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Density functional theory can be extended to excited states by means of a unified variational approach
for passive state ensembles. This extension overcomes the restriction of the typical density functional
approach to ground states, and offers useful formal and demonstrated practical benefits. The correlation
energy functional in the generalized case acquires higher complexity than its ground state counterpart,
however. Little is known about its internal structure nor how to effectively approximate it in general.
Here we show that such a functional can be broken down into natural components, including what we call
“state-” and “density-driven” correlations, with the former amenable to conventional approximations, and
the latter being a unique feature of ensembles. Such a decomposition provides us with a pathway to general
approximations that are able to routinely handle low-lying excited states. The importance of density-driven
correlations is demonstrated, and an approximation for them is introduced and shown to be useful.
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Electronic structure theory has transformed the study of
chemistry, materials science, and condensed matter physics
by enabling quantitative predictions using computers. But a
general solution to the many-electron problem remains
elusive, because the electron-electron interactions imply
highly nontrivial correlations among the relevant degrees of
freedoms. Out of the numerous electronic structure method-
ologies, density functional theory [1–3] (DFT) has become
the dominant approach thanks to its balance between
accuracy and speed, achieved by using the electron density
as the basic variable, then mapping the original interacting
problem onto an auxiliary noninteracting problem.
DFT gives access to ground states, but not excited

states, meaning alternatives must be used for important
processes like photochemistry or exciton physics [4].
Its time-dependent extension (TDDFT) does offer access
to excited states at a reasonable cost [5,6], and it is thus
commonly employed for this purpose. Routine applica-
tions of TDDFT reuse ground-state approximations by
evaluating them on the instantaneous density, the so-
called adiabatic approximation. This approach fails badly,
however, when many-body correlations defy a time-
dependent mean-field picture, including for important
charge transfer excitations [7,8].
One highly promising alternative involves tackling both

ground and excited eigenstates by means of one and the
same density functional approach [9–12], using ensemble
DFT (EDFT). EDFT is appealing because it can automati-
cally deal with otherwise difficult orthogonality conditions
and can potentially tap into more than 30 years of density

functional approximation development. EDFT has been
shown to solve problems that are difficult for TDDFT, such
as charge transfers, double excitations, and conical inter-
sections [13–23].
Consolidating the preliminary success of EDFT into

useful approximations requires further understanding of
how many-body correlations get encoded in EDFTand how
they can be approximated generally. The correlation energy
of many-electron ground states is traditionally divided into
dynamical (weak) and static (strong) correlations. This
decomposition is by no means unambiguous, yet is very
useful both for designing, and understanding the limitations
of, approximations [24]. Both static and dynamic correla-
tions are also present in ensembles. But the internal
structure of the correlation energy functional for ensembles
is, by necessity, more complex. Little is known about its
specific properties and quirks.
In this Letter, we reveal a decomposition of the ensemble

correlation energy that lends itself both to an exact
evaluation and to a universal approximation scheme. Our
decomposition uncovers components of the correlation
energy in multistate ensembles that will be missed by
direct reuse of existing density functional approximations
on pure-state contributions. We show that the additional
components are unique features of EDFT and can lead to
significant errors, if ignored. We thus point out a crucial
missing step on the path to upgrade existing approxima-
tions for correlations.
The components revealed through our decomposition—

density-driven correlations—have so far gone unnoticed
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and are similar to, but not the same as, density-driven errors
of approximations [25]. Ultimately, these components
appear because the Kohn-Sham scheme in EDFT provides
the exact overall ensemble particle density, but not the
density of each state in the ensemble. Our approach makes
use of recent results on the Hartree-exchange component of
the ensemble energy [26] and introduces a generalization of
the Kohn-Sham machinery. We shall describe our con-
struction first formally and then also by means of direct
applications. The relevance of the density-driven correla-
tion is thus established unambiguously for prototypi-
cal cases.
A primer on EDFT.—For a given electron-electron

interaction strength λ, external potential v, and set of
weights W one can find [10] an ensemble density matrix,

