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There are several approximations to the exchange-correlation functional in density-functional theory,
which accurately predict total energy-related properties of many-electron systems, such as bind-
ing energies, bond lengths, and crystal structures. Other approximations are designed to describe
potential-related processes, such as charge transfer and photoemission. However, the development of
a functional which can serve the two purposes simultaneously is a long-standing challenge. Trying to
address it, we employ in the current work the ensemble generalization procedure proposed by Kraisler
and Kronik [Phys. Rev. Lett. 110, 126403 (2013)]. Focusing on the prediction of the ionization poten-
tial via the highest occupied Kohn-Sham eigenvalue, we examine a variety of exchange-correlation
approximations: the local spin-density approximation, semi-local generalized gradient approxima-
tions, and global and local hybrid functionals. Results for a test set of 26 diatomic molecules and
single atoms are presented. We find that the aforementioned ensemble generalization systematically
improves the prediction of the ionization potential, for various systems and exchange-correlation
functionals, without compromising the accuracy of total energy-related properties. We specifically
examine hybrid functionals. These depend on a parameter controlling the ratio of semi-local to
non-local functional components. The ionization potential obtained with ensemble-generalized func-
tionals is found to depend only weakly on the parameter value, contrary to common experience with
non-generalized hybrids, thus eliminating one aspect of the so-called “parameter dilemma” of hybrid
functionals. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4930119]

I. INTRODUCTION

Modern density-functional theory (DFT), based on the
theoretical foundation laid by Hohenberg, Kohn, and Sham1,2

in the 1960s, in principle provides an exact framework for
treating the many-electron problem. Within this framework,
the electron-electron interaction is expressed via the exchange-
correlation (xc) energy term, Exc[n], which is a functional
of the electron density n(r).3–5 In practice, one has to
approximate this energy contribution, aiming at a numerically
efficient yet accurate description of the electronic structure of
various many-electron systems, such as atoms, molecules, and
solids.

During the eventful history of DFT, many density
functional approximations (DFAs) to the exact xc energy
were developed.6,7 The performance of each of them can
be evaluated from a twofold perspective: On the one hand,
ground-state quantities such as binding energies, bond lengths,
and crystal structures are closely related to the total energy
of the system and hence to the approximate xc energy
Exc itself. On the other hand, there also exists a range
of physical properties and processes, whose description
is substantially influenced by the xc potential, vxc(r)
B δExc[n]/δn(r). Prominent examples for the latter category
are charge-transfer and ionization processes, as well as the
description of photoemission spectra. Here, especially the

a)E. Kraisler and T. Schmidt contributed equally to this work.

approximate interpretation of Kohn-Sham (KS) eigenvalues
as a physically meaningful density of states lies at the focal
point of ongoing research (see Ref. 8 and references therein).

For applications to real materials, one would wish to
have a DFA with a good performance from both perspectives.
However, this is not the case for many existing DFAs. The
development of such a DFA is a long-standing challenge, as
discussed below.

One of the exact relations in KS-DFT is the ionization
potential (IP) theorem, −εho = I,9–14 which relates the highest
occupied (ho) KS eigenvalue, εho, to the IP, I, i.e., the
removal energy of one electron from an N-electron system.
Consequently, there are two fundamentally different ways
to obtain the IP in DFT: by evaluating −εho or (with more
computational effort) by calculating the energy difference
of the ionized and neutral system, with N0 − 1 and N0
electrons, respectively, I∆SCF = E(N0 − 1) − E(N0). This is
usually referred to as the ∆SCF approach. Note that while
the latter relies on accurate total energy values, the former
relies on the potential to yield an accurate ho energy level.

The ∆SCF approach, which has been extensively
used since the early days of DFT,15–25 usually yields an
IP with a satisfactory accuracy of a few percent with
respect to experiment, for atoms and small molecules,
even with standard (semi-)local DFAs, such as the local
spin-density approximation (LSDA)26 or the generalized
gradient approximation (GGA).27 Comparison of −εho to
the experimental IP, however, shows poor correspondence for
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many DFAs. For example, with the aforementioned (semi-)
local approximations, one can observe an underestimation of
up to 50%, as manifested in, e.g., Refs. 21 and 28–32.

This failure has been related to various systematic
shortcomings of existing functionals. First, the one-electron
self-interaction problem, i.e., the fact that for many DFAs
the Hartree energy EH is not canceled by Exc if evaluated on
one-electron ground-state densities,22 is well-known to have
a large impact on the quality of KS eigenvalues.8 Second,
many DFAs show a potential that features an incorrect
long-range asymptotic behavior, again with negative effect
on the interpretation of KS eigenvalues (see, e.g., Ref. 33
and references therein). Note that while the two issues are
related in a physical sense, they are not the same and their
connection in the construction of reasonable DFAs is far less
obvious.34 Another shortcoming affecting the KS eigenvalues
is the deviation of the total energy curve, E(N), as a function
of the number of electrons, N , from piecewise linearity, for
fractional N (see, e.g., Refs. 14 and 35–48). In the literature,
this phenomenon is sometimes referred to as many-electron
self-interaction35–37,39 or as a (de-)localization error.38,41,46

For (semi-)local functionals, one obtains a convex energy
curve rather than a straight line. Such a deviation reflects
negatively also on systems with an integer N : it leads to
disagreement between the IPs predicted by the ∆SCF method
and those predicted via −εho. This happens because the slope
of the energy curve (to the left) equals, according to Janak’s
theorem,49 the ho KS eigenvalue. Therefore, even when one
is interested only in closed systems, with an integer number
of electrons, it is important to tackle the problem of lack of
piecewise-linearity in order to obtain a physically meaningful
value for εho.

