

− 1
2

√(
l − 2 − U

2

)2
+ 2U2

l
− 1 1 −

U
2
+l

2
+ 1

2

√(
l − 2 − U

2

)2
+ 2U2

l

3 U
l+U

2
2

+ 1
2

√(
l − 2 − U

2

)2
+ 2U2

l
− 1 1 +

3
2
U−l
2

− 1
2

√(
l − 2 − U

2

)2
+ 2U2

l

4 2 + U+c
2

l+U
2

2
+ 1

2

√(
l + 2 − U

2

)2
+ 2U2

l
+ 1 1 +

U
2
+c−l
2

− 1
2

√(
l + 2 − U

2

)2
+ 2U2

l

Fig. 11. Corrections Ξsa(ωsλ) for the potential of the model symmetric dimer as a function of U . Dotted lines are the corrections
Ξs0(ωsλ) ≡ vsSF(ωsλ). Dashed lines represent the corrections to the Hartree potential, ΞsH(ωsλ) ≡ vxc sSF (ωsλ), while the continuous
lines are the corrections ΞsG0W0

(ωsλ) to the GW potential of Table 3.

correction ΞsG0W0
(ωsλ) imported from the model system

restores the expected position of the poles, and the agree-
ment between our theory and the exact result is very good.

On the contrary, for larger values of D, the GWA was
already good for ω1, ω2 and ω3, while it was not so good for
ω4. With the present approach, the agreement is slightly
worsened for the first three poles while it is again improved
for the fourth pole.

6.5 Discussion

In Figure 11 we plot, as a function of U , the corrections
Ξsa(ωsλ) that are imported from the model symmetric
dimer in the three approximations that we have consid-
ered. As one may expect, the corrections are smaller if
the level of starting approximation is higher. For exam-
ple, it is clear that the GWA starting point is a great
improvement over the simpler Hartree approximation.
Indeed, the required corrections ΞsG0W0

(ωsλ) are smaller.
Moreover, that same correction always tends to zero for
U → 0 (i.e., the GWA becomes exact for U → 0), even
for the satellite ω4, whose physics is now clearly caught
by the RPA polarization within the GWA.

As a result, the more pieces of the potential are put
into evidence and treated exactly in the auxiliary sys-
tem, the more accurate is the dynCA. In Figure 12 we
compare the poles of the exact Green’s function of the
asymmetric dimer for D = 2 as a function of U (solid
lines) with the three approximations that we have con-
sidered. We find that passing from the poles calculated
from equation (57) (i.e. dynCA on top of the free-particle
approximation, dotted lines in Fig. 12) to those calculated
from equation (59) (i.e. dynCA on top of the Hartree
approximation, dashed lines in Fig. 12) the agreement
with the exact results improves considerably for not too-
large interaction, i.e. U < 2. The same happens making
the further step to equation (64) (i.e. dynCA on top of
the GW approximation, dots in Fig. 12) for an even larger
range of U .

Moreover, in general, for small D the connector approxi-
mations work well, as the real system is closer to the model
system itself, and therefore the dynCA prescription is bet-
ter suited. For small D, the real system is only slightly
inhomogeneous, hence an average description as the one
proposed here works well. On the contrary, for higher
values of D, when properties are truly site-dependent,
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Fig. 12. Position of the poles of the spin-down Green’s func-
tion as a function of U , for D = 2. Solid line, exact results.
Dotted lines for the poles of equation (58), dynCA on top
of free-particle approximation. Dashed lines for the poles of
equation (60), dynCA on top of the Hartree approximation.
Dots, the poles of equation (65), dynCA on top of the GWA.
This figure summarizes panels (c) of Figures 8–10.

a global connector Ξsa(ωsλ) shows its limits because it
requires the model system to be similar to the real one.
This issue could be overcome by introducing a local (i.e.
site-dependent) connector between the model and the aux-
iliary system, like the local density of LDA. This is not
straightforward, as the model system, the N = 1 symmet-
ric Hubbard dimer, misses a density that could be tuned:
there ni = 1

2 is a constant. This is a general difficulty con-
cerning density functional approaches. A possibility could
be to tune the hopping parameter introducing an effective
teff as proposed in [79].

