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Abstract. In this paper it is shown that the density can be used as the basic variable for 
calculating the properties of excited states. The correspondence is not between an eigenstate 
and its density, as is the case with the ground state, but between the subspace spanned by the 
number of lowest-energy eigenstates and the sum of their densities. An extension of the 
Hohenberg-Kohn-Sham theory for excited states has also been developed. The equations 
derived are similar in form to those for the ground-state density but the interpretation is 
different. The lowest-order approximation of the present theory coincides with Slater’s 
‘transition-state’ theory. 

1. Introduction 

One of the early attempts to simplify the many-electron problem used the density as a 
basic variable : such attempts started with the Thomas-Fermi approximation. Later 
more sophisticated approximations were developed e.g. by March and Murray (1960, 
1961) and Stoddard and March (1967). 

In 1964 Hohenberg and Kohn (1964) proved that the ground state of a many-electron 
system is uniquely determined by the ground-state density. Further, they developed a 
variational principle which states that the energy expressed as a functional of the density 
assumes its minimum value for the correct ground-state density. Thus, they proved that 
in principle it is possible to determine the exact ground-state density and energy of a 
many-electron system by using the density as a basic variable if the exact kinetic energy 
and exchange and correlation energy density functionals, T(p)  and E,,@) respectively, 
are known. 

A further development based on the HK theory was given by Kohn and Sham (1965) 
who showed that in principle it is possible to determine the exact one-particle properties 
of a many-electron system by using a set of Schrodinger-type equations. This scheme can 
be viewed as a sophisticated version of the simplified Hartree-Fock approximation in 
which the exchange operator is approximated by a local potential. 

This scheme, known as the KS or HKS scheme, cannot give exact results in applica- 
tions to physical problems because at present the exact form of E, , (p)  and T(p) ,  as in the 
case of HK theory, is not known. However, part of the kinetic energy of the interacting 
system is determined by that of the ‘non-interacting’ one. Thus, the HKS scheme gives 
better results than the HK one. The HKS scheme has been widely applied in solid state 
physics and particularly to surface problems (e.g. Lang and Kohn 1970, 1971; Smith 
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1969, 1970; Theophilou and Modinos 1972). A disadvantage of the HKS scheme com- 
pared with the Hartree-Fock approximation is that the many-particle wavefunction of 
this theory cannot be used to derive many-particle properties of the system, whereas the 
H F  wavefunction can. 

As the schemes developed by Hohenberg, Kohn and Sham are restricted to the ground 
state it is of interest to develop a similar scheme for excited states. Since a wide class of 
experiments in atoms, molecules and solids are spectroscopy experiments, the develop- 
ment of such a scheme is useful not only for calculating excited-state densities but also 
for excitation spectra. It is well known to solid state physicists that the energy band theory 
is widely used in interpreting spectroscopic data. However, most energy band calcula- 
tions adopt an effective potential and quite often are successful in interpreting the 
experimental data. The justification for this will be given in this paper as an application 
of the theory developed here. 

Before finishing this section we would like to point out that the generalisation of the 
HKS theory for excited states is not straightforward. The main difference is that sub- 
spaces have to be considered instead of eigenstates. 

Earlier attempts to generalise the HKS scheme have also been made. Gunnarsson and 
Lundqvist (1976) noted that this scheme can be generalised for excited states which are 
the lowest-energy states of each symmetry. Further developments which include mag- 
netic interactions have been given (Stoddart and March 1971, Barth and Hedin 1972, 
Rajagopal and Callaway 1973). Another generalisation of the HKS theory which dealt 
with thermodynamic properties was developed by Mermin (1 965). Numerous papers 
concerning the kinetic and exchange and correlation energy density functionals have 
been presented in recent years; see e.g. Vinter (1978), Hedin and Lundqvist (1971), Rasolt 
and Vosko (1974). General properties of these functionals have been derived by 
Theophilou (1972) and Osaka (1974a, b). 

