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A. Derivation of Eq. (13)

To derive the exact functional,

FLevy = min
Ψ→γ
〈Ψ|Vee|Ψ〉 (S1)

consider the minimization over real singlet wavefunctions

Ψ =
a√
2

[A(φ1αφ2β) +A(φ2αφ1β)]

+bA(φ1αφ1β) + cA(φ2αφ2β). (S2)

in terms of the parameters a, b and c along with the
normalization a2 + b2 + c2 = 1 and the elements of
the density-matrix γij =

∑
σ〈Ψ|c

†
iσcjσ|Ψ〉 giving γ11 =

2b2 + a2 and γ12 =
√

2 (ba+ ac). The two-electron en-
ergy comes only from the 〈11|11〉 and 〈22|22〉 integrals,
which are U , as all other integrals are 0, so only the sec-
ond determinant with itself and the third determinant
with itself contribute, giving

F [Ψ] = U(b2 + c2) = U(1− a2) (S3)

It is also satisfied that

γ11 − 1 = b2 − c2. (S4)

Therefore, using γ12 gives

(b+ c) =
γ12√

2a
(S5)

and combining with Eq. (S4) leads to

(b− c) =
(γ11 − 1)

√
2a

γ12
(S6)

Now, square Eqs. (S5) and (S6), to give

(b+ c)2 =
γ2

12

2a2
(S7)

and

(b− c)2 =
(γ11 − 1)

2
2a2

γ2
12

. (S8)
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Figure S1: The plane of all possible density matrices illus-
trating the non-v-representability of many of the allowable γ.
a) The second derivatives of the exact functional showing the
points where the lowest hessian eigenvalue is < 0 from Eqs
S14-S16 and b) the density matrices, γ, achieved in 6552 FCI
calculations for −10 < t < 10 and −10 < ∆ε < 10.

Adding these two has the result

2b2 + 2c2 =
γ2

12

2a2
+

(γ11 − 1)22a2

γ2
12

. (S9)

Using the normalization, gives

(2− 2a2) =
γ2

12

2a2
+

(γ11 − 1)22a2

γ2
12

(S10)

which leads to a quadratic equation for a2

[(γ11 − 1)2 + γ2
12]

γ2
12

a4 − a2 +
γ2

12

4
= 0 (S11)

with solution

a2 =
γ2

12

(
1±

√
1− (γ11 − 1)2 − γ2

12

)
2[(γ11 − 1)2 + γ2

12]
. (S12)

Taking the plus combination gives the lowest energy

E = 1− a2

= 1−
γ2

12

(
1 +

√
1− (γ11 − 1)2 − γ2

12

)
2[(γ11 − 1)2 + γ2

12]

=
2[(γ11 − 1)2 + γ2

12]− γ2
12

(
1 +

√
1− (γ11 − 1)2 − γ2

12

)
2[(γ11 − 1)2 + γ2

12]

=
2(γ11 − 1)2 + γ2

12

(
1−

√
1− (γ11 − 1)2 − γ2

12

)
2[(γ11 − 1)2 + γ2

12]
. (S13)
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This agrees with Eq. (13) of the paper.
The derivatives of the exact functional can be evalu-

ated analytically and are used in Fig. S1.

∂E

∂γ11
=

4(γ11 − 1) + (γ11 − 1)γ2
12/
√

1 − (γ11 − 1)2 − γ2
12

2 ((γ11 − 1)2 − γ2
12)

−
(γ11 − 1)

(
2(γ11 − 1)2 + γ2

12

(
1 −

√
1 − (γ11 − 1)2 − γ2

12

))
[(γ11 − 1)2 + γ2

12]2

and

∂E

∂γ12
=

γ312/
√

1− (γ11 − 1)2 − γ212 + 2γ12

(
1−
√

1− (γ11 − 1)2 − γ212

)
2((γ11 − 1)2 + γ212)

−
2γ12(γ11 − 1)2 + γ312

√
1− (γ11 − 1)2 − γ212[

(γ11 − 1)2 + γ212

]2 .

∂2E

∂2γ2
11

=

−4(γ11 − 1)2
(

(γ11 − 1)2 + γ2
12

)( γ2
12√

−γ2
11

+2γ11−γ2
12

+ 4

)
+ 8(γ11 − 1)2

(
2(γ11 − 1)2 − γ2

12

(√
−γ2

11 + 2γ11 − γ2
12 − 1

))
2
(

(γ11 − 1)2 + γ2
12

)3

+

(
(γ11 − 1)2 + γ2

12

)2(
4−

γ2
12

(
γ2
12

−1

)(
−γ2

11
+2γ11−γ2

12

)3/2
)
− 2
(

(γ11 − 1)2 + γ2
12

)(
2(γ11 − 1)2 − γ2

12

(√
−γ2

11 + 2γ11 − γ2
12 − 1

))
2
(

(γ11 − 1)2 + γ2
12

)3 (S14)

