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ABSTRACT: From a simplified version of the mathematical structure of the strong
coupling limit of the exact exchange-correlation functional, we construct an
approximation for the electronic repulsion energy at physical coupling strength,
which is fully nonlocal. This functional is self-interaction free and yields energy
densities within the definition of the electrostatic potential of the exchange-correlation
hole that are locally accurate and have the correct asymptotic behavior. The model is
able to capture strong correlation effects that arise from chemical bond dissociation,
without relying on error cancellation. These features, which are usually missed by
standard density functional theory (DFT) functionals, are captured by the highly
nonlocal structure, which goes beyond the “Jacob’s ladder” framework for functional
construction, by using integrals of the density as the key ingredient. Possible routes for obtaining the full exchange-correlation
functional by recovering the missing kinetic component of the correlation energy are also implemented and discussed.

The widespread success of Kohn−Sham density-functional
theory (KS DFT)1−4 across various chemical and physical

disciplines has been also accompanied by spectacular failures,2

reflecting fundamental issues in the present density functional
approximations (DFAs) for the exchange−correlation (XC)
functional. Well-known examples are the paradigmatic case of
the dissociation curves of the H2 and H2

+ molecules.2,5 The
usual DFA approach to construct XC functionals consists in
making an ansatz in terms of “Jacob’s ladder” ingredients:4,6−8

the local density, its gradient, its laplacian, and/or KS kinetic
energy density, up to occupied and virtual KS orbitals. While
this strategy has been very successful for moderately correlated
systems (see, e.g., refs 3, 4, and 9−11.), it has failed so far when
correlation effects become important (e.g., in stretched bonds,
but also at equilibrium gemoetries when partially filled d and f
subshells are present). This fact suggests that a different
approach to DFAs is needed to address the problem of strong
correlation.2,3,12−14

The strong-interaction limit of DFT15−18 provides informa-
tion on how the exact XC functional depends on the density in
a well-defined mathematical limit, which is relevant for strong
correlation. The thorough explorations of this limit reveal a
mathematical structure totally different from that of Jacob’s
ladder ingredients. Instead of the local density, density
derivatives, or KS orbitals, in this limit we see that certain
integrals of the density play a crucial role, encoding highly
nonlocal information,15−17 embodied in the so-called strictly
correlated electrons (SCE) functional.15−17 This functional
appears to be well-equipped for solving long-standing DFAs
problems: it is self-interaction free, it captures the physics of
charge localization due to strong correlation without resorting
to symmetry breaking,19−21 and its functional derivative
displays (in the low-density asymptotic limit) a discontinuity
on the onset of fractional particle number.22 Despite these

appealing features, there are two main obstacles to the routine
use of the SCE functional: its availability is restricted to small
systems16,23 and its energies are way too low for most of
physical and chemical systems.19,23−25 The nonlocal radius
(NLR) functional,26 and the newer shell model27 are inspired
to the SCE functional form and retain only some of its
nonlocality. They are readily available,27 but, being approx-
imations to the SCE functional, their energies are also too low
with respect to those of chemical systems.26,27 The information
encoded in the SCE functional or its approximations can be
combined with the complementary information from the weak
coupling limit. This has been recently used for constructing XC
functionals from a local interpolation along the adiabatic
connection.14,27−29 Although this approach is promising for
treating strong correlation within the realm of DFT,14 it can
still easily overcorrelate (for example for stretched bonds it
overcorrelates the fragments), again because the SCE (exact or
approximate) quantities are often far from the physical ones.29

