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Abstract

Ensemble methods for excited states are based on the ensemble variation principle and
in their simplest formulations can be either based on the wavefunction or the electron
density. The latter group shares the favorable scaling of ground state density functional
theory (DFT) and as such can be considered a computationally inexpensive alternative
to time-dependent (TD)-DFT in cases where TD-DFT is not sufficiently accurate. The fail-
ures of TD-DFT most prominently include the poor description of conical intersections
and excitations of multiple character, i.e., when multiconfigurational effects play a
significant role. To deal with such issues, quite recently a number of multiconfiguration
ensemble methods have been designed that combine a wavefunction-based formula-
tion with ensemble density functional theory. This chapter discusses the merits
and shortcomings of such approaches. It also attempts to elucidate some of the
essential problems associated with the ensemble DFT methods and their variants to
the computational chemistry community.
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1. ENSEMBLE VARIATION PRINCIPLE AND ITS
DESCENDANTS

In the 1970s, when the ensemble methods for describing the excited

states of molecules first appeared, available methods for calculating the exci-

tation energies for molecules were either very inaccurate or very expensive.

The subspace density functional theory, introduced by Theophilou,1 gave

hope that it would be possible to describe the correlation in the excited states

at modest cost. Then, many difficulties associated with using ensemble

methods and the rapid development of time-dependent density functional

theory (TD-DFT) impeded the progress of ensemble methods, as well as

the other time-independent density functional methods for excited states.

Currently, it seems that TD-DFT is reaching the limits of its capabilities

and while it is of impressive accuracy in describing single valence excitations,

it is still having problems with Rydberg2 and charge-transfer states3,4 and

excitations of multiple character.5 These observations prompted a renais-

sance of time-independent density functional methods for excited states6–12.

Among them, the ensemble methods are prominent.

The foundation of all the ensemble methods is the ensemble minimum

principle1,13 which states that if ψ1,ψ2,…, ψm are orthonormal trial func-

tions, then for m lowest eigenfunctions of N-electron Hamiltonian Ĥ with

eigenvalues E1�E2�…�Em the weighted sum of expectation values of

energy obtained with the trial functions is bounded from below by a

weighted sum of pertinent eigenvalues, i.e.,

Xm
I¼1

ωIhψ I jĤ jψ Ii �
Xm
I¼1

ωIEI (1)

provided that weights ωI fulfil the condition

ω1�ω2�⋯�ωm > 0: (2)

Inequality (1) allows all excited states, or just a chosen number of the lowest

states, of a system to be treated as one ensemble (mixed) state. The sum on

the left side of the inequality (1) is called the ensemble energy, Eens. The

minimum of the ensemble energy uniquely determines the eigenstates of

the system if all the weights ω1,…,ωm are different. If the weights are equal,

the minimum of the ensemble energy determines only the subspaces in
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which the eigenstates lie, therefore the methods based on the simplified

ensemble minimum principle are called subspace methods (i.e., subspace

Hartree–Fock (HF),14 subspace DFT1).

The simplest method based on inequality (1) is ensemble HF,14–16 which

consists in minimization of the ensemble energy within a set of single Slater

determinants. While conceptually straightforward, this single-determinant

wavefunction method is able to capture very little dynamic and no static

correlation.

A more promising method is ensemble DFT (originally introduced

under the name subspace DFT by Theophilou1). It is based on a

Hohenberg–Kohn (HK) type theorem introduced by Theophilou and

extended by Gross et al.17 for ensembles of unequal weights (see also Refs.

