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A one-to-one mapping between the one-particle densities and a particular set of n-particle ensembles is 
constructed. The construction entails simultaneous minimization of the energy and minimization of the L ,­
norm over the set of ensembles which yield a given density. Differences between the present approach to 
density functional theory and other approaches, such as Kohn-Sham theory (Ref. 12) and 
Thomas-Fermi-Dirac-Weizsacker theory (Ref. 13) are emphasized. The Levy density functional may be 
decomposed into kinetic and electron-electron interaction components. 

I. THE HOHENBERG-KOHN THEOREM 

The central problem of density functional theory is to 
define the energy of an arbitrary one-electron density. 
For a certain set of these densities, Hohenberg and 
Kohnl (HK) were able to demonstrate the existence of an 
energy-density functional which obeys the variational 
bound, Eo, of the original Schr5dinger functional, 2 

Here, W is some unit-normalized, antisymmetric wave 
function and H is a fixed, molecular Hamiltonian. For 
certain denSities, the HK theorem assigns an energy 
such that 

EHK[P]~Eo • (2) 

A characterization of these densities follows. 

A density P is said to be representable by a wave func­
tion W if 

(3) 

where x K = (xl> ••• , xk) is a vector of spin-space coordi­
nates. If P is representable by a nondegenerate, nor­
malized, antisymmetric wave function that is also the 
ground state for a system with some local, external 
potential, v(r),3 p is said to be v representable. These 
are the densities for which the HK theorem assigns an 
energy. 

The key to the construction of EHK[P] is that there is 
only one such wave function for each density. 1 Now it is 
easy to assign an energy to p: 

(4) 

where >J!(p) is the parametrization of the set of nonde­
generate, ground-state wave functions generated by the 
distinct density each produces. Further, this parametri­
zation is independent of the local, external potential in 
H. Consequently, one says that EHK[P] is universal as 
a functional of p. Note that Eq. (4) only calls for the 
computation of expectation values which already appear 
in the usual Schrodinger functional. Therefore, the 
variational bound, Eq. (2), holds for all v-representable 
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p. If H'JIo=Eowo, and!dxN_l wo-vt=po, then EHK[POJ=Eo· 

There is both an advantage and a disadvantage to the 
HK formulation of density functional theory. The ad­
vantage is that there is a one-to-one mapping between 
at least some densities and some wave functions that 
allows EHK to be decomposed into kinetic and interaction 
parts. The disadvantage is that it not known whether 
or not E HK[P] is defined for all p. 

Fortunately, Levy4 has proposed an alternative defini­
tion of the energy of an density which is valid for any 
density, making use of the fact that Gilbere has shown 
that any denSity may be derived from at least one wave 
function. However, in this approach the one-to-one 
mapping between densities and wave functions is lost, 
along with the decomposition. Recovery of such a map­
ping will require a slight modification of Levy's ap­
proach. 

II. THE LEVY FUNCTIONAL WITH MODIFICATIONS 

Recently, Levy4 proposed a different concept of the 
energy of a denSity, defined for an arbitrary density. 
However, in his scheme, generally many wave functions 
give the same density and have that energy which one 
wants to assign to that density. The relationship between 
densities and wave functions in Levy's theory is no lon­
ger one-to-one. 

The following modificat ion of the Levy functional will 
be helpful in recovering a one-to-one mapping. It was 
suggested previously that one regard one-particle densi­
ties as originating from ensembles or n-particle denSity 
matrices (or n matrices), rather than from simple wave 
functions. An n matrix, D(N, N'), may be defined as 

D(N, N') = L w~-v~(N)>I!:(N/) , (5) 

-where N is the set of spin-space coordinates, (xl> ••• , xn\ 
{>J!~} is some set of orthonormal, antisymmetric n-par­
ticle functions, and 2: ~ w~ = 1, with all w~ ~ O. The set 
of all such n matrices we denote as Sn' The one-particle 
density may now be generated by the integral 

(6) 

We label the set of all n matrices that produce the same 
density L/n) C on: 6 

L/n)= {DE 0.: f dXN-1D(x,XN-l; X,XN-l)=P(x)}, (7) 
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for one fixed p. None of the Lp(n) are empty as stated 
previously. 3 Then the energy -density functional E e[P ]4.5 

may be defined as 

(8) 

The inner product notation, (A, B), for matrices A and 
B, is adopted. 6 Thus the energy for an arbitrary den­
sity is the least energy of all ensembles in Lp(n). In 
general, there are many ensembles that produce the 
same energy. Our goal is to define a selection process 
that chooses a unique ensemble from those in 4(n) with 
least energy. 