Nonetheless, the way in which the information encoded in
the density is transfomed into an electron−electron repulsion
energy in the SCE functional is very intriguing, with many
physical appealing features.16,30−32 Motivated by this observa-
tion, in this letter we use the SCE mathematical structure to
devise a new way to design fully nonlocal approximate density
functionals for the electronic interaction energy at the physical
coupling strength. Capturing the main structural motives of the
SCE functional, we preserve many of its appealing features, but
with repulsion energies that are much closer to those of
physical systems. Moreover, besides accurate total repulsion
energies, our model provides energy densities within the
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definition of the electrostratic potential of the XC hole that are
also locally very close to exact ones, making it an ideal tool for
the development of functionals that use the exact exchange
energy density, like hyperGGA’s33−36 or local hybrids.37,38 In
other words, it is known33,35,39,40 that in order to use the exact
exchange energy density, we need a fully nonlocal correlation
functional compatible with it. It is the purpose of this work to
provide a new strategy to build this fully nonlocal functional at
a computational cost similar to the one of the exact exchange
energy density.
In order to explain our construction, we have to first quickly

review some basic DFT equations. An exact expression for the
XC energy can be obtained from the density-fixed adiabatic
connection formalism (AC):41,42

∫ρ ρ λ= λE W[ ] [ ] dxc
0

1

(1)

where Wλ[ρ] is the global (i.e., integrated over all space) AC
integrand:

ρ ρ ρ ρ= ⟨Ψ | ̂ |Ψ ⟩ −λ λ λW V U[ ] [ ] [ ] [ ]ee (2)

The wave function Ψλ[ρ] depends on the positive coupling
constant λ and minimizes ⟨T̂ + λV̂ee⟩, while integrating to ρ(r),
the density of the physical system (λ = 1). This way, AC links
the KS non-interacting state described by Ψ0[ρ] and the
physical state described by Ψ1[ρ]. It also further connects the
physical and the SCE state, i.e., the state of perfect electron
correlation, corresponding to the limit λ → ∞. The XC energy
densities along the adiabatic connection (i.e., position-depend-
ent quantities wλ(r) that integrate to Wλ[ρ] when multiplied by
the density) are not uniquely defined and therefore we have to
be specific on their gauge.14,29,43−45 A physically sound gauge
often considered in DFT is the one of the electrostatic potential
of the XC hole.14,34,35,46 Within this gauge we can express the
λ-dependent energy density in terms of the corresponding
spherically averaged XC hole14,34,35,47 hxc

λ (r, u) obtained from
|Ψλ[ρ]|

2,
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where u = |r − r′| is the distance from a reference electron at r.
In the SCE (λ→∞) limit the energy density wλ(r) in the gauge
of eq 3 has the exact form48
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where vH(r) is the Hartree potential and the comotion functions
fi([ρ]; r) are nonlocal functionals of the density that give the
positions of the remaining N − 1 electrons when one electron
is at position r.15,16,32 From eq 4 we see that in the λ→∞ limit
the energy density w∞(r) is fully determined by the distances
Ri
SCE([ρ]; r) = |r−fi([ρ]; r)| between a reference electron in r

and the remaining N − 1 ones. For example, in the case of one-
dimensional systems, the distances Ri

SCE([ρ]; x) can be
constructed exactly15,49 from the equations (with i = 2, ..., N)

∫ ρ ′ ′ = − = | − |x x i R x x f x( ) d 1, ( ) ( )
x

f x

i i

( )
SCEi

(5)

which can be solved in terms of the function N1D(x) =
∫ −∞
x ρ(x′) dx′ and its inverse N1D

−1(y).15,19,30 We see that in this

limit each electron is separated by the closest one by a piece of
density that integrates exactly to 1 (in other words, fluctuations
are totally suppressed in the limit of extreme correlation), with
the key ingredient being the amount of expected electrons
between two electronic positions.
In this work we propose a way to generalize the SCE form of

eq 4 by using λ-dependent distances (or “radii”) Ri
λ([ρ]; r) that

will take into account the effect of fluctuations, which are not as
suppressed as in the extreme SCE case. Thus, our “multiple-
radii functional” (MRF) energy density reads as
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As we shall see, we will determine the Ri
λ([ρ]; r) by using a

simplified version of the same kind of integrals of the density
that appear in the SCE limit, introducing the average effect of
fluctuations by reducing the amount of expected charge
between two electronic positions. Before coming to the details
of the Ri

λ([ρ]; r) construction, we remark that eq 6 can be also
derived from the following model for the spherically averaged
pair-density