Γ̂λ½v;W� ¼
X

wκjκλihκλj≡ argminΓ̂→WTr½Γ̂Ĥλ½v��; ð1Þ

so that Eλ½v;W� ¼ Tr½Γ̂λĤλ½v�� ¼ P
κ wκEλ

κ is the energy
of the ensemble system. HereW ¼ fwκg describes a set of
non-negative weights that obey

P
κ wκ ¼ 1. A consequence

of Eq. (1) is that jκλi are eigenfunctions of Ĥλ½v� ¼ T̂ þ
λŴ þ R

n̂ðrÞvðrÞdr sorted so that wκ ≤ wκ0 for eigenvalues
Eλ
κ > Eλ

κ0 where Eλ
κ ¼ hκjĤjκi, making the ensemble a

passive state from which no work can be extracted [27].
We can, without loss of generality, assign equal weights
whenever interacting states are degenerate. Excitation
energies can be found via derivatives or differences of
E1 with respect to relevant excited state weights wκ>0
[9,11,22,28].
By the Gross-Oliveira-Kohn (GOK) theorems [10–12]

and the usual assumption that all densities of interest
are ensemble v representable, there exists a potential,
vλ½n;W�≡ argmaxufEλ½u;W� − R

nudrg, that is a unique
functional of n andW. Notice here we allow λ to vary while
keeping n constant to connect “adiabatically” the non-
interacting (λ ¼ 0, v0 ≡ vs) with the fully interacting limits
(λ ¼ 1, v1 ≡ v). To simplify discussion, we further restrict
to the “strong adiabatic” case that the ordering of occupied
states (wκ > 0) as λ → 0þ is the same as at λ ¼ 1, i.e., that
the energy ordering of low-lying states is adiabatically
preserved. This is true in the cases considered here and
the majority of cases amenable to EDFT—exceptions, we
suspect, may include magnetic states such as those with
relevant orbital degeneracies in combination with strong
and spin-orbit interactions. Our consequent discussion
should be extended to cover such exceptions.
Since vλ → n and n → vλ are unique mappings at all

relevant λ, for weights W, we can define the universal
ensemble density functional

F λ½n�≡X

κ

wκhκλjT̂ þ λŴjκλi≡ Tr½Γ̂λðT̂ þ λŴÞ�; ð2Þ

where jκλi are eigenstates of ½T̂ þ λŴ þ v̂λ�jκλi ¼ Eλ
κjκλi,

Γ̂λ ¼ P
wκjκλihκλj and Tr½Γ̂λn̂� ¼ P

wκhκλjn̂jκλi ¼ n. For
brevity, we now drop explicit references to W.
Making use of the Kohn-Sham (KS) ensemble, the

interacting universal functional at λ ¼ 1 (F ½n�≡ F 1½n�)
can be decomposed as F ½n� ¼ T s½n� þ EHx½n� þ Ec½n�
where T s½n�, EHx½n� and Ec½n� are the ensemble KS kinetic,
Hartree-exchange (Hx) energy, and correlation energy
functionals. We shall focus on cases involving degeneracies
for different spin states but no ambiguities for the spatial
degree of freedom—this is sufficient for elucidating the
main points of this Letter. Thus, the KS kinetic and Hx
energy are given, respectively, by

T s½n�≡ F 0½n� ¼
X

wκTs;κ½n�; ð3Þ

EHx½n�≡ lim
λ→0þ

F λ½n� − F 0½n�
λ

¼
X

κ

wκΛHx;κ½n�; ð4Þ

where Ts;κ ¼ hκ0þjT̂jκ0þi, ΛHx;κ ¼ hκ0þjŴjκ0þi. jκ0þi are
orthogonal (formally noninteracting) eigenstates as well as
proper spin eigenstates—they thus may be linear combi-
nations of Slater determinants which “optimize” EHx [26].
Of relevance to our discussion are the following three facts:
(i) T s and EHx are functionals of a shared set of occupied
one-body orbitals ϕi½n�ðrÞ obeying ½t̂þ vs½n��ϕi½n�ðrÞ ¼
ϵi½n�ϕi½n�ðrÞ; (ii) some states (e.g., singlet or triplet) can
have the same KS density and kinetic energy, but
different KS-pair densities and Hx energies; (iii) KS density
and kinetic terms may be expressed as ns;κ ¼
hκ0þjn̂jκ0þi ¼ P