III. A ONE·TO·ONE MAP BETWEEN THE SET OF 
DENSITIES AND A SET OF ENSEMBLES 

Let Lp(n, E.) C L/n) be the set of ensembles in Lp(n) 
that also have least energy. The set Lp(n,Ee) is convex7 

and is part of a Hilbert space. 6 The inner product on 
this Hilbert space is 

(D, D) = trD2 . (9 ) 

This inner product induces a norm on the Hilbert space 
given by 

tlDil =(D,D)1/2 • 

Now take the minimum of this norm over Lp(n, E.): 

[; = min {II D II : D E Lp(n, E.)} . 

(10) 

(11) 

Because Lp(n, Ee) is convex, there is only one ensemble 
that attains this minimum, [;.8 This is the unique en­
semble which we associate with the density: D(p) simul­
taneously minimizes the energy and the norm on the en­
sembles over Lp(n). 

For concreteness we suppose that Lp(n, E,) is part of 
a finite-dimensional space. We assume that Lp(n, Ee) 
can be spanned by a finite number of its orthonormal 
elements, {D j ri=l ..... s. So, for any DE Lp(n, E e), 

(12) 

where If=laj = 1 and aj?: O. Then, the minimum-norm 
element Dm10 is the one with all aj = l/s: 

(13) 

This is the equal-occupancy ensemble, which seems 
reasonable, physically, since there is no a Priori rea­
son for chOOSing anyone of these representations over 
the others. 

We now identify E e[P 1 as 

E.[pl= (H,D(p) = (H(N), D(N,N'; p), (14) 

where D(p) now plays the role of lIt(p) in Eq. (4). It sig­
nifies the parametrization of the critical set of ensem­
bles which we previously described by the unique densi­
ties that they produce. This situation is essentially the 
one present in the original HK theorem, except that Eq. 
(14) is defined for all densities. 

(15) 

for all DE Lp(n), where T and Vee are the n-particle 
kinetic and electron-electron interaction energies, D(P) 
must be independent of the local, external potential, v. 
Therefore, we consider Ee(P] to be a universal functional 
of the density. 

Two remarks are in order at this point. First, there 
is no reason to believe that the foregoing is the only con­
ceivable selection process. This may have an influence 
on the properties of D(p). Second, a similar theory for 
reduced matrices exists, and in particular for one-ma­
trices denoted by y,6 with results Similar to those of 
this paper. The difference is that the mapping between 
reduced matrices and n-matrices is slightly different. 
In particular, there are more one-matrices than densities. 
Consequently, D(y) is "more detailed" than D(p). The 
importance of this is that D(y) might contain more crit­
ical pOints of the original Schrodinger theory, thereby 
increasing the possibility that D(y) might include ex­
cited-state ensembles, while D(p) might not. 

IV. DISCUSSION AND EXTENUATING PROBLEMS 

Since a single-valued function D(p) now has been con­
structed, the situation now seems more amenable to the 
exploration of advanced topics centered about differ­
entiability and the presence of excited states. Should the 
functional E,,[p] of Eq. (14) prove to be continuously dif­
ferentiable, Euler equations for this functional would 
actually exist. 9 An explicit Euler equation would facili­
tate the answering of the question of the presence of ex­
cited states in this approach to density functional theory. 