∑ρ
π

ρ δ= −λ
λ

=

P u
u

u Rr r r([ ]; , )
1

4
( ) ( ( ))

i

N

i2,
MRF

2
2 (7)

where δ is the Dirac delta function. Given that the model of eq
7 is properly normalized, the corresponding λ-dependent XC
hole satisfies the sum rule, integrating to −1 electron.
We now turn to the construction the radii Ri

λ([ρ]; r).
Motivated by the structure of eq 5, and similarly to the recent
nonlocal approximations for the SCE functional for three-
dimensional systems,26,27 we introduce the spherically averaged
density ρ̃(r, u) around a position r,

∫ρ
π

ρ̃ = + Ωur r u( , )
1

4
( ) d u (8)

and the function Ne(r, u),

∫ π ρ= ̃N u x x xr r( , ) 4 ( , ) d
u

e
0

2
(9)

These functions have been studied and efficiently implemented
by Ernzerhof and co-workers.27,28,51 We now want to find a
physical approximation for the crucial quantities

ν = =λ λN R i Nr r r( ) ( , ( )), 2 ,...,i ie (10)

which give the expected number of electrons in a sphere of
radius Ri

λ(r) centered at the reference electron in r. We notice
at this point that in an inhomogeneous system, even one-
dimensional, it is not possible to write the exact SCE radii
explicitly in terms of the function Ne(r, u) obtained by
spherically averaging the density around a reference electron in
r as in eq 8. An exception is an homogeneous 1D system, in
which ν2

SCE = ν3
SCE = 2, ν4

SCE = ν5
SCE = 4, etc.

At the physical interaction strength λ = 1, we expect a
situation in which this extreme correlation is reduced, with all
the νi close to i − 1. To illustrate this fact, we consider first an
N = 2 system, for which we have only one radius, R2

λ, which
from eq 6 will be equal to

=
+

λ

λ
R

v w
r

r r
( )

1
( ) 2 ( )2

H (11)
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showing that, for N = 2, R2
λ(r) is the screening length associated

with the Hartree-exchange-correlation potential when its
response part is removed.52−54 Given that for two-electron
systems highly accurate wλ(r) have been computed,14,50 we can
use eq 11 to obtain the “exact” R2

λ(r). In Figure 1 we show the

corresponding ν2
λ(r) for the hydride ion at λ = 0, λ = 1, and λ→

∞. We clearly see that, in the physical system, ν2
λ = 1(r) is much

closer to 1 than in the SCE extreme case, which allows for
much larger numbers ν2

∞(r), becoming equal to 2 at the
nucleus, as in the homogeneous 1D solution.
It is clear that there are several ways to define approximations

for νi
λ(r), using different ingredients. Here, our aim is to show

that already very simple approximations can yield rather
accurate results, and we focus on the physical λ = 1 case. As
said, we expect that ν2

λ = 1(r) ≈ 1, ν3
λ = 1(r) ≈ 2,..., and we write

ν σ= − + =i i Nr r( ) 1 ( ), 2 ,...,i i
1

(12)

yielding for the radii Ri
λ = 1(r) the equations

σ= − + =−R N i i Nr r r( ) ( , 1 ( )), 2 ,...,i i
1

e
1

(13)

with σi(r) being the f luctuation function, which can push away
or bring closer the ith electron to the reference one with respect
to the expected distance ai(r) = Ne

−1(r, i − 1). In this first
model, we consider only the case in which the ith electron is
pushed further, because for this case we can use again the
mathematical structure of the SCE functional as a guide. More
general models will be explored in future works. From the SCE
theory for spherically symmetric systems,16,32 we know that the
derivative of the radial comotion function f i(r) at point r is
inversely proportional to 4πf i(r)

2ρ( f i(r)). We thus introduce
the quantity Si(r)

π ρ=
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2

e
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which, in analogy to the SCE structure, provides information
on the derivative of the Ri