∂2E

∂γ11∂γ12
= −

(γ11 − 1)γ12

(
−2γ611 + 12γ511 + 2γ211

(
10
√

−γ211 + 2γ11 − γ212 − 9γ212 + 1

)
− 4γ11

(
2
√

−γ211 + 2γ11 − γ212 − 3γ212 + 1

))
2
(
−γ211 + 2γ11 − γ212

)3/2 (
γ211 − 2γ11 + γ212 + 1

)3
−
(γ11 − 1)γ12

(
γ212

(
−2γ212

(
2
√

−γ211 + 2γ11 − γ212 + 3

)
+ 4
√

−γ211 + 2γ11 − γ212 + γ412 + 1

))
2
(
−γ211 + 2γ11 − γ212

)3/2 (
γ211 − 2γ11 + γ212 + 1

)3
−
(γ11 − 1)γ12

(
+γ411

(
4

(√
−γ211 + 2γ11 − γ212 − 6

)
− 3γ212

)
− 4γ311

(
4
√

−γ211 + 2γ11 − γ212 − 3γ212 − 4

))
2
(
−γ211 + 2γ11 − γ212

)3/2 (
γ211 − 2γ11 + γ212 + 1

)3 (S15)

∂2E

∂2γ212
=

−4γ212

(
(γ11 − 1)2 + γ212

)( γ212√
−γ2

11
+2γ11−γ212

− 2
√

−γ211 + 2γ11 − γ212 + 2

)
2
(
(γ11 − 1)2 + γ212

)3
+

8γ212

(
2(γ11 − 1)2 − γ212

(√
−γ211 + 2γ11 − γ212 − 1

))
− 2
(
(γ11 − 1)2 + γ212

)(
2(γ11 − 1)2 − γ212

(√
−γ211 + 2γ11 − γ212 − 1

))
2
(
(γ11 − 1)2 + γ212

)3
+

(
(γ11 − 1)2 + γ212

)2( 5γ212√
−γ2

11
+2γ11−γ212

− 2
√

−γ211 + 2γ11 − γ212 +
γ412

(−γ211+2γ11−γ212)
3/2 + 2

)
2
(
(γ11 − 1)2 + γ212

)3 (S16)

For the discussion of v-representability, there are two
common counterexamples: the first is a one-electron
density with a certain type of cusp, given by Englisch
and Englisch[1]; the other is a spherical p density re-
lated to a degeneracy that cannot be given by a single
wavefunction[2]. The non-v-representable density matri-
ces shown here are very different to these two examples
and are only due to the nature of the energy surface of
the exact functional as shown in Fig. S2.

B. Derivation of Löwdin-Shull for Hubbard model

Löwdin and Shull (LS) showed that the natural or-
bitals, φk, that diagonalize the density matrix and wave-
function for two electrons are the same

Ψ(r, r′) =
∑
k

ckφk(r)φk(r′) (S17)

γ(r, r′) =
∑
k

nkφk(r)φk(r′) (S18)
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Figure S2: Two lines of FLevy[γ] that illustrate non-v-
representable density matrices, due to the non convexity of
the surface along the given line.

where nk = 2c2k.

ELS[Ψ] =

2∑
i=1

c2i {2hii + 〈ii|ii〉}+ 2c1c2〈11|22〉 (S19)

For two basis functions the minimum energy wavefunc-
tion comes from the coefficients of c1 and c2 having op-
posite signs, c1 =

√
n1/2 and c2 = −

√
n2/2. Substitut-

ing this into the energy expression for the wavefunction
gives an expression in terms of the natural orbitals and
the natural orbital occupation numbers, nk,

FLS[γ] =
1

2
na〈aa|aa〉+

1

2
nb〈bb|bb〉 −

√
nanb〈aa|bb〉.

(S20)
There has been some recent interest in natural orbitals
[3] and natural orbital functionals that, for two electron

systems, must reduce to the Löwdin-Shull expression if
they are to be exact, for example the PNOF5 functional
[4–6].

The eigenvalues of the density matrix γ =(
γ11 γ12

γ12 (2− γ11)

)
are

(γ11 − n)((2− γ11 − n)− γ2
12 = 0 (S21)

n2 − 2n+ 2γ11 − γ2
11 − γ2

12 = 0 (S22)

n± =

(
−2±

√
4− 4(γ11 − 1)2 + 4γ2

12

)
/2 (S23)

n± = na/b = 1±
√

(γ11 − 1)2 + γ2
12. (S24)

The 〈pp|qq〉 integrals are in the natural orbital basis
and the coefficients of the natural orbitals (Cpi) are
found by substituting in the natural orbital numbers e.g.
(γ11 − np)Cp1 +γ12Cp2 = 0 or (also using C±i = C(a/b)i)