There exist many approaches to address the aforemen-
tioned shortcomings and obtain accurate results for the IP via
εho. Self-interaction correction22 schemes lead to a significant
improvement in the interpretation of KS eigenvalues.50

Yet, their performance for ground-state energetics is
debatable.51–55 Approaches that approximate directly the xc
potential56–59 yield eigenvalues that satisfactorily reproduce
the experimental IP, due to modified long-range properties
of the potential. However, for these functionals total-energy
related quantities are not accessible.60–62 New types of GGAs
can yield significantly improved potential properties,63–65 but
at the cost of being less accurate for total energies. Global
hybrid functionals,66–71 which linearly combine (semi-)local
xc energy components, with a weight (1 − a), and exact
exchange (EXX, i.e., the Fock-integral evaluated with KS
orbitals), with a weight a, mitigate the one-electron self-
interaction error and often yield an excellent description of
properties related to the total energy, for a ≈ 0.25. However,
since the self-interaction is only partly canceled, the KS
potential falls off too quickly in the asymptotic limit, and −εho
is typically far from describing experimental IPs.

Nevertheless, with global hybrids it is possible to find
a value of a such that the global hybrid will produce a
piecewise linear energy curve and therefore an improved
value for −εho. This happens because for fractional N the
non-local EXX component of the global hybrid produces a
concave energy curve (see, e.g., Ref. 37), while the (semi-)

local components usually cause a convex energy curve, which
therefore cancel each other. However, this cancellation is
achieved with values of a ≈ 0.75,72–74 which in most cases
significantly compromises the performance of the functional
for other quantities.33,70,71,75–77

This creates what we call the “parameter dilemma”: while
an accurate description of energy-related quantities requires
a certain value for the functional’s parameter, the accurate
description of potential-related quantities requires a different
value, and there is no value that provides a satisfactory
description of both.78–80

Local hybrid functionals81–83 aim at preserving the good
energetics of global hybrid functionals while reducing the
self-interaction error by introduction of a more flexible, space-
dependent mixing of (semi-)local and non-local components
(see Ref. 84 for an overview and discussion). However,
we recently illustrated using a specially constructed local
hybrid functional, termed ISOcc in the following, that the
aforementioned “parameter dilemma” persists also there.85

Similarly, in range-separated hybrids (RSHs) the values
of the range-separation parameter have to be different to
accurately reproduce, e.g., atomization energies and ionization
potentials.29

It has been recently shown86,87 that an alternative way
to improve the prediction of the IP via −εho is given by
employment of the ensemble approach9,88–90 in KS-DFT. This
approach allows for the generalization of the Hartree and xc
functionals for fractional N such that the piecewise linearity
behavior of the total energy is restored, to a large extent. As
a result, better correspondence of εho to the experimental IP
and to the ∆SCF value is achieved, as demonstrated for the
H2 molecule and the C atom with the LSDA.

Here, we employ the ensemble generalization procedure
proposed in Ref. 87 to the Hartree and common approximate
xc functionals, aiming to address the aforementioned
challenge of simultaneous prediction of energy-related and
potential-related properties with one DFA. Focusing on
the prediction of the IP via the ho KS eigenvalue,
we examine a variety of xc approximations: the local
spin-density approximation, semi-local generalized gradient
approximations, as well as global and local hybrids. Results
for a representative test set of 26 light diatomic molecules
and single atoms are presented. We find that the ensemble
generalization systematically improves the prediction of the
IP, for a wide variety of systems and xc functionals, changing
the general tendency from under- to a small overestimation,
compared to experiment. This improvement is achieved
without any change in total energy-related properties. For
hybrids that include a parameter, the IP obtained with
ensemble-generalized functionals is found to be only weakly
dependent on the parameter value, contrary to common
experience with non-generalized hybrids. Thus, the ensemble
approach eliminates one aspect of the “parameter dilemma.”

II. THEORETICAL BACKGROUND

For completeness, we briefly present the ensemble gener-
alization to the approximate Hartree-exchange-correlation
(Hxc) density functional, focusing on its influence on the



104105-3 Kraisler et al. J. Chem. Phys. 143, 104105 (2015)

highest occupied KS energy level, εho. A complete derivation
can be found in Refs. 86 and 87.

First, we formally consider a system with a fractional
number of electrons, N = N0 − 1 + α, where N0 ∈ N and
α ∈ [0,1], so that α = 1 corresponds to a neutral and α = 0
to a singly ionized system. Subsequently, we take the limit
α → 1−, focusing on neutral systems with an integer number
of electrons.

In a landmark article, Perdew et al. have shown that the
zero-temperature ground state of an interacting many-electron
system with fractional N should be described by an ensemble
state.9 This state is a linear combination of the pure ground
states for N0 − 1 and N0 electrons, with the classical statistical
weights of (1 − α) and α, respectively.135,136 The ground-state
energy of this ensemble state has then been shown to be equal
to E(N) = (1 − α)E(N0 − 1) + αE(N0), i.e., it is a piecewise-
linear function of N .9 This result is a general one, applying to
any many-electron system. Therefore, in principle it trivially
carries over to DFT; because if the exact exchange-correlation
functional is used, DFT-based energies must reproduce the
all-electron ones.