18,19), chosen for an m-state ensemble as follows

ω1¼ω2¼…¼ωm�g � 1�ωg

m� g
(3)

and

ωm�g+1¼ωm�g+2¼…¼ωm�ω (4)

where g is an integer satisfying 1� g�m� 1 and ω is a real parameter in the

range 0�ω�1/m. The ensemble density matrix expressed in the basis of

eigenstates j jif g of the Hamiltonian Ĥ ¼ T̂ + V̂ ee + V̂ (with T̂ denoting

the kinetic energy, V̂ ee the electron–electron interaction and V̂ the external

potential) reads

Γ̂m,gðωÞ¼ 1�ωmð Þ 1

m� g

Xm�g

j¼1

j jih jj
" #

+ωm

1

m

Xm
j¼1

j jih jj
" #

: (5)

The theorem states that if for m lowest eigenstates jm0if g of a Hamiltonian

Ĥ
0 ¼ T̂ + V̂ ee + V̂ 0 another density matrix is constructed:

Γ̂m,gðωÞ0 ¼ 1�ωmð Þ 1

m� g

Xm�g

j0¼1

j j0ih j0j
" #

+ωm

1

m

Xm
j0¼1

j j0ih j0j
" #

(6)

then for fixed numbers m,g, ω the ensemble electron densities

ρens ¼Tr Γ̂m,gðωÞρ̂ðrÞ� �
(7)
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and

ρ0ens¼Tr Γ̂m,gðωÞ0ρ̂ðrÞ� �
(8)

are different, provided that potentials V̂ and V̂ 0 differ by more than a

constant. The proof of the HK theorem for ensembles allowed17 a universal

HK functional to be defined

Fm ω,ρens½ � ¼Tr Γ̂m,gðωÞ T̂ + V̂ ee

� �� �
, (9)

where Γ̂m,gðωÞ is a density matrix corresponding to a given density ρ. Note

that there may be more than one density matrix generated by a unique poten-

tial and yielding ρ but each gives the same ensemble energy.17 The functional

(9) is defined for ensemble v-representable densities. As with a ground state

theory, the extension of the universal functional to ensembleN-representable

densities is possible if the constrained-search formalism construction is used.

Namely, the universal functional for an ensemble density can be defined as

Fm,ω½ρens� ¼ min
ΨIf g!ρens

Xm
I¼1

ωI ΨI jT̂ + V̂ eejΨI

� �
, (10)

where the notation ΨIf g! ρens indicates a set of m orthonormal

wavefunctions forming an ensemble, which pertains to a given ensemble

density by the relation

ρensðrÞ¼
Xm
I¼1

ωIhΨI jρ̂ðrÞjΨIi: (11)

It is convenient to define an exchange-correlation (XC) ensemble density

functional by introducing a Kohn–Sham (KS) system which shares an

ensemble density with the interacting system (assuming that both densities

are constructed from the m lowest states and with the same ensemble

weights). The XC ensemble functional is then written by analogy to its gro-

und state counterpart as

EXC
m,ωðρensÞ¼Fm,ω½ρens��Ts

m,ω½ρens��
1

2

Z Z
ρensðrÞρens r0ð Þ

jr� r0j drdr0, (12)

where Ts
m,ω stands for the kinetic energy of the KS system and the Coulomb

term depends explicitly on the ensemble density ρens.
The ensemble density functional theory formulated by Gross et al.13,17

has become a standard formulation for ensemble DFT over many years
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and was used by Gross et al.20 to calculate the spectra of a helium atom and a

helium ion. In place of the ensemble XC energy, they used the ground-state

local density approximation (LDA, Ref. 21) and also Kohn’s quasi-local

approximation (QLDA) for ensembles.22 The spectra obtained were

blurred, a result which the authors blamed on the self-interaction error. Sub-

sequently, many approaches based on the approximate ground-state XC

functionals were formulated and tested: the exact-exchange23–27 and the

local density approximation28 or other approximations developed for the

ground state DFT, reoptimized for ensemble calculations.29,30

Most of the aforementioned work on ensemble DFT used optimized

effective potential approach, which employs an ensemble KS potential.

There are two reasons why it is desirable to use a local, multiplicative ensem-

ble exchange and correlation potential vensXC¼ vensXC rð Þ. The first reason is for-
mal. In ensemble DFT, the ensemble density is in one-to-one

correspondence with the external (local) potential of the system.1,17 Fur-

thermore, for the ensemble KS system, i.e., the virtual noninteracting system

of electrons with the same ensemble density as the interacting system under

study, the ensemble density is in one-to-one correspondence with the

ensemble KS potential. The latter is the local effective potential that binds

the noninteracting electrons in such a way that its ensemble density is the

same as the ensemble density of the interacting system of interest. Therefore,

determination of the ensemble KS potential is at the heart of ensemble DFT.