7 Summary and outlook

We have discussed a general strategy to directly calculate
the observables of interest. It is based on two steps that
can be considered to be a generalization of the successful
paradigm of the LDA for the Kohn–Sham formulation of
DFT. The first step is the definition of an auxiliary sys-
tem with an effective potential (or kernel) that is designed
to yield exactly the target quantity. The second step is
the formulation of a direct approximation to the effective
potential, through the introduction of a connector, i.e. a
recipe to import the needed information from a model
system. In this way one can also hope to be able to disen-
tangle material-specific properties from universal effects
that are captured by the model system already.

We have illustrated this general strategy with a toy
model, the asymmetric Hubbard dimer with one elec-
tron. We have compared the spectral functions obtained
from the exact solution of the model with the Hartree
and GW approximations to the self-energy and with cal-
culations performed employing different approximations
to the spectral potential, i.e. the effective local, real and
frequency-dependent potential that is built in such a way
to give, in principle, the diagonal of the spectral func-
tion exactly. The approximations to the spectral potential
have been obtained introducing a suitable connector to
the symmetric Hubbard dimer, which here plays the role
of model system. We have discussed the performances of

the approximations and the limitations inherent to this
very simple model.

In real applications, the use of the spectral potential
aims to replace computationally expensive MBPT calcu-
lations for spectral properties or to add corrections to
existing approximations, such as the GWA, in an efficient
manner. The key point clearly is the development of accu-
rate connector approximations in real materials, which is
the subject of ongoing work [80].
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Appendix A: The Sham–Schlüter equation
for the density matrix

In a discrete lattice model the generalized
Sham–Schlüter equation (7) for the density matrix
γij =

∑
σ

∫
dω
2πie

iωηGij,σ(ω) is:

∑
σ

∑
kl

∫
dω

2πi
eiωηGDM

ik,σ(ω)Σkl,σ(ω)Glj,σ(ω)

=
∑
σ

∑
kl

vDM
kl

∫
dω

2πi
eiωηGDM

ik,σ(ω)Glj,σ(ω) (A.1)

with the non-local γ–effective potential vDM
ij . We take the

symmetric Hubbard dimer, equation (33), as a model to
which applying the previous equation. As the Green’s
function, the self-energy and the effective potential are
diagonal in the bonding–antibonding basis {α} = {±}
(see Sect. 5.1), we express the Sham–Schlüter equation
in that basis:∑
σ

∫
dω

2πi
eiωηGDM

α,σ (ω)Σα,σ(ω)Gα,σ(ω)

= vDM
α

∑
σ

∫
dω

2πi
eiωηGDM

α,σ (ω)Gα,σ(ω). (A.2)

Let us check if a solution to equation (A.2) exists. If the
ground state is composed of a single electron, the previous
equation will always have an undetermined solution vDM

α .
Indeed, with a single spin-up electron, the ground state is
a trivial Slater determinant, and the spin-resolved density
matrix is idempotent and independent of the interaction:
γαβ,σ = δσ,↑δαβδα,− or γij,σ = 1

2δσ,↑.
Therefore, to check if non-trivial solutions of

equation (A.2) exist, we have to move to the N = 2 sector
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(half-filling), where Green’s function and self-energy, in
the bonding–antibonding basis, are spin-independent and
read [78,81]:

G−,σ(ω) =
1
2 −

2
c

ω −
(
1 + U+c

2

)
+ iη

+
1
2 + 2

c

ω −
(
1 + U−c

2

)
− iη

G+,σ(ω) =
1
2 + 2

c

ω −
(
−1 + U+c

2

)
+ iη

+
1
2 −

2
c

ω −
(
−1 + U−c

2

)
− iη

Σ−,σ(ω) =
U

2
+

U2

4

ω −
(
3 + U

2

)
+ iη

Σ+,σ(ω) =
U

2
+

U2

4

ω −
(
−3 + U

2

)
− iη

with c =
√

16 + U2. In particular, the occupation numbers
are fractional: n±,σ :=

∫
dω
2πie

iωηG±,σ(ω) = 1
2 ∓

2
c . The

auxiliary system Green’s function GDM
α,σ (ω) can be built

from the full Green’s function by setting U = 0 and intro-
ducing, in place of the self-energy, a state-dependent13

potential vDM
α :

