Double excitation for $L = 8\pi$

- $\Omega_{\text{eLDA}}^{(2)}$ with $\mathbf{w} = (0,0)$

- $\Omega_{eLDA}^{(2)}$ with $\mathbf{w} = (1/3, 1/3)$

••• $\Omega_{eLDA}^{(2)} - \Delta_c^{(2)}$ with $\mathbf{w} = (0,0)$

••• $\Omega_{\rm eLDA}^{(2)} - \Delta_{\rm c}^{(2)}$ with $\mathbf{w} = (1/3, 1/3)$

Number of electrons N

Single excitation for $L = 8\pi$

- $\Omega_{eLDA}^{(1)}$ with $\mathbf{w} = (0,0)$

- $\Omega_{eLDA}^{(1)}$ with $\mathbf{w} = (1/3, 1/3)$

- $\Omega_{eLDA}^{(1)} - \Delta_c^{(1)}$ with $\mathbf{w} = (0, 0)$

••• $\Omega_{\text{eLDA}}^{(1)} - \Delta_{\text{c}}^{(1)} \text{ with } \mathbf{w} = (1/3, 1/3)$