As mentioned in the Introduction, in practice approximate
density functionals often deviate significantly from the exact
functional when trying to describe a quantum system with
fractional N in KS-DFT, and it has been traditionally assumed
that this is just another manifestation of the approximate
nature of the functional used. However, in Ref. 87 it was
pointed out that much of this deviation is due to the fact
that the pure-state exchange-correlation expression is used for
both integer and fractional densities, whereas the fractional
KS system must itself be in an ensemble state. This happens
because the number of particles in the KS system equals the
number of electrons in the real, interacting system and is
also fractional. Therefore, the ground state of the KS system
must also be expressed as an ensemble of the (N0 − 1)- and
N0-KS states, obtained from the same KS potential, even if
one uses an approximate functional. Reference 87 therefore
suggested that any approximate Hartree-exchange-correlation
functional can be generalized for an ensemble ground state
using ensemble state theory9,88–90 (for other recent uses of
the ensemble approach, see Refs. 46, 91, and 92). Performing
an ensemble average of the many-electron Coulomb operator
Ŵ = 1

2


i


j,i |ri − r j |−1 in the KS system, it has been found

that the pure-state Hxc energy functional can be generalized
to ensemble states in the following form:

Ee-Hxc[n(α)] = (1 − α)EHxc[ρ(α)−1 ] + αEHxc[ρ(α)0 ], (1)

which is exact for the Hartree and exchange components and
approximate for the correlation. Here, the index e- indicates
that the functional is ensemble-generalized, EHxc is the pure-
state Hxc functional, ρ

(α)
p (r) is defined as the sum of the

first N0 + p KS orbitals squared: ρ
(α)
p (r) = N0+p

i=1 |ϕ(α)
i (r)|2,

where p = −1 or 0, and n(α)(r) = (1 − α)ρ(α)−1 (r) + αρ
(α)
0 (r) is

the ensemble-state electron density. When N is an integer,
i.e., α assumes the value of 0 or 1, the Hxc energy reduces to
that obtained from the underlying pure-state Hxc functional.
Therefore, ensemble-generalization does not affect the total
energy at integer N . The generalization in Eq. (1) is applicable

to any xc functional and makes the Hartree and the xc energy
components explicitly linear in α. However, there may still
remain an implicit non-linear dependence of Ee-Hxc[n(α)] on α,
because the KS orbitals themselves, ϕ(α)

i (r), and consequently
ρ
(α)
p (r) and EHxc[ρ(α)p ], may depend on α. The dependence

of ϕ
(α)
i (r) on α arises from the fact that the KS orbitals are

expected to relax as one varies α from 0 (positive ion) to 1
(neutral system).44,87,92

Importantly, Eq. (1) is derived by considering the
generalization of pure-state functionals to ensemble states,
without assuming anything a priori about piecewise-linearity,
because it also applies to approximate exchange-correlation
functionals. Nevertheless, in Refs. 87 and 93 it has been
shown that by employing Eq. (1) the energy curve E(N)
satisfies the piecewise-linearity criterion much more closely,
being slightly concave. The concavity is related to the above
mentioned implicit non-linear dependence of the energy on α.
Another perspective on this approximate piecewise-linearity
can be obtained from the fact that Eq. (1) can be derived, with
some further approximations, from different schemes that
attempt to enforce piecewise-linearity explicitly.14,44,47,48,92,94

Due to the fact that the slope of E(N) changes for all
α, including α → 1−, it follows from Janak’s theorem,49,137

which identifies ∂E/∂N with εho, that the ho energy level
has to change, too, even for a system with an integer N . This
change is obtained in practice from an ensemble generalization
of the KS potential, as explained below.

The KS potential is expressed as ve-KS(r) = vext(r)
+ ve-Hxc[n](r), where vext(r) is the external potential and
ve-Hxc[n](r) B δEe-Hxc/δn(r) is the ensemble-generalized Hxc
potential. In the limit α → 1−, this potential reduces to a
sum of two terms: ve-Hxc[n](r) = vHxc[n](r) + v0[n] – the usual
pure-state Hxc potential, vHxc[n](r), and a spatially uniform
term, v0[n], which can be written as87

v0[n] = EHxc[n] − EHxc[n − |ϕho|2]
−


|ϕho(r)|2vHxc[n](r)d3r. (2)

Here and below, the superscript (α) is dropped at the limit
α → 1− for brevity. Note that the ensemble-generalized KS
potential does not vanish at r → ∞, but asymptotically
approaches v0[n]. We stress that v0[n] is a well-defined,
rather than arbitrary, potential shift. It must be taken into
account for the ensemble-generalized functional in order
for the ho KS eigenvalue to equal ∂E/∂N , i.e., to obey
Janak’s theorem. Note that the shift discussed here is different
from the one recently proposed by Zahariev and Levy.95 As
clarified in Ref. 92, in Ref. 95 the potential shift makes the
energy of the KS system equal the energy of the interacting
system. Here, however, the shift emerges naturally from
the ensemble treatment and is essential to obtaining results
that are consistent with Janak’s theorem. Also note that the
result above has been presented in a spin-independent form
for simplicity; in practice, in spin-dependent calculations,
there exist potential shifts vσ0 to both spin channels σ =↑,↓.
Calculating vσ0 with Eq. (2), we take the ho level to be the
highest occupied level in the σ-channel considered (noted as
σ − ho). In the following, however, if not stated explicitly
otherwise, when mentioning the ho level we refer to the
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global ho: εho = maxσ εσho, i.e., the one of the two σ-ho
levels which is higher in energy; the same applies for the
ensemble-generalized ho level, εe-ho.