C±1 =
(γ11 − 1)±

√
(γ11 − 1)2 + γ2

12

γ12
C±2 and C2

±1+C2
±2 = 1

(S25)
So overall, C2

±1 = a2
±/
(
γ2

12 + a2
±
)
and C2

±2 = γ2
12/(a

2
± +

γ2
12) and hence

FLS =
1

2
na(C4

a1 + C4
a2)U +

1

2
nb(C

4
b1 + C4

b2)U

−
√
nanb(C

2
a1C

2
b1 + C2

a2C
2
b2)U. (S26)

For convenience, replace r = (γ11 − 1) and S =√
r2 + γ2

12, to obtain the following expression

FLS =
(1 + S)

2

[(
(r + S)2

γ2
12 + (r + S)2

)2

+

(
γ2

12

γ2
12 + (r + S)2

)2
]

+
(1− S)

2

[(
(r − S)2

γ2
12 + (r − S)2

)2

+

(
γ2

12

γ2
12 + (r − S)2

)2
]

−
√

1− S2

[
(r + S)2

γ2
12 + (r + S)2

(r − S)2

γ2
12 + (r − S)2

+
γ2

12

γ2
12 + (r + S)2

γ2
12

γ2
12 + (r − S)2

]
(S27)

This equation could be simplified further but we have
checked, by numerical evaluation with Fortran code, that
it gives identical results to Eq. (13).

C. Complex

The constrained search Ψ → γ can be expanded over
complex wavefunctions where the parameters, a, b, c, in
the wavefunction

Ψ =
a√
2

[A(φ1αφ2β) +A(φ2αφ1β)]
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Figure S3: The exact functional allowing the wavefunction to
be complex in the Levy search.

+bA(φ1αφ1β) + cA(φ2αφ2β) (S28)

are allowed to be complex

a = ar + iai

b = br + ibi

c = cr + ici

In terms of these parameters there are the following con-
straints:

1 = a2
r + a2

i + b2r + b2i + c2r + c2i

γ11 = 2a2
r + 2a2

i + b2r + b2i

<(γ12) =
√

2(arbr + aibi + brcr + bici)

The imaginary part =(γ12) can be anything as it does
not enter the energy expression. A fourth constraint can
be included if the overall phase of the wavefunction is set
to zero.

We now carry out a search over all possible wavefunc-
tions minimizing E and a given γ11 and <(γ12), which
gives Fig. S3. We do this by an explicit grid search
over the two remaining variables for each γ11, γ12 that
is specified. The resulting energy functional gives the
same result as the Hubbard expression Eq. (13) for
all density matrices except the non-v-representable set.
For all possible FCI density matrices it is, of course, in
agreement with FHK[γv]. For the non-v-representable
set, FLevy

complex[γ] can be lower in energy, though this does
not change any physics as these points can never be
minima of any Hamiltonian. In this case, the func-
tional numerically agrees with the ensemble functional
considered by Saubènere and Pastor[7] given by a den-
sity matrix that is an ensemble of two wavefunctions
Γ = a|Ψa〉〈Ψa|+b|Ψb〉〈Ψb|. It should be noted that when
FLevy

complex[γ] is lower than Eq. (13) the solutions have a
current and this may give a connection to the exact func-
tional in current DFT (CDFT) [8, 9].

D. Lieb maximization
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Figure S4: Functional FLieb[ρ] from Lieb maximization using
6552 FCI calculations

Another way to to calculate a bound for the functional
is to perform the Lieb maximization[10],

FLieb[γ] = sup
v
{Ev − γ.v} (S29)

which is a supremum (a smallest upper bound which for
any finite set would just be a maximum) on the set of v.
This means for a finite set it would actually be a lower
bound to the true minimum FLieb[γ] ≤ FLevy[γ]. The
Lieb maximization is carried out using 6552 FCI calcu-
lations for v, with −10 < t < 10 and −10 < ∆ε < 10.
Over a grid of density matrices, we compare directly with
FLevy

complex from complex wavefunctions as in the region of
non-v-representable densities it is closest to the complex
or ensemble form. Carrying out the maximization of Eq.
(S29) gives the results in the left hand side of Fig. S4 and
the difference to FLevy

complex is shown in the right-hand side.
This difference is small and negative which illustrates
that the Lieb maximization only gives a lower bound to
the true functional that in this case is known exactly.
Obviously, with more and more FCI calculations FLieb

would approach closer to the correct result. The FLieb[γ]
should not be used in minimizations in the same way
as FLevy[γ] as it is a lower bound rather than an upper
bound. Finally it should be noted that FLieb[γ] is every-
where convex by construction and cannot, for example,
contribute to the discussion on v-representability.