i θ
κ
i jϕij2 and Ts;κ ¼

P
i θ

κ
i ti, where θκi ∈

f0; 1; 2g are occupation factors and ti ¼
R
drϕ�

i t̂ϕi, for
spin-orbital i. By contrast, Hartree-exchange terms
ΛHx;κ½fϕig�¼1

2

R
drdr0Wðr;r0Þn2Hx;κðr;r0Þ must be expre-

ssed via the KS-pair densities n2Hx;κðr;r0Þ¼hκ0þjn̂ðrÞn̂ðr0Þ−
n̂ðrÞδðr−r0Þjκ0þi.
Apart from the stated restrictions, so far no approxima-

tions have been made. Thus, we can complete the picture
by defining the correlation energy functional

Ec½n� ≔ F ½n� − FEXX½n�; ð5Þ

as the difference between the unknown F and the exact
exchange (EXX) functional FEXX ≡ T s þ EHx. While
formally correct, the above expression has limited effec-
tiveness in practice. In what follows, we shall introduce
what we argue is a more useful expression for Ec½n�, due to
its ability to distinguish pure-state correlations from those
introduced by ensembles.
Moving toward this objective, it is important to note that

the KS densities ns;κ are not the same as the densities of
interacting states nκ. As an example, consider the lowest
lying triplet (ts) and singlet (ss) excited states in H2. The KS
densities of the singlet and triplet excitation are equal to
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each other while the interacting ones are not, i.e., ns;ts ¼
ns;ss ¼ jϕ0j2 þ jϕ1j2 (note, spatial orbitals are the same for
spin either up or down) and nts ≠ nss [22]. The same overall
ensemble density is, by construction, obtained from the KS
and the real ensemble. This fact is not specific to H2, and its
implications for the correlation energy of ensembles forms
the bulk of the remainder of this Letter. We shall first
proceed formally, and then review and test key results in
concrete cases.
State- and density-driven ensemble correlations.—First,

it is useful to recall that the energy components can be
restated from functionals of n into functionals of the
(ensemble) KS potential. As mentioned above, ΛHx;κ

depends on the same set of single-particle orbitals as
Ts;κ and ns;κ. Thus, they can all be transformed into a
functional of a potential, by replacing ϕi½n� by
ψ i½vs�≡ ϕi½n½vs��, where ½t̂þ vs�ψ i½vs� ¼ εi½vs�ψ i½vs�.
Therefore, any functional of the single-particle orbitals
can be readily expressed as a functional of the KS potential,
e.g., ns;κ½vs�≡P

i θ
κ
i jψ i½vs�j2, and similarly for Ts;κ½vs�,

and ΛHx;κ½vs�.
As a second and crucial step, we seek to generalize the

KS procedure by finding, for each state jκi, a unique and
state-dependent KS-like system with effective potential vκs
such that ns;κ½vs → vκs� ¼ nκ is the resulting density—note,
ns;κ ¼

P
iθ

κ
i jψ i½vs�j2 and nκ ¼

P
i θ

κ
i jψ i½vκs�j2 use the same

set of occupation factors. Finding the corresponding
effective potential relies on two conditions being satisfied:
(i) that at least one vκs exists, (ii) that multiple valid
potentials (i.e., vκs;1, vκs;2 → nκ) can be distinguished
through a bifunctional vκs½nκ; n�≡ argminvκs→nκkvs½n�;
vκskn that selects vκs as the potential yielding nκ, which is
closest to the true KS potential vs yielding n, according to
some measure kv1; v2kn that can depend explicitly on n—
one example is kv1; v2kn ¼

R
nðrÞjv1ðrÞ − v2ðrÞjdr.