GDM
±,σ(ω) =

1

ω −
(
±1 + vDM

±
)
± iη

. (A.3)

Let us plug all these quantities in equation (A.2).
The sum over spin yields a trivial multiplicative fac-
tor. We first consider the bonding state; the right hand
side is:

vDM
−

∫
dω

2πi
eiωηGDM

−,σ(ω)G−,σ(ω) =
1
2

(
1− 4

c

)
vDM
−

vDM
− − 2− c+U

2

.

As for the left hand side, it reads:∫
dω

2πi
eiωηGDM

−,σ(ω)Σ−,σ(ω)G−,σ(ω)

=
U

4

(
1− 4

c

){
1

vDM
− − 2− c+U

2

+
U
2[

vDM
− − 4− U

2

] [
vDM
− − 2− c+U

2

]
+
U

2

(
1 + 4

c

1− 4
c

)[
1[

vDM
− − 4− U

2

] [
vDM
− − 2− U−c

2

]
+

1[
2 + c

2

] [
vDM
− − 2− U−c

2

]]}.
13 As vDM

± is static, equation (A.3) holds whenever there is no
level crossing between the bonding and the antibonding states,
with energy −1 + vDM

− and 1 + vDM
+ respectively, namely if

vDM
+ > vDM

− − 2. In the opposite case, when vDM
+ < vDM

− − 2, the
occupation of the two states swap and equation (A.3) becomes
GDM
±,σ(ω) = 1

ω−
(
±1+vDM

±

)
∓iη

.

After simplifying both sides, the Sham–Schlüter
equation (A.2) becomes:

0 = −1

2

(
1− 4

c

)
vDM
− −

(
2 + U+c

2

)
vDM
− −

(
2 + U+c

2

) , (A.4)

and analogously for the one corresponding to the anti-
bonding state:

0 =
1

2

(
1− 4

c

)
vDM

+ +
(
2− U−c

2

)
vDM

+ +
(
2− U−c

2

) . (A.5)

Since the dependence on the potential cancels, these equa-
tions do not have any solution for vDM

± , apart from the case
U = 0, where c = 4 and both equations display undeter-
mined solutions. Of course, this is a trivial case as the
density matrix is idempotent.

As a final observation, it is interesting to compare
equation (A.2) to its DFT counterpart, namely the orig-
inal Sham–Schlüter equation for the density ni [28]. The
latter involves a local potential vKS

i , which is a constant
for the symmetric dimer, and reads:∫

dω

2πi
eiωη

∑
α,σ

GKS
α,σ(ω)Σα,σ(ω)Gα,σ(ω)

= vKS

∫
dω

2πi
eiωη

∑
α,σ

GKS
α,σ(ω)Gα,σ(ω). (A.6)

With respect to equation (A.2), this equation displays an
α-independent potential vKS and a sum over α is per-
formed. As a consequence, equation (A.6) is equivalent to
the sum of equation (A.2) for vDM

− and for vDM
+ , with both

taken equals to vKS.
While the two equations (A.4) and (A.5) for vDM

− and

vDM
+ never have a solution for U 6= 0, their sum always

has an undetermined solution. This proves that, while
the γ–effective potential vDM

ij exists only for U = 0, the
n–effective potential, namely the familiar Kohn–Sham
potential vKS

i , always exists, also for U 6= 0. This was
actually expected from the beginning because, once the
ground state of the Kohn–Sham system is fixed to the one
of the real one, as it is by equation (A.3), no matter the
value of the Kohn–Sham potential the density will stay
the same.14

14 If vDM
+ < vDM

− − 2, the final results equations (A.4) and (A.5)
become:

0 = −
1

2

(
1 +

4

c

) vDM
− −

(
2 + U−c

2

)
vDM
− −

(
2 + U−c

2

)
0 =

1

2

(
1 +

4

c

) vDM
+ +

(
2− U+c

2

)
vDM
+ +

(
2− U+c

2

)
which do not have any solutions, not even for U = 0 (when there
would not be any level crossing). As in the other case, the sum of
the two equations always has an undetermined solution. However,
here the sum is not equivalent to the Sham–Schlüter equation for
the density, because if vDM

− = vDM
+ ≡ vKS, there is no level crossing.
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Appendix B: The Green’s function of the
asymmetric Hubbard dimer

In this Appendix, we derive the expression (16) for the
spin-down Green’s function of the asymmetric dimer at
one fourth filling, via the Lehmann representation. To
this purpose, we first present the result of the diagonal-
ization of Hamiltonian (11) in the half-filling case N = 2.
The site basis |i1σ1, i2σ2〉, in which the electron 1 (2)
occupies the site i1 (i2) with spin σ1 (σ2), is ordered
as

{
|1 ↑, 2 ↑〉 , |1 ↑, 2 ↓〉 , |1 ↑ 1, ↓〉 , |2 ↑, 2 ↓〉 , |1 ↓, 2 ↑〉 ,

|1 ↓, 2 ↓〉
}

. As our aim is to derive the spin-down Green’s
function for the case in which |GS〉 ≡ |−, ↑〉, we can
further restrict the basis to elements with opposite spins,
namely

{
|1 ↑, 2 ↓〉 , |1 ↑, 1 ↓〉 , |2 ↑, 2 ↓〉 , |1 ↓, 2 ↑〉

}
. In this

basis, the Hamiltonian (11) reads:

Ĥ(N=2,Sz=0) −→

 0 −1 −1 0
−1 U +D 0 1
−1 0 U −D 1
0 1 1 0

 . (B.1)

The eigenvalue equation det
[
Ĥ − eλ1̂

]
= 0 has the

triplet solution eλ = 0 := e2, with associated eigen-
vector |φ2〉 = 1√

2
(|1 ↑, 2 ↓〉+ |1 ↓, 2 ↑〉), plus the three

solutions of the third order equation e3
λ − 2Ue2

λ −
eλ
(
D2 − U2 + 4

)
+ 4U = 0, that can conveniently be

expressed as [55]

e1 =
2

3

[
U − r cos

(
θ − π

3

)]
e3 =

2

3

[
U − r cos

(
θ +

π

3

)]
e4 =

2

3

[
U − r cos (θ + π)

]
with:

z2 := U2 + 18− 9D2

r2 := U2 + 12 + 3D2

cos 3θ := −z
2U

r3
.

The corresponding normalized eigenvectors are:

|φλ〉 =
1

Nλ

[(
|1 ↑, 2 ↓〉 − |1 ↓, 2 ↑〉

)
+
( 2

eλ + (D − U)

+−eλ
)
|1 ↑, 1 ↓〉 − 2

eλ + (D − U)
|2 ↑, 2 ↓〉

]

with
N 2
λ

4
=

1

2
+

(
1

eλ +D − U
− eλ

2

)2

+(
1

eλ +D − U

)2

. The four eigenvectors φλ of the

N = 2 Hamiltonian enter the Lehmann representation of
the spin-down N = 1 Green’s function, which reads:

Gij,↓(ω)=
4∑

λ=1

〈φλ| ĉ†j↓ |−, ↑〉 〈−, ↑| ĉi↓ |φλ〉
ω − (eλ − e−) + iη

:=
4∑

λ=1

G
(eλ)
ij,↓ (ω).