1(r) at σi = 0. When Si(r) is small, the
derivative of the Ri(r) will be very large, and we expect the
electron to be pushed further, with σi approaching the average
value 1/2 (which is exactly in between two expected positions).
When Si(r) is large, the derivative of Ri(r) is very small, and we
expect it to stay close to σi = 0 (or even become slightly
negative, a possibility not considered here). Thus, for
constructing the MRF functional at the full coupling strength,

hereinafter the MRF-1 functional, W1
MRF[ρ] = ∫ ρ(r)w1

MRF(r)dr,
we use a simple Gaussian ansatz

σ = −r( )
1
2

ei
bS r( )i

2

(15)

where b = 5 has been chosen to optimize the He atom W1[ρ].
Equations 6, 8, 9, and 12−15 completely define w1

MRF(r).
In Table 1 we compare W1[ρ] obtained with the MRF-1

model with corresponding reference values (full-CI/CCSD),

PBE, and SCE ones (W∞[ρ]) for several closed-shell atomic
(ionic) systems evaluated on accurate (CCSD/full-CI)
densities. The PBE values have been obtained by using the
scaling relation,58,59 with ργ(r) = γ3ρ(γ r),

ρ ρ ρ
ρ

γ
= + −

∂

∂
|γ
γ=W E E

E
[ ] [ ] 2 [ ]

[ ]
1
DFA

x
DFA

c
DFA c

DFA

1
(16)

From Table 1 we can see that our model, even with the very
simple ansatz for σi(r) of eq 15, gives repulsion energy much
closer to the physical ones with respect to SCE. Their quality is
comparable to that of PBE, with MAE somewhat smaller (0.17
au vs 0.24 au). The purpose here is not to reach high accuracy
(which requires optimization and further studies of the Ri), but
to show that functional approximations based on modeling the
quantity σi(r) is a very promising strategy, because already a
primitive nonoptimized model performs very well. Even
more interesting than the global W1

MRF[ρ] values are the
energy densities: in Figure 2 we compare w1

MRF(r) with the
reference w1(r) for the neon atom (top panel) and the
hydride ion (bottom panel). We also show w1(r) obtained
with the LDA functional from the PW92 parametrization,57,60

= ϵ∂
∂w r r r( ) ( ( ))

r r1
LDA

s
1

s
2

xc s
s s

. We see that w1
MRF(r) is in good

agreement with the reference w1(r) in the case of Ne, but also
in the more correlated case14,48 of H−, again improving
dramatically with respect to SCE. From the insets of the same
figure, we can see that the local error of our model is very small,
vanishing for large r due to the correct − | |r

1
2

asymptotic

behavior, arising from the proper normalization of eq 7. The

Figure 1. ν2
λ(r) quantity of eq 10 and the corresponding R2

λ(r) radius
at different coupling strengths for the hydride ion obtained from eq 11
using accurate xc energy densities wλ(r) from refs 14 and 50

Table 1. Atomic (Ionic) Repulsion Energies W1[ρ] Obtained
by the MRF-1 Model and PBE Compared to Reference
W1[ρ], Obtained with the GAMESS-US Package55 Using Full-
CI (for the First Four Systems) and CCSD Wavefunctions
(Other Systems)a

atom/ion reference MRF-1 PBE SCE

He −1.1029 −1.1844 −1.1047 −1.4982
H− −0.4532 −0.4681 −0.4413 −0.5689
Be −2.8341 −2.8044 −2.8430 −4.0195
Li− −1.9462 −2.1170 −1.9617 −2.7308
F− −10.889 −10.741 −10.997 −16.940
Ne −12.765 −12.823 −12.876 −20.041
Mg −16.701 −16.365 −16.913 −26.709
Cl− −28.89 −28.48 −29.19 −47.26
Ar −31.35 −31.19 −31.68 −51.49
Ca −35.60 −35.92 −36.85 −60.34
MAE - 0.17 0.24 -

aThe aug-cc-pCVXZ basis set of Dunning56 has been used (X = 6 for
He and H−, X = 5 for F− and Ne, X = T for Be and Li− and X = Q for
the other atoms). The SCE values W∞[ρ] computed from the same
densities are also reported.
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availability of DFAs energy densities in this gauge is rather
limited, and beyond LDA it is restricted to few approxima-
tions61,62 to the exchange energy density (ϵx(r) = w0(r)). For
instance, the gauge incompatibility63 of the generalized gradient
approximation (GGA) exchange energy densities and the exact
ϵx(r), which is in the gauge of eq 3, has been a major hurdle for
the development of local hybrid DFAs.37,38