Regarding (i), the two-electron states considered here
(see later discussion) can be mapped to KS ground states
with well-defined and unique potentials. KS-like equations
for specific eigenstates have also been introduced to
retrieve excitations of Coulomb systems [29,30].
Additional details and discussion appears in the
Supplemental Material [31]. Regarding (ii), more than
one metric may work for the purpose. This implies some
arbitrariness for intermediate quantities [Eqs. (8) and (9),
below], yet no difference for their sum [Eq. (6)].
Once vκs is determined, we introduce T̄s;κ½nκ;n�≡

Ts;κ½vs→vκs½nκ;n�� and Λ̄Hx;κ½nκ;n�≡ΛHx;κ½vs→vκs½nκ;n��,
where the original functionals are transformed by replacing
the KS orbitals ψ i½vs� → ψ i½vκs� in the orbital functionals to
give energy bifunctionals of the specific density nκ and the
total ensemble density n. We thus extend all key functionals
to be specified for ensemble density components, as well as
globally. For the special case nκ ¼ ns;κ we are guaranteed

to find vκs½ns;κ; n� ¼ vs by construction. It then follows that
T s½n� ¼

P
κ wκT̄s;κ½ns;κ; n�, EHx½n� ¼

P
κ wκΛ̄Hx;κ½ns;κ; n�.

Finally, we can express the correlation energy as

Ec½n� ¼ ESD
c ½n� þ EDD

c ½n�; ð6Þ

where

ESD=DD
c ½n�≡X

κ

wκĒ
SD=DD
c;κ ½nκ; n�: ð7Þ

Here, the “pure” state-driven (SD),

ĒSD
c;κ ½nκ; n� ≔ F̄κ½nκ; n� − F̄EXX

κ ½nκ; n�; ð8Þ

and “ensemble″ density-driven (DD),

ĒDD
c;κ ½nκ; n� ≔ F̄EXX

κ ½nκ; n� − FEXX
κ ½n� ð9Þ

terms are defined using F̄κ½nκ;n�≔Eκ½n�−
R
drnκðrÞv½n�ðrÞ

(thus F ½n�≡P
κwκF̄κ½nκ;n�), F̄EXX

κ ½nκ; n� ≔ T̄s;κ½nκ; n� þ
Λ̄Hx;κ½nκ; n�, and FEXX

κ ½n� ≔ Ts;κ½n� þ ΛHx;κ½n�≡ F̄EXX
κ

½ns;κ; n� (since ns;κ depend on vs½n�).
Equation (6) is the key result of the present Letter.

It expresses the correlation energy of GOK ensembles in
terms of (i) state-driven correlations [Eq. (8)], which are
like the usual pure state correlation energy, but involve
bifunctionals of ½nκ; n�, and (ii) density-driven correlations
[Eq. (9)], which resemble difference between exact
exchange energies at different pure state densities. The
labeling of SD terms as “pure” and DD as “ensemble” can
now be explained. In a pure state, ns;gs ¼ ngs ¼ n and thus
EDD
c ¼ 0, as expected. Moreover, in any ensemble, the

ground state term ĒSD
c;gs depends only on ngs, and not on n

(since vgss is unique). By contrast, ĒDD
c;gs always depends on

both n and ngs, and so varies with the overall choice of
ensemble. Density-driven correlations are consequently a
unique, yet unavoidable, feature of EDFT—they appear
because the KS system cannot simultaneously reproduce
the densities of all ensemble components.
Implications.—First of all, our decomposition need not

handle problematic self- or ghost interactions [32–34].
Because our correlation functional is defined on top of
an ensemble Hartree-exchange functional which is already
maximally free from such spurious interactions. Any
spurious interactions present must thus be the result of
approximation. Our decomposition, of course, is not meant
to tame unavoidable strong correlations in the SD terms.
We now turn to how our scheme can help in the