Calling ωλ := eλ − e−, the contributions relative to the
transitions from the ground state to the e1, e3 and e4

excited state are:

G
(eλ)
11,↓(ω) =

〈φλ| ĉ†1↓ |−, ↑〉 〈−, ↑| ĉ1↓ |φλ〉
ω − ωλ + iη

=
1

|Nλ|2

[
cos ρ

(
2

eλ+(D−U) − eλ
)

+ sin ρ
]2

ω − ωλ + iη

G
(eλ)
12,↓(ω) = G

(eλ)
21,↓(ω) =

〈φλ| ĉ†2↓ |−, ↑〉 〈−, ↑| ĉ1↓ |φλ〉
ω − ωλ + iη

=
1

|Nλ|2

[
cos ρ− sin ρ 2

eλ+(D−U)

]
ω − ωλ + iη

·
[
cos ρ

(
2

eλ+(D−U) − eλ
)

+ sin ρ
]

G
(eλ)
22,↓(ω) =

〈φλ| ĉ†2↓ |−, ↑〉 〈−, ↑| ĉ2↓ |φλ〉
ω − ωλ + iη

=
1

|Nλ|2

[
cos ρ− sin ρ 2

eλ+(D−U)

]2
ω − ωλ + iη

while for the second pole λ = 2:

G
(e2)
11,↓(ω) =

〈φ2| ĉ†1↓ |−, ↑〉 〈−, ↑| ĉ1↓ |φ2〉
ω − ω2 + iη

=
1
2 sin2 ρ

ω − ω2 + iη

G
(e2)
12,↓(ω) = G

(e2)
21,↓(ω) =

〈φ2| ĉ†2↓ |−, ↑〉 〈−, ↑| ĉ1↓ |φ2〉
ω − ω2 + iη

=
− 1

2 sin ρ cos ρ

ω − ω2 + iη

G
(e2)
22,↓(ω) =

〈φ2| ĉ†2↓ |−, ↑〉 〈−, ↑| ĉ2↓ |φ2〉
ω − ω2 + iη

=
1
2 cos2 ρ

ω − ω2 + iη
·

Finally, the spin-down Green’s function takes the form

of equation (16), namely Gij,↓(ω) =
∑4
λ=1

fλij
ω−ωλ+iη , with

the amplitudes fλij given by:

fλ=2
ij =

1

2

[
δi1 sin ρ− δi2 cos ρ

][
δj1 sin ρ− δj2 cos ρ

]
fλ6=2
ij =

1

|Nλ|2

×
[
δi1

(
cos ρ

(
2

eλ + (D − U)
− eλ

)
+ sin ρ

)
+δi2

(
cos ρ− sin ρ

2

eλ + (D − U)

)]
×
[
δj1

(
cos ρ

(
2

eλ + (D − U)
− eλ

)
+ sin ρ

)
+δj2

(
cos ρ− sin ρ

2

eλ + (D − U)

)]
.
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B.1 Symmetric limit

In the limit D → 0, the four eigenenergies of the N = 2
Hamiltonian (B.1) become e1 = U−c

2 , e2 = 0, e3 = U and

e4 = U+c
2 , hence the four poles of the spin-down N = 1

Green’s function are:

ω1 = 1 + U−c
2

ω2 = 1

ω3 = 1 + U

ω4 = 1 + U+c
2 .

If D = 0, the two sites are completely equivalent and, in
particular, the Green’s function assumes the same value on
both. As a consequence, the Green’s function is diagonal
in the bonding–antibonding basis, and reads:

G−(ω) =
1
2 + 2

c

ω − ω1 + iη
+

1
2 −

2
c

ω − ω4 + iη

G+(ω) =
1
2

ω − ω2 + iη
+

1
2

ω − ω3 + iη
.

Appendix C: The GW approximation in the
asymmetric Hubbard dimer

In a basis of local orbitals, the interactions appearing in
the GW expressions should have four indices [8]. How-
ever, in the context of the Hubbard model the overlap
between orbitals on different sites is neglected, and the
expressions simplify [72]. Taking also into account the fact
the Green’s function is spin-diagonal, the spin-summed
polarizability is

Π0
ij(ω) =

∑
σ

∫
dω′

2πi
eiω
′ηG0

ij,σ(ω + ω′)G0
ji,σ(ω′),

where G0
ji,σ(ω) is given by equation (15), or

Π0
ij(ω)=

∑
σ

(−1)(i−j)δσ,↑
D2 + 4

[
1

ω −∆e+ iη
− 1

ω +∆e− iη

]
,

where ∆e ≡ e+ − e− =
√

4 +D2 is the gap between the
excited (antibonding) and the ground (bonding) states.