To summarize, as a result of the approximate ensemble
generalization of the Hxc functional (Eq. (1)),86,87 in the
limit of integer N the KS potentials exhibit spatially uniform
shifts vσ0 , such that all KS eigenvalues of the same spin
channel are shifted by the same value (see, e.g., Fig. 4 in
Ref. 93). The KS orbitals, and as a result the density and the
total energy, are not changed and remain the same as those
obtained with the underlying Hxc functional. Furthermore,
because all eigenvalues are shifted by the same amount,
eigenvalue differences (as well as quantities based on them,
e.g., in linear response time-dependent DFT96) are not affected
either. Therefore, the σ − ho energy levels of the ensemble-
generalized functional can be expressed as εσe-ho = εσho + v

σ
0 ,

being a sum of the σ − ho level that emerges from a standard
KS-DFT calculation prior to the ensemble generalization and
the potential shift of the relevant spin channel, calculated
according to Eq. (2). Comparing both εe-ho and εho to
experimental IPs and −I∆SCF is the main subject of Sec. IV.

III. COMPUTATIONAL DETAILS

We concentrate on a relatively elementary, yet chemically
representative, set of systems, consisting of 18 light diatomic
molecules: H2, LiH, Li2, LiF, BeH, BH, BO, BF, CH, CN, CO,
NH, N2, NO, OH, O2, FH, F2, and their 8 constituent atoms.
The simplicity of the systems allows us to keep computational
costs low and to refrain from introducing additional sources
of error, e.g., searching for an optimal geometry in systems
with many degrees of freedom. At the same time, systems of
single-, double-, and triple-bond molecules as well as atoms
(no bonding) are included in the test set, which makes the
set representative of more complicated systems, as shown in
previous work (see, e.g., Refs. 27 and 85).

All calculations were performed using the program
package DARSEC,97,98 an all-electron code that allows for
electronic structure calculations of single atoms or diatomic
molecules on a real-space grid represented by prolate-
spheroidal coordinates. DARSEC allows one to solve the KS
equations self-consistently for explicitly density-dependent,
as well as orbital-dependent, functionals. For the latter, a
local, multiplicative xc potential is obtained by employing
the KLI99 approximation to the optimized effective potential
(OEP)100–102 formalism. Use of this approximation has been
justified in Ref. 103 for the EXX functional and in Ref. 85 for
the ISOcc local hybrid functional.

For all systems, an accuracy of 0.0005 hartree in the total
energy and in the ho KS eigenvalue has been achieved by
appropriately choosing the parameters of the real-space grid
and by iterating the self-consistent DFT cycle. For molecules
the bond length was taken from experiment.104,105 Differences
due to atomic relaxation were found to be insignificant.138,139

The net spin of the neutral systems was also taken to be
as in experiment. The spin configuration of cations (used
below for calculating ionization potentials from total energy
differences) was obtained by removing an electron from the
highest occupied orbital of the neutral.

IV. RESULTS

A. Effect of the ensemble correction—O2
as a prototypical case

Previous work87,93 has already demonstrated that the
ensemble generalization of Eq. (1) significantly reduces the
deviation from the piecewise-linearity condition for the total
energy, i.e., greatly diminishes the delocalization error, and
as a consequence eliminates the fractional dissociation error
in diatomic molecules. Here, we focus on the potential shifts
(Eq. (2)) that emerge from the ensemble-generalization and
their effect on the Kohn-Sham energy levels. In particular, we
consider the prediction of the IP via εe-ho.

For a clear understanding of the results presented in
this paper, it is of advantage to first illustrate the effect
of the potential shift mechanism, given by Eq. (2), on the
eigenvalue structure of a particular system with an integer
number of electrons. Here, we provide a detailed presentation
of a selected system—the O2 molecule, computed with the
Perdew-Burke-Ernzerhof (PBE) GGA27 at its experimental
bond length of 2.2819 bohr.

Due to its electronic ground-state configuration, 3Σ−g ,
this system must be treated in a spin-polarized formalism.
Consequently, it provides an interesting example for how
eigenvalues belonging to different spin channels are shifted
when the corresponding ensemble potential shift, vσ0 , is
applied.

The positions of the highest occupied (εσho) and lowest
unoccupied (εσlu) KS eigenvalues for both spin channels are
depicted in Fig. 1. The eigenvalues changed by the respective
potential shift, i.e., εσe-ho = εσho + v

σ
0 and εσe−lu = εσlu + v

σ
0 , as

well as the negative of the experimental IP, −Iexp, are also
included in the figure.

It can be readily observed that the unshifted highest
occupied eigenvalue of the up channel, ε↑ho = −0.251 hartree,
which lies higher than its spin down counterpart, poorly
reproduces the negative of the experimental IP of the O2
molecule. In fact, with PBE it underestimates the experimental
IP of Iexp = 0.453 hartree105 by 45%, a value that is quite
typical for other systems as well. However, after application
of the potential shift, the highest occupied eigenvalue is
ε↑e-ho = −0.526 hartree, i.e., the experimental IP is now
overestimated by 16%. As shown below, this is a typical
result also for other systems and other functionals.