The main point of introducing the full nonlocal dependence
is of course to treat static and strong correlation. In Figure 3 we
show the energy density w1

MRF(r) for the H2 molecule at
different bond lengths Lb along the internuclear axis, compared
with accurate ones from ref 14. For comparison, we also show
w1(r) obtained from the interpolation model of Liu and Burke
(LB)64 applied to energy densities, with the exact w0(r), w0′(r),
and w∞(r) as input ingredients.

14 As we can see from Figure 3,
in the equilibrium region the MRF-1 energy densities are still
somewhat lower than the reference ones, whereas the LB is
highly accurate, as it is also the case with atoms.14,29 However,
we can also see that in the stretched case (Lb = 10 au) the
MRF-1 energy densities are very accurate, even more accurate
than the LB interpolated ones, whose error is already small
(note again that they use the exact w0(r), w0′(r) and w∞(r) as
input for the interpolation). While in the stretched H2 molecule
the static correlation effects are dominant, at intermediate bond
lengths, around Lb ∼ 5.0 au, there is a subtle interplay between
dynamic and static correlation effects.29 This region can be
even more challenging for DFAs than the stretched case, given
that certain DFAs that dissociate H2 correctly fail in this
scenario yielding a positive “bump” (see, e.g., refs 14 and

65−67). We can see that the MRF-1 energy densities are very
accurate at Lb = 5.0 au, hardly distinguishable from the
reference ones.
In Figure 4 we show the dissociation curve for the H2

molecule obtained using the MRF-1 functional evaluated on the

Figure 2. Energy densities at full coupling strength w1(r) as a function
of distance from the nucleus, r/a.u., obtained from the present model
(MRF), from the local-density approximation (LDA),57 and from the
strictly correlated electrons functional (SCE), all evaluated on accurate
densities, for Ne (upper panel) and H− (lower panel). The reference
w1(r) are obtained at the full-CI and CCSD level of theory, as in refs
14 and 48, by using the aug-cc-pCVTZ and aug-cc-pV6Z basis sets56

for Ne and H−, respectively. Insets show the absolute error of
approximate energy densities, δw1(r) = w1 − w1

apx(r).

Figure 3. Energy densities at full coupling strength as a function of the
distance from the bond midpoint z along the internuclear axis for the
H2 molecule at different bond-lengths Lb obtained with MRF-1 using
accurate FCI/aug-cc-pCVTZ densities. Reference energy densities and
those obtained with the LB local interpolation scheme are from ref 14.

Figure 4. H2 molecule dissociation curve as a function of the
internuclear distance Lb/a.u. obtained with the MRF-1 and 2-leg MRF
approaches presented in this work, compared to restricted PBE and
FCI. All the curves have been obtained using the aug-cc-pCVTZ basis
set.56
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accurate FCI/aug-cc-pCVTZ densities. We can see that around
equilibrium MRF-1 underestimates the total energy, because it
misses the positive kinetic correlation component Tc[ρ] and
slightly underestimates the exact W1[ρ], as already shown in
Figure 3. Despite missing Tc[ρ], MRF-1 dissociates H2
correctly, because Tc[ρ] vanishes as the H2 dissociates into
atoms. To recover the missing Tc[ρ] component, one can
combine W1

MRF[ρ] with the quantities from the weak coupling
limit, namely, W0[ρ] and W0′[ρ], to interpolate Wλ[ρ] and thus
obtain Exc[ρ]. For this purpose, we employ a very simple
interpolation form, the two-legged representation,14,29,68 which
has recently been used to construct a tight lower bound to
correlation energies.29 This form reads as