The polarization screens the bare interaction U0
ij = Uδij

via the Dyson equation Wij = U0
ij + U0

ikΠ
0
klWlj . Invert-

ing the Dyson equation we obtain the spin-independent
screened interaction W :

Wij(ω) = Uδij +
(−1)(i−j) U2

2l√
1 + D2

4

[
1

ω − l + iη
− 1

ω + l − iη

]

with l2 := 4
(

1+ D2

4

)
+ 2U√

1+D2

4

. The first term Uδij yields,

in the self-energy, the exchange term, while the rest is the
screening due to the polarization of the spin-up electron
(only a single bubble). From this result, the self-energy is

found as the convolution of W with the non-interacting
Green’s function G0:

ΣG0W0
ij,σ (ω) = i

∫
dω′

2π
eiω
′ηG0

ij,σ(ω + ω′)Wij(ω
′). (C.1)

Evaluating the integral, we obtain:

ΣG0W0
ij,σ (ω) = ΣX

ij,σ +
(−1)(i−j) U2

2l√
1 + D2

4

[
f+
ij

ω − (e+ + l) + iη

+
f−ij

ω − (e− − l signσ)− iη signσ

]
(C.2)

with the exchange self-energy ΣX
ij,σ ≡

−
∫
dω′

2πi e
iω′ηG0

ij,σ(ω + ω′)U0
ij , given by −δσ,↑nijU0

ij =
−δσ,↑δijUni, which exactly balances the Hartree potential
vHi ≡ Uni when considering the removal of the single
electron from the ground state. From the self-energy, the
Green’s function can be found by inverting the quantity
G−1

0 − vH − ΣG0W0 ≡ G−1
G0W0

. Its poles are the solution

to the equation det
[
G−1

0 − vH −ΣG0W0
]

= 0. They can
be expressed analytically for the symmetric dimer, D = 0,
in which the self-energy reduces to [72]:

ΣG0W0
ij,σ (ω)

D=0
= ΣX

ij,σ +
U2

4l

[
1

ω − (1 + l) + iη

+
(−1)(i−j)

ω + (1 + l signσ)− iη signσ

]
,

and they are, for the spin-up Green’s function:

ωG0W0 ↑
1,2,3,4

D=0
= ± l

2
± 1

2

√(
l + 2

)2

+
2U2

l
, (C.3)

while for the spin-down part:

ωG0W0 ↓
1,2,3,4

D=0
=

l + U
2

2
± 1

2

√(
l ± 2− U

2

)2

+
2U2

l
, (C.4)

where in both expressions the “±” signs are unrelated in
order to form four poles each. In the more general D 6= 0
case, the spin-down poles are the solutions to the following
equation:

0 = det

[(
ω − U

2 − h 1
1 ω − U

2 + h

)

−

1√
1+D2

4

U2

2l

(ω−l)2−
(
1+D2

4

)(ω − l + D2

4 1

1 ω − l − D2

4

)]
. (C.5)

Note that in practice there is no unique recipe for build-
ing the non-self-consistent GW self-energy. An alternative
definition, for instance, is replacing the non-interacting
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Green’s function G0 with the Hartree Green’s function
GH, which reads:

GH
ij,σ(ω) =

fH−
ij

ω − ωH
− − iηsignσ

+
fH +
ij

ω − ωH
+ + iη

, (C.6)

with weights fH±
ij defined as their free counterparts f±ij

with the substitution D
2 → h [78]. The Hartree polariz-

ability ΠH ∼ −iGHGH yields a screened interaction which
has the same expression as the one above, but with the
replacement D

2 → h. Finally, also the self-energy has the

expression of equation (C.2) with D
2 → h and the two

free eigenenergies ε± replaced by the Hartree eigenener-
gies ωH

±. This expression for the self-energy yields poles of
the Green’s function with similar behaviour as the ones
resulting from equation (C.2); a difference is that in this
case the levels do not cross, as in the exact solution.
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