In 6 2 some preliminary relations necessary for developing the HK and HKS theory 
for excited states are given. In 9 3 the scheme for excited states where the density is used 
as basic variable is presented. In 4 4 we develop the HKS theory for excited states and 
in 4 5 the difficulties associated with applications of the present scheme are discussed. 

2. Preliminary relations 

We consider the many-electron Hamiltonian 

H = H ,  + p^(r) V(v)  d3r s 
where 

(2.14 

p^(r) = $ + ( V I  $(VI. (2 .k)  

V ( v )  is the external potential and $ + ( v ) ,  $ ( v )  are the fermion field operators. 

necessary to prove some auxiliary theorems. 
In order to develop the energy density functional formalism for excited states it is 

Theorem I .  If A is a linear operator and S an N-dimensional subspace of the Hilbert 
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space %? spanned by the linear combinations of the orthonormal states 
quantity 

then the 

I N  

is a functional of the subspace S, i.e. its value is determined only by the subspace S and 
not by the particular choice of the basis. The proof of this theorem is given in Appendix 1. 

As G, is a functional of S, in the rest of this paper the following notation will be used 
r N  

Theorem 2 .  The functional 

under the conditions 

(2.2b) 

(2.2c) 

assumes its minimum value when are any two orthonormal states in the 
subspace S spanned by the linear combinations of the ground state and the first 
excited state lq51) of the Hamiltonian H .  An equivalent formulation of theorem 2 is: 
GH(S) ( GH(S')  for S' # S .  

Theorem 2 can easily be proved by expanding in terms of the complete set of eigen- 
states of H ,  although not all Hamiltonians possess a complete set of eigenstates in the 
Hilbert space 2. For most physicists however, this is not a serious problem since the 
physical situation does not change if we add to the external potential V ( v )  a potential 
which is zero inside a cube and + cc outside and take the volume of the cube to be very 
large but not infinite. In this way we can get a complete set of eigenstates with discrete 
eigenvalues and hence deal with the problem. 

For the mathematical proof of theorem 2 it is necessary to consider Hamiltonians 
which have their continuous spectrum above the first excited state. We also consider 
Hamiltonians for which the two lowest-energy eigenvalues are non-degenerate. 

and 

Proof of theorem 2. From theorem 1 we notice that for any orthonormal basis of the 
subspace S spanned by the linear combinations of the two lowest-energy eigenstates of 
H, lq50) and 

( 2 . 3 ~ )  

the following relation holds: 

<$o lH l$o )  + <$llHl$J = Eo + E ,  
where the states lqi) form an orthonormal basis in S, i.e. 

($il$j) = 'ij (2.3b) 

and 

HJ4J = Ei/4i>. (2 .3~)  

Any subspace S' different from S is spanned by the orthonormal states 14;) and I$;), 
(2.4a) 

(2.4b) 
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where the states Ix,) are normal to the subspace S,  i.e. 

<Xll4J = 0, i , j  = 0, 1. (2.4~) 

When both coefficients b, are equal to zero the subspace S‘ coincides with the subspace S. 
The states I%,) are not necessarily orthogonal to each other. Because of the orthogonality 
of the states I$;), the following relation holds 

a,*,a,, + b:b,<XolXJ = 0 
The existence of a basis of the above form can be shown by taking a basis in S’ and 

performing a unitary transformation so that one of the states of the new basis has a 
projection in the subspace S normal to 

Because of the minimum property of the ground state the following relation holds 

<4o/HI40> 6 <4blHl$b>. ( 2 . 5 ~ )  

Since the first excited state of the Hamiltonian H can be defined as the normalised 
state for which the functional ($ /HI$ )  assumes its minimum value in the subspace of 
the Hilbert space 8 normal to 

< $ l l ~ l $ l )  6 <@lq+J (2.5b) 