ρ
ρ λ ρ λ

ρ λ
=

+ ′ ⩽

>λ ⎪

⎪⎧⎨
⎩

W
W W X

W X
[ ]

[ ] [ ],

[ ],
0 0 c

1 c (17a)

ρ ρ
ρ

=
−
′

X
W W

W
[ ] [ ]

[ ]c
1 0

0 (17b)

As in this work, we useW1
MRF[ρ] as an approximation toW1[ρ],

we call this approach the “2-leg MRF”, and from Figure 4 we
can see that it substantially improves the MRF-1 energies. In
this case very similar results are obtained if we do the
interpolation on the energy densities rather than on integrated
quantities. Besides dissociating correctly H2, the dissociation of
H2

+ is also correctly described within the MRF-1 and 2-leg MRF
approaches, because our model of eq 7 is equal to 0 for all N =
1 systems.
Finally, one may wonder if the MRF would encounter

problems for extended systems. As a paradigmatic example, we
consider the uniform electron gas (UEG) with density

ρ π=
−( )r4

3 s
3 1

, for which Ne(r, u) = Ne(u) = u3/rs
3 and Ne

−1(i

− 1) = rs(i − 1)1/3. Then, by using the model pair density of eq
7, we obtain w1

MRF(rs) = w̃(rs)/rs with

∑
σ

̃ =
− +

−
→∞ =

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥w r

i r
N( ) lim

1
2

1
( 1 ( ))

3
2N i

N

i s
s

2
1/3

2/3

(18)

where σi(rs) is given by eq 15 and, from eq 14, Si = 3(i − 1)2/3/
rs. This expression has a fast N → ∞ convergence and when σi
= 0 can be evaluated in closed form. It yields reasonable values
for the UEG, with a maximum relative error of 23%. The
function w̃(rs) of eq 18 has the same qualitative behavior of the
exact one: it is monotonically decreasing with rs, bounded
between the two limting values w̃(0) = −0.487 and w̃(∞) =
−0.7564, not so far (considering the simplicity of the model for

σi(rs)) from the exact ones, − ≈ −
π( ) 0.4583

4
3

2

2/3
and ≈ −

0.876, respectively (this latter value is currently a matter of
discussion, see refs 69 and 70). The UEG also illustrates the
physics of the model: when rs → 0 (weak correlation) σi≥2 → 0,
while when rs → ∞ (strong correlation), σi ≠ 0 for i larger and
larger (long-range fluctuations become more and more
important). It also suggests that for extended systems the
explicit functional can be confined to a set i < imax, and the rest
can be resummed. The value imax is determined by correlation
(for example, in the UEG it is automatically determined by
σi(rs)).
In summary, we have proposed a strategy to build fully

nonlocal DFAs inspired by the mathematical structure of the
exact XC functional in the strong coupling limit, reducing the

problem to the construction of the fluctation function σi(r) in
terms of Si(r) of eq 14. Already an extremely simple model such
as the one of eq 15 is locally accurate, it is able to dissociate
correctly the H2 and H2

+ molecules, and gives very reasonable
results for the uniform electron gas. We thus believe that the
nonlocal structure of our functional, which goes beyond the
Jacob’s ladder framework, opens up new perspectives for the
development of XC functionals able to tackle strong
correlation. Although the functional is highly nonlocal, it can
be obtained at a computational cost comparable to that of the
NLR and shell functionals, which have been recently
implemented in a very efficient way.27 Many strategies to
improve the accuracy can be pursued: the inclusion of kinetic
correlation through interpolation along the adiabatic con-
nection (as in Figure 4); trying to model directly the λ-
dependence of σi; the generalization to noninteger number of
electrons22 and spin densities; improving the accuracy for the
UEG, and adding the dependence on the gradient of Si(r). The
functional can also be readily applied to other dimensionalities,
e.g., electrons confined in quasi-1D and quasi-2D geometries,
for which the SCE approach has already proven very useful.19,20

It can be also applied to other isotropic interactions, such as the
error function used in range separation5 but also effective
interactions for ultracold quantum gases.21
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