development of new approximations. Inspired by the
principle of minimal effort, one might seek to replace
the entire correlation energy with the SD terms, Eq. (8), by
reusing any standard DFT approximation (DFA), i.e., set
ESD
c;κ ½nκ; n� → EDFA

c ½ns;κ�. The idea of reusing standard
DFAs in ensembles is not new in EDFT, and with
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appropriate care it has been shown to give good results in
excited state and related noninteger ensembles [14,32,35].
In the present context [see Eqs. (6) and (7)], however, we
can appreciate that such a procedure (i) replaces the
interacting densities of the SD terms by their noninteracting
counterparts to make use of ingredients that are available in
a typical calculations, (ii) disregards the additional func-
tional dependence of the SD terms on n, and (iii) misses the
DD terms entirely.
Next, we show that the contribution of the DD terms are

indeed of relevant magnitude, when all the exact quantities
are evaluated numerically. Then, we shall discuss approxi-
mations.
Applications.—Having established the basic theory,

let us now study the role of density-driven correlations
in two electron soft-Coulomb molecules. These tunable
(via parameter μ) one-dimensional molecules can exhibit
chemically interesting properties such as charge transfer
excitations (μ ¼ 2) or strong correlations (μ ¼ 0) [22] and
thus allow important physics to be analyzed with full
control. Details are in the Supplemental Material [31].
We restrict ourselves to ensembles involving the ground

(gs), triplet-excited (ts), and singlet-excited (ss) states only.
We perform our calculations in three steps. Step 1: solve the
two electron Hamiltonian Ĥ with one- and two-body
interactions terms to obtain interacting state-specific terms
Eκ, jκi, nκ, F1

κ ¼ hκjT̂ þ Ŵjκi ¼ Eκ −
R
dxnκðxÞvðxÞ, for

the three states κ ∈ fgs; ts; ssg, and ensemble averages
therefrom, e.g., n ¼ P

κ wκnκ and F 1 ¼ P
κ wκF1

κ . Step 2:
invert [36] the density using the single-particle orbital
Hamiltonian ĥ ¼ − 1

2
∂2
x þ vðxÞ to find vðxÞ ¼ vsðxÞ →

nðxÞ and real-valued orbitals ϕ0 and ϕ1 that are required
for the KS eigenstates. Here, vs depends on the density n
and ground state weight wgs only, as n ¼ ð1þ wgsÞϕ2

0þ
ð1 − wgsÞϕ2

1. From these terms, calculate ns;κ, n2Hx;κ Ts;κ

and ΛHx;κ, and ensemble averages, again for
κ ∈ fgs; ts; ssg. Here, Ts;ts ¼ Ts;ss and ns;ts ¼ ns;ss but
ΛHx;ts ≠ ΛHx;ss and n2Hx;ts ≠ n2Hx;ss. Step 3: carry out
separate inversions using ngs ¼ 2ψ0½vgss �2, nts ¼ ψ0½vtss �2þ
ψ1½vtss �2, and nss ¼ ψ0½vsss �2 þ ψ1½vsss �2 ≠ nts to obtain the
three unique potentials vκs. Then use the resulting orbitals
ψ0½vκs� and ψ1½vκs� to calculate T̄s;κ½nκ; n� and Λ̄Hx;κ½nκ; n� on
the interacting densities of the three states, and thus obtain
the final ingredients for Eqs. (6)–(9).
In Fig. 1 we show the correlation energy for two

examples of bond breaking (which occurs at R ≈ 3),
resolved into total DD and SD components. One example
exhibits charge transfer excitations (top, μ ¼ 2), and the
other involves strong correlations (bottom, μ ¼ 0). We
choose an ensemble with 60% ground state, 30% triplet
state, and 10% singlet state (60=30=10%).
The first thing to notice is that in the “typical” charge

transfer case, the DD correlations form a substantial portion
of the total correlation energy, about 25% on average.