FIG. 1. Diagram of the highest occupied and lowest unoccupied KS-PBE
eigenvalues of the O2 molecule, for both spin channels, before and after
applying the potential shifts of Eq. (2), along with the negative of the ex-
perimental IP. All values are in hartree.
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From the results presented for the ensemble generalized
PBE functional, the question of how other DFAs perform for
the same system naturally arises. In particular, the change of
the eigenvalues obtained with functionals containing a varying
amount of non-local EXX is of great interest, as we know that
a greater percentage of EXX already leads to a more accurate
description of IPs via the highest occupied eigenvalue.

Fig. 2 provides a comparison of the unshifted and shifted
ho eigenvalues to the experimental IP for O2. Besides (semi-)
local functionals such as the LSDA, PBE, and BLYP,106–108

we also ensemble-generalized the global hybrid functionals
B3LYP69 and PBEh(a)70 (employed within the KS scheme
using the KLI approximation), with a denoting the fixed
amount of EXX combined with (1 − a) of PBE exchange and
with full PBE correlation.

The unshifted eigenvalues for the three purely
(semi-)local functionals (LSDA, PBE, BLYP) underestimate
the IP by ∼45%. After ensemble generalization, we observe
an overestimation by ∼16%. It is instructive to check to which
extent this overestimation comes from errors in calculating
total energy differences that are inherent to the underlying
functional, and to which extent they arise from the ensemble
generalization process.140 Therefore, we compare the shifted
and unshifted eigenvalues to −I∆SCF. For O2 computed with
PBE, one obtains I∆SCF = 0.464 hartree, which deviates from
experiment by only 2.3%. With respect to this quantity, the
unshifted eigenvalue yields an underestimate of 46%, while
the shifted value overestimates it by 14%. We therefore realize
that most of the discrepancy comes from the concavity that
remains in the E(N) curve even after ensemble generalization.

In the global hybrid, PBEh(a), increasing the intrinsic
amount of EXX significantly improves the correspondence of
the unshifted eigenvalue to experiment. Due to the fact that
the KS potential decays asymptotically more slowly with a
growing value of a, the IP via −εho is very sensitive to non-
local functional components included. Changing from under-
to overestimation, an optimal description of Iexp is reached for
this system with a ≈ 0.6. However, for ensemble generalized
DFAs the value of −εe-ho systematically overestimates the IP
with respect to experiment for the O2 molecule, regardless of

FIG. 2. Comparison of −εho and −εe-ho to the experimental IP of the O2
molecule, calculated with different DFAs. The corresponding labels provide
the relative deviation in percent.

the value of a, while at the same time being far less sensitive
to the amount of non-locality in the functional expression.
While for “plain” PBE the relative error now reads ∼+16%,
it increases to +29% when full non-local exchange combined
with PBE correlation is used. The reason for this reduced
sensitivity lies in the following mechanism: while the absolute
value of εho grows with increasing a, the potential shift v0 is
reduced, roughly commensurately, because the Hartree+EXX
functional has zero potential shift.87

B. Evaluating the test set—A systematic study

Following the illustration of the mechanism of the
potential shift for a single system, we now focus on the
mean discrepancy in the evaluation of the experimental IP
via shifted and unshifted KS eigenvalues, for a variety of
functionals.109 We use the test set of systems introduced in
Sec. III as a basis for averaging.

We emphasize that the eigenvalues’ shift is expected
to improve the correspondence between the negative of the
ho eigenvalue and the ionization energy obtained via the
∆SCF method, for a given DFA. We compare the shifted
and unshifted eigenvalues to experiment, and not to ∆SCF
values, relying on the aforementioned fact that the ∆SCF
reliably describes systems of our test set, with small average
relative errors: 3.4% for PBE and 4.2% for both the LSDA
and ISOcc(c = 0.5).

We define the averaged relative error in the ionization
potential,

δIP =


1
M

M
j=1

*
,

−ε( j) − I ( j)exp

I ( j)exp

+
-

2

. (3)

Here, the index j runs over all systems in the test setup to
the total number M = 26, and ε stands either for the shifted
(εe-ho) or unshifted (εho) highest occupied KS eigenvalue.

Note that in Eq. (3) the unsigned deviation from
experimental IPs is employed to avoid a misleading result of
zero average relative error, which emerges when there occurs
an overestimation for some systems and an underestimation
for others. However, in order to be able to distinguish between
systematic over- or underestimation, an additional measure is
defined accordingly as

S =
1
M

M
j=1

sgn
(
−ε( j) − I ( j)exp

)
. (4)

While δIP provides the mean deviation from experimental
values in %, the quantity S indicates the average trend of
the prediction, being naturally confined to the interval [−1,1].
Namely, for a systematic overestimation, we obtain S = 1, and
for a systematic underestimation, S = −1. Both quantities, δIP
and S, were obtained for various DFAs and their ensemble-
generalized counterparts.

Fig. 3 shows the corresponding results for the LSDA,
the semi-local PBE and BLYP, the global hybrid functionals
B3LYP and PBEh(0.25), the EXX, and the ISOcc(0.5) local
hybrid functional. Note that for EXX the results for the regular
and ensemble-generalized functional coincide, because the
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FIG. 3. Average relative error δIP in % (upper axis) and signum function
S (lower axis) for the LSDA, PBE, BLYP, B3LYP, PBE(a = 0.25), ISOcc(c
= 0.5), and pure EXX (black) as well as their ensemble-generalized versions
(red).