First considering differentiability, it should be noted 
that E .. [y] might be differentiable, while Ee[P] might not. 
A full analysis is not yet available. However, possible 
differences between the two functionals are indicated 
in the analysis of continuity. In the case of E .. [y], we 
ha ve the following results from Kato10 and Klahn and 
Bingel ll : 

(16) 

The constant K is independent of D, but 

(T,D) =(t, y) , (17) 

where tis the reduced, one-particle kinetic energy opera­
tor. Thus, all ensembles yielding a particular y have 
energies bounded above by a constant related to K +(t, y). 
This is enough to show that E,,[y] is continuous with re­
spect to changes in y, in the norm given in Refs. 10 and 
11. 

In the case of E,,[p], relations similar to Eq. 16 are 
not known. So continuity is not as easily established in 
this instance. Being concerned with minimum-energy 
ensembles in Lp(n), which cannot become too negative 
by the variational principle, there is a good deal of hope 
in this case, nevertheless. 

One may consider a related question. Suppose p, and 
y, correspond to an excited-state wave function IItJ • It 
might be true that 

(18) 

and 

J. Chem. Phys., Vol. 73, No.9. 1 November 1980 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.24.51.181 On: Sun, 23 Nov 2014 18:57:53



Steven M. Valone: Mapping between one-particle densities and ensembles 4655 

(19) 

That is, >Vj>vl or t(>Vj(N)>vj(N') + >vl(N)>VJ(N ')] might be 
an energy-minimizing ensemble in either Lyj(n) or Lpj(n), 
respectively. Note that it may be possible for Eq. (18) 
to be true without Eq. (19) being true. It is first neces­
sary to verify (or disprove) this conjecture, if one 
wishes to deal with excited states in this theory. It is 
expected that Harriman's work6 will be of importance in 
this connection. Assuming the conjecture to be true, 
one must then determine whether or not E,,[pj] or Ee[Yj] 
is an extremum. 9 

Another concern in this work is the development of an 
adequate framework for the systematic approximation 
of E.,[p]. It is hoped that this has been accomplished 
through the introduction of the well-characterized sets, 
Lp(n), and the establishment of the single-valued func­
tion D(p), defined for all p. It should be clear that the 
present point of view is very different from the Kohn­
Sham theory12 and the Thomas-Fermi-Dirac-Weizsacker 
theory.13 This is due to the decision to adhere rigor­
ously to the variational principle. It appears that other 
theories develop their functionals with different consid­
erations in mind. In particular, I do not believe that any 
existing, approximate density functional theory has been 
constructed with the prescriptions of Eq. (14) enforced.l4 

Therefore, an approximation based on the properties of 
E .. [p] promises to provide novel information. 

Of course, the nature of the parametrization, D(p), 
is not completely understood. for instance, is it pos­
sible to apply a p-dependent transformation to D(p) which 
will bring it to diagonal form as in Eq. (5)? Two other 
properties of D( p) are evident though. One is that the 
parametrization does not require the knowledge of the 
derivatives of the density. The other is that Eq. (14) is 
valid for any density, whether or not it is given in terms 
of an orbital decomposition. Similar remarks are also 
true for Ee[Y]. As pOinted out in Ref. 5, the analysis of 
Donnelly and Parr15 holds for Ee[Y]. From the remarks 
above, the total variation of E .. [y] with respect to Y, as 
contemplated in Ref. 15, is a reasonable notion to enter­
tain. However, because of the parametric nature of 
D(y), Eqs. (20) and (22) of Ref. 15 still seem unreason­
able, as previously suggested. 5 As demonstrated ,by 
Harriman,6 the introduction of an orbital basis greatly 
increases the degree of clarity in the structure of Lp(n) 
and its one-matrix analogs. 

V. SUMMARY 
A parametrization, D(p), of a set of ensembles as a 

function of the one-electron denSity has been constructed, 
using a modification of the Levy functional and the Hil­
bert space structure of the set of ensembles. This 
parametrization permits an energy and unique ensemble 
to be assigned to any density. The parametrization en­
hances the prospects for obtaining Euler equations for 
the derived functional, Elp] = (H, D(p». Separation of 
this functional into kinetic and potential parts permits 
different approximations for each. 
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