This highlights the importance of capturing, or approxi-
mating it somehow: a raw application of even a nearly
perfect approximation to the SD correlations will miss
around one quarter of the correlation energy. The strongly
correlated case has a similar breakdown for small R,
but becomes dominated by the SD correlations for large
R. This is not surprising, as the SD term captures the
multireference physics that gives rise to most of the
correlation energy, whereas the DD term contains only
weaker dynamic correlations. The various densities that
give rise to the DD correlations are shown and discussed
in the Supplemental Material [31].
On a final note, close inspection of the strongly corre-

lated case reveals a subtle point: for R ≥ 3, the DD
correlation energy is positive. At first glance this might
seem to be impossible—correlation energies should always
be negative. However, it reflects the fact that the DD
correlation energy is defined via an energy difference
between two states which come from different many-body
problems with different densities. Thus, the negative sign is
not guaranteed by any minimization principle.
So far we have been concerned with exact quantities.

But for applications, it is essential to derive approxima-
tions. For a proof-of-principle demonstration, let us focus
on charge transfers in 1D molecules. We approximate the
SD terms using available ingredients for our 1D model—
working in 3D would let us generate a variety of forms by
tapping into the existing DFT zoo. The reported approx-
imations use numerically exact KS densities ns;κ.
We generate a SDA by combining the ensemble exact Hx

results with a local spin density approximation (LSDA) for
correlation, parametrized for the 1D soft-Coulomb poten-
tial [37–39]. But we adapt the LSDA according to the
formalism laid out by Becke, Savin, and Stoll [40]—which
is useful for dealing with multiplets. Full details are
provided in the Supplemental Material [31].

FIG. 1. Decomposition of the correlation energy of the charge
transfer (top) and strongly correlated (bottom) cases. The shaded
regions show the relative significance of density-driven and state-
driven correlations, with the former contributing approximately
one quarter of the total correlation energy in the charge transfer
case. The inset of the bottom panel illustrates the unenlarged plot.
Here we set a mixture of 60=30=10%, respectively, for the three
lowest energy states.
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The key point to be addressed here is the approximation
for the DD terms (DDA). As far as charge transfer are
concerned, intuition suggests that an electrostatic model
may work well for a first DDA. Thus, we propose
EDDA
c ¼ P

κ wκfEH½nκ → ñκ� − EH½ns;κ�g. This expression
involves the KS densities ns;κ and ñκ ¼ Sκns;κ½1þ
aΔns;κ þ bΔn2s;κ� which accounts for the fact that in real
situations we may not access the exact nκ. Here, Sκ is
chosen to ensure the correct number of electrons, and the
termΔns;κ ¼ ns;κ − n (i.e., the deviation of the state density
ns;κ from the full ensemble density n), ensures that the
correction is zero in the case of a pure state. Parameters
a ¼ −0.28 and b ¼ 0.12 are found via optimization.
Additional information on our DDA, including compar-
isons with the exact DD term, are provided in the
Supplementary Material [31].
Figure 2 shows errors in our approximations for the

60=30=10% case from earlier, and a 60=40=0% case
without singlet excitations. Although the proposed approxi-
mation neglects both kinetic and exchangelike contribu-
tions [see Eq. (9)], its performance is remarkably good.
Including the DDA improves results for almost all chemi-
cally relevant R (see orange shading).
Summary and outlook.—Correlations in ensemble den-

sity functional theory (EDFT) are more than the simple sum
of their parts. They naturally divide into state-driven (SD)
and density-driven (DD) contributions, the former being
amenable to direct translation of existing DFT approxima-
tions, and the latter being a unique property of ensembles.
In prototypical ensembles of excited states, DD correlations
account for up to 30% of the overall correlation energy.
Therefore, accurate approximation of the correlation
energy requires simultaneous consideration of the SD
and DD components.

A simple approximation to the DD correlations was
devised and evaluated in model situations. Thus, account-
ing for both SD and DD correlations was shown to be both
feasible and promising to prompt progress in EDFT.
Development of general approximations, extension to deal
with systems that may challenge our simplifying “strong
adiabatic” assumption, and generalization of key concepts
and procedures presented here to other ensembles [28,41–
43] are being pursued.
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