By adding by parts inequalities ( 2 . 5 ~ )  and (2.5b) 

i.e. in the subspace [ I  - ($,,I] 8, we have 

because the state 14;) is normal to 
the following inequality results 

<$oiHl$o) + (4,IH/4,) 6 (+b /~ /4b> + <4;/~l+;). (2.6) 

However, the equality sign holds only when S’ = S .  Finally, by expressing the quantities 
in (2.6) as functionals of the subspaces (see theorem 1) we get 

G,(S) < G,(S’), S’ # s. (2.7) 

An equivalent proof of theorem 1 is obtained by using variational principles to deter- 
mine the minimum of G,(S) in a two-dimensional subspace under conditions (2.2b) and 
( 2 . 2 ~ ) .  By using Lagrange multipliers for the conditions and varying S ,  the following 
equations result 

(2.8a) 

(2.8b) 

it can easily be verified that any pair of orthonormal eigenstates of H satisfies these 
equations with p = 0 and that when p # 0, the solutions are linear combinations of these 
eigenstates. The lowest value of G,(S) is assumed when S is the subspace spanned by 
140) and 141). 

Theorem 3. For Hamiltonians of the form 

H ,  = H ,  + b(u) V ( r )  d3r 1’ 
there is a one-to-one correspondence between the subspace S, spanned by the lowest- 
energy eigenstates of H,, and the external potential V(u). 

It must be noted that equivalent potentials, i.e. potentials differing by a constant, are 
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considered as identical since their corresponding Hamiltonians possess the same set of 
eigenstates. The eigenstates of H ,  will be denoted by 14;). 

Proof of theorem3. The two lowest-energ) eigenstates of the Hamiltonian H ,  are uniquely 
defined since they are non-degenerate. Hence, the subspace spanned by the lowest- 
energy eigenstates of H ,  is uniquely defined by V ( r ) .  Therefore, only one S to one V ( r )  
corresponds. This subspace will be denoted by S,. 

We next have to prove that S ,  # S,. when V and V'  are not equivalent potentials. 
The proof which follows is by reductio ad absurdum. Assume the opposite is true, i.e. 
S ,  = S,,. Then, since the two subspaces are identical we can go from the orthonormal 
basis 14:), 14;) to the orthonormal basis I$:'), 14";) by a unitary transformation. Thus 

(2.10a) 

(2.10b) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

Then since the operator 

H,, - H ,  = p(r ) (V ' ( r )  - V(r ) )  d3r s 
maps both states of the orthonormal basis of S, into states in S ,  it follows that S, is an 
invariant subspace of this operator, i.e. every state in S ,  is mapped into a state in S,. It 
follows then that H, - H ,  has eigenstates in S, because of a theorem of linear algebra: 
if a Hermitian operator leaves a finite dimensional subspace invariant then this operator 
has eigenstates in this subspace. But the operator H,, - H ,  has no eigenstates in the 
Hilbert space 8 unless V(r )  is a constant. Therefore, it follows that the assumption 
S, = S,, is not true. 

Hence, there is a one-to-one correspondence between S ,  and V, i.e. two different 
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subspaces correspond to two non-equivalent potentials. The fact that 

H, - H, = P(r) [V‘(r )  - V(v)] d3r c 
has no eigenstates in a Hilbert space follows easily if the usual wavefunction representa- 
tion is used. 

H, - H,, = [V’(r,) - V ( r J ]  

Then if $ ( P ~ ,  r 2 , .  . . , rN)  is an eigenfunction of this operator we have 
1 

(2.15b) 

In order to satisfy this equation with $(rl, J ’ ~ ,  . . . , v,,) not identically zero we must have 

(V’(r,) - W,)) = 
1 

i.e. the two external potentials must be equivalent, a fact which is contrary to our initial 
assumption. 

It must be noted that the &function is not a square integrable function and therefore 
does not belong to the Hilbert space #. Thus a &function solution to equation (2.15b) 
is not acceptable. 