Hartree+EXX functional exhibits a zero potential shift.87,141

Fig. 4 provides the corresponding results for the PBEh(a)
global hybrid functional as a function of the parameter a,
i.e., on various amounts of non-local EXX.142 The value
a = 0 in this figure reproduces the PBE result. Fig. 5 depicts
δIP and S obtained with the local hybrid ISOcc. The latter
functional was developed using the so-called local mixing
function rather than a fixed mixing ratio of non-local and
semi-local components. It contains a free parameter c, which
implicitly determines the intrinsic amount of EXX included
in the local hybrid. Higher c values correspond to a higher
fraction of EXX being included. Consequently, for ISOcc both
the quantities given by Eqs. (3) and (4) are functions of this
parameter c, in analogy to the global hybrid PBEh(a).

In principle, both parameters a and c, in PBEh(a)
and ISOcc(c), respectively, are free. However, as mentioned
earlier, it is known that in terms of total energy related

FIG. 4. Average relative error δIP(a) in % (upper axis) and signum function
S(a) (lower axis) for PBEh(a) (black) and e-PBEh(a) (red) as a function of
the parameter a.

FIG. 5. Average relative error δIP(c) in % (upper axis) and signum function
S(c) (lower axis) for ISOcc(c) (black) and e-ISOcc(c) (red) as a function of
the parameter c.

quantities, PBEh(a) performs best for a = 0.25, while we
recently showed that for the ISOcc(c) functional, the optimal
parameter value is c = 0.5. Therefore, both functionals, using
their optimal respective parameters, play a special role in the
following discussion, and Fig. 3 shows their performance in
comparison to the other DFAs.

Fig. 3 clearly indicates that using the unshifted
eigenvalues εho, the three (semi-)local functionals LSDA,
PBE, and BLYP strongly and systematically underestimate
δIP by ≈41% − 43%. Regarding hybrids, for the global hybrid
B3LYP, we obtain an underestimation of 31%, for PBEh(a
= 0.25) 28%, and for the local hybrid ISOcc(c = 0.5) 26%.
The improvement of hybrids over (semi-)local functionals is
explained by the fact that the non-local terms in hybrids lead
to a partial cancellation of the self-interaction error and an
improved behavior of the xc potential in the asymptotic limit.

If the parameters a and c are varied, Figs. 4 and 5
illustrate that when using εho, the global hybrid PBEh(a) and
the local hybrid ISOcc(c) show a transition in their parameter-
dependent S-function from negative to positive values. This
feature clearly indicates that, for the systems studied here, it
is possible to fit the corresponding functional parameter for
a given system so that εho exactly gives the experimental IP.
If a and c are optimized to reduce the error δIP, we obtain
an underestimation of 5% for a = 0.75 in PBEh and of 6%
for c = 4.5 in ISOcc. Therefore, by changing the parameters
a and c, we are able to strongly reduce the average error in
the IP of our test set. However, this comes at a price in total
energy-related quantities, as has been shown in Refs. 72 and
85, and is the subject of the so-called “parameter dilemma”
presented in Sec. I.

When using the ensemble-corrected highest occupied
eigenvalues εe-ho, we obtain a completely different picture.
First, the systematic underestimation now changes to an
overestimation. All of the aforementioned functionals now
show a very similar average error of δIP ≈ 14%–17%,
which is significantly smaller than the results from non-
generalized functionals. Second, for ensemble-generalized
hybrid functionals e-PBEh(a) and e-ISOcc(c), there is no
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transition from an underestimation to overestimation regime,
but rather a systematic overestimation of the IP, independent of
the parameter value. In other words, the amount of non-locality
included in the hybrid functional plays a minor role in the
description of IPs via shifted KS eigenvalues, in contrast to
their unshifted counterparts. This confirms that the mechanism
of cancellation between the change in the potential shift of
Eq. (2) and the highest occupied eigenvalue with a varying
amount of non-locality is not particular to the O2 molecule,
but rather a systematic feature of ensemble-generalized
functionals. Furthermore, in the ensemble-generalized version
of DFAs, the “parameter dilemma” does not emerge: since
the ensemble-generalized eigenvalues describe IPs with an
accuracy almost independent of the amount of EXX included,
one cannot deduce a preferred value of the parameter
by minimizing δIP. Therefore, in principle one could use
the functional with the parameter optimized to describe
binding processes and structural quantities and rely on the
description of IPs via the shifted eigenvalues εe-ho. In this
case, our results for δIP using thermochemically optimized
functionals with ensemble-generalization (such as e-B3LYP,
e-PBEh(a = 0.25), and e-ISOcc(c = 0.5)) indicate a clear
improvement over their non-generalized counterparts.

Our results further indicate that even functionals whose xc
terms were constructed on different grounds and from different
perspectives, such as, for example, the PBE and BLYP
functional, yield similar values of roughly δIP ≈ 15% after
applying the ensemble generalization. As even the inclusion
of non-local components does not lead to significant change,
one might wonder if this “natural border” of 15% is inherent
to the ensemble shift mechanism regardless of the specific
form of the respective DFA put to task. This question has
been checked by varying the parameters µ and κ used in the
construction of the PBE exchange functional.27,110 We find that
for different choices of µ and κ one obtains different values
for the average relative error δIP. For instance, using PBE
exchange with a value of µ = 1.0 together with the original
κ = 0.8401 results in an error of δIP = 20% when using εe-ho,
while a combination of the original µ = 0.21 951 and κ = 5.0
leads to δIP = 8%. From this we conclude that the ensemble-
generalization as such does not lead to a fixed systematic error
in the description of experimental IPs via KS eigenvalues.
However, the results of this subsection suggest that after the
ensemble generalization the functionals examined here have a
common missing part, which causes the described discrepancy
in δIP.