E. Approximate Density Matrix Functionals

We consider various approximate density matrix
functionals including Hartree-Fock as a density ma-
trix functional, Muller[11], Power [12]. Here the
value of the natural orbital occupation numbers 0 ≤
ni ≤ 2 and the two-electron integrals 〈pq|rs〉 =˜
φ∗p(r)φr(r)Vee(r, r

′)φ∗q(r
′)φs(r

′)drdr′ which in the
asymmetric two-site Hubbard model just work out to be
〈pq|rs〉 =

∑
i=1,2 CpiCqiCriCsi in terms of the orbitals

coefficients Cpi (|p〉 =
∑
i=1,2 Cpic

†
i |vac〉)
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FHartree−Fock =
1

2
ninj〈ij|ij〉 −

1

4
ninj〈ii|jj〉

FMüller =
1

2
ninj〈ij|ij〉 −

1

2

√
ninj〈ii|jj〉

FPower =
1

2
ninj〈ij|ij〉 −

1

2
(ninj)

α〈ii|jj〉

In the paper we use a value α = 0.675 that has recently
been used for Mott insulators

F. Gutzwiller approximate wavefunction

The Gutzwiller wavefunction [13] is a parametrized
wavefunction of the form

Ψ =
1√
2

[A(φ1αφ2β) +A(φ2αφ1β)]

+g [A(φ1αφ1β) +A(φ2αφ2β)]

When g = 1 it is the Hartree-Fock wavefunction for or-
bitals φ = 1√

2
(φ1 + φ2). The basic idea is that in an H2

like system as g → 0 it goes to the Heitler-London wave-
function. In the asymmetric two-site Hubbard model we
consider an orbital of the form φ = c1φ1 +

√
1− c21φ2

and a Gutzwiller wavefunction

ΨGWA =
2c1
√

1− c21√
2

[A(φ1αφ2β) +A(φ2αφ1β)]

+g
[
c21A(φ1αφ1β) + (1− c21)A(φ2αφ2β)

]
If we consider all possible values of c1 and −1 ≤ g ≤ 1
we get the following density matrices and

F [ΨGWA] =
〈ΨGWA|Vee|ΨGWA〉
〈ΨGWA|ΨGWA〉

.

For other values of |g| > 1 the wavefunction is no longer
a ground state wavefunction.

G. Functional for N = 0, 1, 2, 3 and 4

The functional is calculated for different integer num-
bers of electrons (N = 0, 1, 2, 3 and 4), where the trace
of the density matrix γ11 + γ22 = N . At N = 0,
F [γ] = 0 and there is only one allowed density matrix
γ11 = γ12 = 0. For N = 1, F [γ] = 0 as there is no
electron-electron interaction, however, the allowable den-
sity matrices from a pure state wavefunction are now de-

fined by a circle γ12 =

√
(γ11 − 0.5)

2 − 0.52. Inside this
circle are ensemble-N -representable density matrices but
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they cannot come from a pure-state wavefunction. For
N = 2, F [γ] is that of Eq. (13). For N = 3, F [γ] = 1 at
the allowed pure-state density matrices defined by a dif-

ferent circle γ12 =

√
(γ11 − 1.5)

2 − 0.52. Also at N = 4,
F [γ] = 2 at density matrix γ11 = 2, γ12 = 0. All these
integer parts of the exact functional are pictured in the
supplementary information.S6
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H. Exact functional for N = 1.5 electrons

The exact functional for fractional number of electrons
(N + δ) from Perdew, Parr, Levy and Balduz is given by
a constrained search over density matrices

FN+δ[γ] = min
ΓN+δ→γ

Tr[ΓN+δVee], (S30)

The Hohenberg-Kohn version of the fractional exact func-
tional can be calculated from the linear combiantion of
FCI energies at N and N + 1

FHK
N+δ[v] = (1− δ)EFCI

v [N ] + δEFCI
v [N + 1]

−
[
(1− δ)γNv + δγN+1

v

]
.v (S31)

In the consideration of fractional numbers of electrons

the argument of convexity of E vs N is often used to
simplify the ensembles that have to be taken.
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If convexity is true, the lowest energy ensemble will al-
ways be given by the combination of the two integers at
either side, e.g. ΓN+δ = (1 − δ)ΓN + δΓN+1. However,
convexity has not been proven, with definitely known
counterexamples for certain electron-electron interac-
tions, which indicates that most certainly convexity is
not a general property of Hamiltonians [10]. Here, we test
convexity for the two-site Hubbard hamiltonians, by tak-
ing ensembles of different electron numbers. We consider
different pair-wise ensembles ΓN=1.5 = a|Ψn1

〉〈Ψn1
| +

b|Ψn2
〉〈Ψn2

| with {n1, n2} = {1, 2}, {0, 2}, {1, 3}, {0, 3}.
We have also considered all possible ensembles, includ-
ing those of three and four different particle numbers up
to N = 4, all of these lie higher in energy.
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