(2.16) 

Theorem 4. For Hamiltonians of the form 

H = H, + P ( r )  V(v)d’r c 
the following inequality holds 

- 1 (p,.(v) - p,(v)) ( V ’ ( r )  - V ( r ) )  d’r > 0 (2.17) 

for non-equivalent potentials, i.e. for potentials not differing by a constant. 

divided by two, 
By pJv)  we denote the sum of the ground-state density and first-excited-state density 

p,(4 = +((+;IP(+fJ; )  + (+;IP(~*)/+3). (2.18) 

Proof, Since by theorem 3 the subspace spanned by 14;) and 14;) does not coincide 
with Sv,, the subspace spanned by I4:’), /47’), we have 

(2 .19~)  

(2.19b) 

By adding (2 .19~)  and (2.19b) by parts and noting that GHo(Sv)  + GHo(SVI)  appears on 
both sides, inequality (2.17) follows. 

Theorem 5 .  Different densities pv( r )  and pv.(v) correspond to two different external 
potentials V‘ and V’. 
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The densities p,(r) and defined by equation (2.18). The proof of this theorem derives 
from the fact that pv(r)  = pv, (v)  contradicts inequality (2.17). 

The general conclusion of this section is that there is a one-to-one correspondence 
between the sum of the densities of the two lowest-energy eigenstates and the external 
potential V(r ) .  The correspondence relations proved in this section can be described 
schematically as follows: 

T. Ft s, 
17 72 

3. The generalisation of the Hohenberg and Kohn theory for excited states 

In the previous section it was shown that there is a one-to-one correspondence between 
the subspace S and the density 

P V ( 4  = +(<4:lb(~)l4:) + (4; lb(r ) l43) .  

G, = 3(<4;1.1140 + <4;1A/43) 

(3.1) 

(3.2) 
is uniquely determined by the subspace S,, i.e. G, = GA(S). But since S, is uniquely 
determined by p,(v) so is GA(SV)  i.e. 

From theorem 1 it follows that any quantity 

GA(SV) = Ab,). 
Let us consider the Hamiltonian 2.1. By theorem 2 for first-order variations of the 

subspace S ,  

6GHV(S,) = 0. (3.3) 
However, since variations of S ,  correspond to variations of p,(r), we can vary p,(r) 
instead of S,, as in the case of Hohenberg and Kohn (1964). By taking into account the 
equation S p(r)  d3r = N ,  the equation resulting from the stability of H,(p,) is 

[ 6 ~ " ( P ) / 6 P ( r ) l  - P = 0. (3.4) 
From the previous discussion it follows that H,(p) has the following form 

H,(p) = T(p) + p( r )  V(r )  d3r + $ s s q  d3r d3r' + E,,(p)  (3.5) s Ir - rl 

where Ex&) is the term resulting from the electron-electron interaction energy (see 
equation 2.1) after subtracting the corresponding Coulomb energy. The interaction term 
as a functional of S can also be expressed as a functional of the density. 

The functional form of T ( p )  and E&), i.e. of the kinetic energy and exchange and 
correlation energy is a separate problem by itself and will be treated in another paper. In 
this paper only rigorous results are given. By applying the variational principle (3.4) to 
equation (3.5) we get 
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i.e. the resulting equations are similar in form to those of Hohenberg and Kohn. Thus, 
from equation (3.6) the ‘density’ p(r) = $(Po(.) + p,(r ) )  and energy Eo + E ,  can be 
determined. Since po( r )  and Eo can be determined from the HK theory, the density and 
energy of the first excited state can be determined. 

Before finishing this section we would like to point out that the variational principle 
holds under the hypothesis that every positive function p(r) ,  { p(r)  d3r = N in an open 
neighbourhood of pdr)can be written in the form p(r)  = ~ < $ ~ ’ l @ ( r ) \ # ~ ’ )  + ($“;lb(r)I$~’).  
The topology here can be defined by using the following definition for the distance: 

d(p, p’ )  = [(m - m2 d3r11’2. 

See also a footnote in the paper by Hohenberg and Kohn (1964) and Gilbert (1975). 