Before concluding this subsection, we note that while
we have focused our work on the IP of neutral atoms and
diatomic molecules, IPs of ions may in principle be assessed
in the same manner. In particular, the electron affinity (EA)
of the neutral can be explored as the IP of the singly charged
anion (barring geometrical relaxation). Unfortunately, for the
atoms and very small molecules studied here, it is well-
known111–113 that with common semi-local approximations,
negative ions of small systems may erroneously be predicted
to be unstable. However, when performing calculations with
finite basis sets, as in, e.g., Ref. 114, unbound states can
be artificially stabilized,115 because the basis set effectively
confines the unbound electron to the vicinity of the neutral

system. Because the ensemble generalization discussed here
does not change the total energies of systems with integer
electrons (including neutrals, cations, and anions), anions that
are not bound with the underlying xc functional will remain
unbound even if its ensemble-generalized version is employed.
Furthermore, although ensemble-generalization will generally
shift the energy levels, including the unoccupied ones, the
question of whether the lowest unoccupied KS orbital has a
bound or unbound character will not be affected,93 because
orbitals are unchanged by a uniform shift of the potential.

C. Ensemble-generalization and the Aufbau principle

In general, at zero temperature the energy levels in the KS
system have to be occupied according to the Aufbau principle,
i.e., the levels are occupied without “holes,” starting with the
lowest ones up. In the following, we term such an occupation
proper. An example for a proper occupation is given in Fig. 1
for the O2 molecule. All calculations performed for this work,
except for a few discussed below, yield proper occupation.

In spin-polarized calculations a special situation can
occur, when each of the spin channels is occupied properly
itself, while the system as a whole possesses a “hole” in its
occupation. For example, this happens when the lu level of the
↓-channel appears lower than the ho level of the ↑-channel.
An occupation of this kind is termed proper in a broad sense.
It is emphasized here that a broad-sense-proper density obeys
all the required restrictions related to a rigorous definition and
differentiability of energy functionals;116,117 therefore it can
serve as a legitimate solution of a many-electron system. In
the past, broad-sense-proper occupations have been observed
in certain transition-metal and lanthanide atoms and ions in
LSDA and PBE calculations,24 as well as in the Li atom with
the EXX118 and with the exact KS potential, which has been
obtained from accurate wave-function-methods based spin
densities.119 The latter result strengthens our understanding
that a broad-sense-proper occupation is not necessarily an
artifact of some DFAs, but rather is an expected result, because
it may appear even with the exact functional.

In the current work we find that the ensemble
generalization, by means of the potential shifts vσ0 , yields
broad-sense-proper results for systems which appeared strictly
proper before. Figure 6 illustrates the situation for the Li

FIG. 6. Diagram of the highest occupied and lowest unoccupied KS eigen-
values of the Li atom, for both spin channels, before and after application of
the potential shifts of Eq. (2), obtained within the PBE functional, along with
the negative of the experimental IP. All values are in hartree. The highest
occupied eigenvalue at the ↓-channel is lower than −0.65 hartree and is
therefore not shown for clarity.
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atom calculated with PBE and e-PBE. Due to the fact that
v ↑0 = −0.087 hartree, while v ↓0 = −0.603 hartree, the ↓-e-lu
level appears below the ↑-e-ho level, causing a broad-sense-
proper occupation. The significant differences in the values of
the two potential shifts are associated with the different nature
of the σ-ho orbitals: the ↑-ho orbital is a relatively delocalized,
high-lying 2s orbital, whereas the ↓-ho orbital is a localized,
low-lying 1s orbital. A similar situation is observed in the Na
atom, for which we obtained a broad-sense-proper result too.
To summarize, we view the appearance of broad-sense-proper
occupations in the ensemble treatment of the alkaline atoms
Li and Na as another feature of the exact DFT result, which
has been recovered by the ensemble generalization.

D. The derivative discontinuity (DD)
in ensemble-generalized functionals

While in the current work we are concerned primarily
with the IP of atoms and molecules, it is worth discussing
a related quantity—the (fundamental) gap, Eg. By definition,
Eg = I − A, where A is the electron affinity, i.e., the energy
gained by adding one electron to the system. As opposed to
the IP, the gap of the interacting system does not equal the
gap of the KS system, EKS

g = εlu − εho, even for the exact
xc functional. Instead, Eg = EKS

g + ∆, where ∆ is the DD—a
“jump” experienced by the KS potential when it is varied with
respect to N , and N crosses an integer value.9,28,120–126

There exist several ways to find the DD. First, for finite
systems it can be obtained using total energy differences,

∆E = E(N0 + 1) − 2E(N0) + E(N0 − 1) − EKS
g . (5)

Second, the DD can be obtained as suggested in Refs. 127
and 128,

∆OEP = ⟨ϕlu|uxc,lu|ϕlu⟩ − ⟨ϕlu|vxc|ϕlu⟩, (6)

where uxc, i(r) B ϕ−1
i (r)δExc/δϕi(r), i.e., the orbital-specific

xc potential of the ith orbital and vxc B δExc/δn, i.e., the
local xc potential, which in general has to be obtained via the
OEP procedure100–102 (hence the index OEP). The derivation
of ∆OEP assumes the “alignment equality” ⟨ϕho|uxc,ho|ϕho⟩
= ⟨ϕho|vxc|ϕho⟩, which determines the free constant in vxc(r) as
part of the OEP procedure. Additional approaches to introduce
the derivative discontinuity include Refs. 129–133 (see also
Refs. 41, 46, 86, and 134 for an overview).