4. The generalisation of the HKS theory for excited states 

A careful analysis of the Kohn and Sham theory shows that it can be formulated by 
assuming that the ground state of the interacting system corresponds to the ground-state 
of a non-interacting system i.e. to a state which is an eigenstate of the Hamiltonian 
H I ,  

H; = $ s V $ + ( r ) ,  V$(r)  d3r + b(r) U(r )  d3r. (4 .1~)  s 
The correspondence is through the relation 

< $0 /A  I 4 0 ) = ( $0 ID( 4 I $0 ). (4.lb) 

In developing the HKS theory for excited states the subspace S of the interacting 
system is assumed to correspond to the subspace S’ of the non-interacting system in 
such a way that the densities corresponding to the two subspaces are equal, i.e. 

The kinetic energy of the interacting system G,(S,) is 

<$ , lq$o> + <$llTl$l) = < 4 o / q + o >  + (41lq41) + A w l  (4.34 

T = V$’(v) . V$(v) d3r. (4.3b) 

The functional AT(p)  is positive. This follows from the fact that for Hamiltonians of 
s 

the form (4.la) the following relation holds because of theorem 2: 

GH&J < GHt.(S) s # S”. (4.4) 
By taking S as the subspace of the two lowest-energy eigenstates of a Hamiltonian of the 
form (2.1) for which the corresponding subspace densities are equal, equation (4.4) 
becomes 

<$:/TI$:) + <$Ylq$:) + 2 j P W i . )  d3r 

(4.5) 
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Then GT(S;,) < GT(SV). Obviously the same relation is also true for the ground-state 
kinetic energy. 

It must be noted that assuming the correspondence of the subspace of the interacting 
system to that of the ‘non-interacting’ system implies the hypothesis that the sets of the 
corresponding subspace densities coincide. This hypothesis is also made in the HKS 
formalism (see footnote to Hohenberg and Kohn 1964). The essential difference between 
the eigenstates of the non-interacting system and those of the interacting one is that the 
eigenstates of the former can be expressed by single Slater determinants, whereas those 
of the second cannot. One way in which this can be shown, although an indirect method, 
is by noting that if the eigenstates of the interacting system could be expressed by single 
Slater determinants, the Hartree-Fock approximation would give the exact ground 
state. As is well known, this is not true. 

The subspace density Gpc,,(S) will be denoted by p ( r ;  S) for convenience. Because of 
the one-to-one correspondence between the subspace S of the interacting system and the 
subspace S’ of the non-interacting system every quantity GA(S) can be expressed as a 
functional of S‘, i.e. since G,(S) = A(p(S’)), we must have 

GA(S) = FA(S‘). 

The functionals GA(S), expressed in terms of S’, do not assume the simple form given 
by theorem 1 unless A is an operator which involves only the density p(r). When the 
kinetic energy functional in equation (3.5) is replaced by the right-hand side of equation 
(4.34 the resulting new functional is 

FH(S’) = i((4Olq40) + (4IIq41)) + A w l  

Since variations of S’ produce variations of the density, 
instead of p(r).  The resulting equations for the minima of equation (4.6) are 

T(q5i) + p(r) V ( r )  d3r + s&o(r) d3r d3r‘ + s V x c ( p ,  U) $(U) d3r = EiI4J ,  

and 141) can be varied 

i =  1,2 (4.74 
s 

P ( d  = i((4olb(r)l4o> + (4,IP(r)I41 
where (4.7b) 

Since I+o) and can be written in the form of single Slater determinants, i.e. 

140) = . . . a,+/O) 

(4.8) + +  141) = ” ‘ a N - l a N + l l O ) ,  

the above equations are equivalent to the following system of one-particle equations 

{&d3r’)uk(r) = EkUk(r)> k = 1,2,N + 1 

r N - I  1 
(4.94 

(4.9b) 

Thus, the equations obtained are similar in form to those of Kohn and Sham (1965). 
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5. Discussion 

The scheme developed here for calculating the first excited-state densities can be 
generalised for the highest states. In such a case it can be proved that the subspace 
spanned by the M lowest-energy eigenstates is uniquely defined by the sum of the M 
lowest-energy eigenstate densities. 