Finally, an approximation for the DD can be obtained
from an ensemble treatment for a given underlying Hxc
functional, as proposed in Ref. 86,

∆ens = EHxc[n + |ϕlu|2] − 2EHxc[n] + EHxc[n − |ϕho|2]
+


d3r vHxc[n](r) �|ϕho(r)|2 − |ϕlu(r)|2� . (7)

The first way requires three independent self-consistent
calculations of the total energy (hence the index E): of the
neutral system, the cation, and the anion. In contrast, the
second and third ways yield the DD from KS quantities of the
neutral system only, which is an advantage when considering
infinite systems.

Relying on our experience with ensemble-generalized
calculations for atoms and small molecules (Ref. 87 and

this work), we expect ∆ens obtained with an approximate
xc functional to be larger than ∆E. As has been shown in
Fig. 2 of Ref. 86 (lower panel), εe-ho is obtained as being
somewhat too low immediately to the left of an integer N and
somewhat too high immediately to the right of it. As a result,
∆ens overestimates the true discontinuity. This overestimate is
related to the residual concavity of the E(N) curve after the
ensemble generalization. In the current study, we showed that
the overestimate in εe-ho to the left of the integer point, which
corresponds to the negative of the IP, is systematic, i.e., it
happens in various systems and with different functionals.
Consequently, we expect a systematic overestimate for ∆ens
and the resulting Eg.

The discrepancy between ∆OEP and ∆ens has a different
origin. While ∆OEP originates because the KS potentials are
differently “aligned” (see above) to the left and to the right of
an integer point, ∆ens comes from two sources (see Ref. 86 for
detailed explanations): the first is the same as for ∆OEP; the
second is the fact that the ensemble-generalized KS potential
does not approach zero at r → ∞, but rather a constant v0 (see
Eq. (2)), which is different to the left and to the right of an
integer N . ∆OEP does not consider the second source described
above, assuming (correctly in the context of Refs. 127 and
128) that the potentials asymptotically tend to zero. In fact, it
can be analytically shown that ∆OEP is an ingredient in ∆ens,
which was denoted by ∆1 in Ref. 86.

V. CONCLUSIONS AND SUMMARY

In the current work, we employed the ensemble-
generalization procedure87 for a test set of 26 diatomic
molecules and single atoms, for a variety of xc functionals.
These include the LSDA, the semi-local PBE and BLYP, the
global hybrids B3LYP and PBEh(a), and the local hybrid
ISOcc(c). We focused on the prediction of the IP via the
highest occupied KS eigenvalue, εe-ho.

We found that implementing the ensemble approach
improves, on average, the correspondence of εho with the
experimental IP for all xc functionals considered, changing
the general tendency in the IP prediction from a gross
underestimation to a smaller overestimation.

For functionals that include a parameter, namely, the
hybrids PBEh(a) and ISOcc(c), we observed a rather weak
dependence of εe-ho on the respective functional parameter,
while yielding a roughly constant overestimation to the
IP, with respect to experiment. This eases the so-called
“parameter dilemma”: there are no two optimal values of
the functional’s parameter originating from fitting to total
energy-related quantities as opposed to fitting potential-related
quantities. Instead, the parameter can be determined relying
on energetics only, because of its weak influence on the value
of εe-ho. Indeed, the average relative error in the ionization
potential, δIP, equals approximately 15% for all ensemble-
generalized xc functionals, as can be seen from Fig. 3.
Surprisingly, such features of the underlying xc functional,
as being local (LSDA), semi-local (PBE, BLYP), or non-
local (B3LYP, PBEh, ISOcc), relying on features of the
homogeneous electron gas (LSDA, PBE, PBEh, ISOcc) or
not (BLYP, B3LYP), are of little relevance with respect to the
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IP prediction, once the functional is used in the ensemble-
generalized form. We therefore conclude that upon ensemble
generalization (Eq. (1)) all the functionals we tested share the
same deficiency. It is most probably related to the remaining
concavity of the E(N) curve, due to the implicit dependence
of the KS orbitals on α. Therefore, future improvement in
the IP prediction via εe–ho may be achieved via formulating a
correction that will remove the remaining concavity in E(N).
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140We recall that the latter does not produce a strictly piecewise linear
energy curve E(N ), but there typically remains some concavity, which is
attributed to the implicit dependence of E(N ) on α via the KS orbitals.
This concavity affects the value of εe-ho. However, even in case E(N )
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than the experimental IP.

141Note that the combination of the EXX functional with the standard form
for the Hartree functional results in an intrinsically ensemble-generalized
functional if the ground state is described by an ensemble comprised
of two pure many-electron states. This is the case throughout this work
as we describe the ionization process by extracting an electron from a
specific spin-channel. If the number of many-electron states is larger than
two (as is the case, e.g., if both spin channels are fractionally occupied),
then the EXX is not intrinsically ensemble-generalized, but an appropriate
ensemble generalization, proposed in Ref. 91, is available.

142When calculating the NH molecule with the LSDA or PBEh(a) using
values of 0 ≤ a . 0.55, the global εho and εe-ho do not belong to the
same spin channel, a behavior that has not been observed in any other
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