The problem with this scheme is to determine AT(p)  and E,,@). By using scaling 
arguments it can be shown that the lowest-order correction for the kinetic energy is 

AT(p)  = C, p5j3(r)d3r s 
E,,(P) = c,, j P 4  3 ( V )  d3r 

and the local term of the exchange and correlation energy is 

i.e. the functional form is the same as that of the ground state. See also Slater 1974. 
As a simple application of the scheme developed here we consider a crystal for which 

the ground-state density has been determined by using the HKS scheme. In applying the 
present scheme to determine the first excited state we have to consider equations (4.9). 

Since po( r )  is known we can try for an approximate solution of equation (4.9) by 
setting p( r )  2 p0(r) .  Then the resulting density will be as that of the ground state. By 
solving these equations we get for the output density pout(r) = po( r )  + ( 1  uN+ ,(v)l2 - 

1 ~ ~ ( r ) 1 ~ ) / 2 .  Since ( 1  u Y +  ,(r)l2 - 1 U , ( V ) / ~ ) / ~  is small compared with po(r)  the output density 
is very close to the self-consistent density. The first excited-state energy found in this way 
is ( E ,  + E,) - E ,  = 

This result justifies the use of the energy band theory in deriving the low-lying excited 
states of metals. Obviously, the approximation used here will not be as good when applied 
to  deriving excited-state energies far from the ground state. In this case, equation (4.9) 
has to  be solved self-consistently. 

Note that the expression for the density given by equation (4.9b) involves half-filled 
orbitals. Similarly, the kinetic energy expression in equation (4.6) involves half-filled 
orbitals since 

- eN + E,. 

+ 3 V &  . V q ,  d3r + 3 s Vu f + . V u  ,,, + d3r). s 
The same expressions appear in the Slater ‘transition-state’ theory for treating optical 

excitations. This theory according to Slater (1974) gives very good approximations to the 
experimental excitation energy. In fact if AT(p)  is absolutely neglected in the present 
approximation and the X, method is used for determining C,,, the resulting equations 
which have to be solved self-consistently, are the same as those of Slater’s transition state 
theory. Thus, the lower-order approximation of the present method derives Slater’s 
transition state theory from basic principles (variational principles for subspaces) and 
explains the origin of half-filled orbitals. 

From theorems 1 and 2 of the present paper we can derive the Hartree-Fock method 
for excited states by minimising the quantity ( ~ , ~ H ~ ~ , )  + (q511H141) when 14,) and 
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are restricted to the space of Slater determinants, i.e. I4,,) and 141) have the form 
given by equation (4.8). 

For higher-order corrections for the excitation energies it is necessary to derive 
better approximations for E&) and AT@). This problem has now become a separate 
topic and will not be dealt with in this paper. 
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Appendix 1 

Theorem 1, If A is a linear operator and S an N-dimensional subspace of 8 spanned by 
N orthonormal states i = 1,. . . , N then the quantity 

is a functional of the subspace, i.e. its value is determined only by the subspace S and not 
by the particular choice of the orthonormal basis. 
ProoJ: Let I@:) (i = 1,2,. . . , N) be another orthonormal basis in S. As two orthonormal 
bases in a subspace are connected by a unitary transformation, U ,  then 

N 

j =  1 

and 
N 2 = 1 u ~ ( $ j l A l $ k ) U ~ k ’  

i =  1 i ,  j ,  k =  1 

By performing the summation first on i and taking into account that for unitary trans- 
formations 

N 
u;u, = aj, 

i =  1 

we get 
N N 

2 ( + I l ~ l + i >  = < $ i l A l + i )  
i =  1 i = l  

i.e. G, does not depend on the particular choice of the basis. 
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