The second reason is increased computational efficiency. The ensemble spin

orbitals can be obtained by optimizing the ensemble energy (1). Like the HF

equations, the direct minimization of the ensemble energy leads to single-

particle eigenvalue-like equations for the spinorbitals, where the exchange

potential term is not local. However, unlike theHF case, because the ensem-

ble energy is not invariant to rotations of the spinorbitals, the Hamiltonian

operator in the single-particle equations is in general not common to all

spinorbitals. As a result, the orbitals which solve the ensemble single-particle

equations are not automatically orthogonal and it becomes necessary, in

general, to enforce their orthogonality, e.g., by employing off-diagonal

Lagrange multipliers. The optimized effective potential method provides

an elegant solution to the problem of a common Hamiltonian operator in

the ensemble single-particle equations, with the additional benefit of a local

exchange and correlation potential, as required by ensemble KS DFT.

Over the years, a lot of effort has been put into formulating the theoret-

ical framework of ensemble DFT.31–35 It has become clear that there is

no easy way to obtain a good approximation for the ensemble XC functional
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and using the ground-state approximations might be the best starting

point. Two approaches do not use existing functionals; first is the afore-

mentioned QLDA due to Walter Kohn which was derived for a thermal

ensemble and as such is not very successful in describing ensembles of states

that do not interact with one another. The other is the recent of work of

Yang et al.36 where the exact KS and XC potentials for given ensemble

densities are extracted and applied to the helium atom. The authors speculate

that knowledge of the exact potential can be useful in constructing ensemble

density functionals. While this is certainly true, this sort of task has been

attempted previously for ground-state functionals without much success

(see e.g., Ref. 37) and it is not expected to be easier in case of ensemble

density.

The use of ground state expressions for the Hartree, exchange and cor-

relation energy introduces a self-interaction error in the ensemble energy.

This error has been called “ghost interaction” by Gidopoulos et al.26 The

error lies in the conventional definition of the ensemble Hartree energy that

employs the ground state expression EH ¼ 1
2

R R ρensðrÞρens r0ð Þ
jr�r0j drdr0. Consider

the excitation of an electron occupied in an orbital of the state Ψ1 to an

orbital unoccupied inΨ1 but occupied in the excited stateΨ2. The ensemble

density is the weighted sum of the densities of the states Ψ1,Ψ2. Hence, the

Hartree energy will include the spurious Coulomb interaction of the density

from the orbital occupied by the electron before excitation with the density

of the orbital hosting it after the excitation. This kind of self-interaction is

not encountered in ground state DFT, nor ground state HF theory and the

ground state expressions for the exchange energy cannot correct it. The best

way to correct for the ghost self-interaction is to write the ensemble Hartree

energy as the sum of the Hartree energies of the member configurations of

the ensemble.24,26,38,39

The spin-symmetry of the ensemble members introduces a further

challenge to the ensemble theory for excited states (DFT and HF). Consider

the He atom. The ground state is a singlet and the lowest excitation is a trip-

let. The next lowest excitation is a singlet. So, for the physical He atom, the

ensemble with configurations of lowest energy may have one member (the

singlet ground state), four members (singlet ground state and triplet excited

state) or five members (the above plus the singlet excited state). If we now

consider the noninteracting system, the ground state is nondegenerate but if

we want to consider the lowest excitation, this is quadruply degenerate.

Therefore one may consider just the ground state, or an ensemble of five
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members. This places restrictions on the choice of ensemble weights for the

noninteracting system. For example, the freedom to choose unequal weights

is restricted, because if we imagine an adiabatic connection path, where we

switch on the electron repulsion, a noninteracting ensemble with randomly

unequal weights for the four degenerate excited states cannot in general con-

nect smoothly to an ensemble of the physical system, where the fourfold

degeneracy is broken and where the ensemble weights will satisfy the

inequalities (2). In Ref. 26, the problem was addressed by choosing the

members of the noninteracting ensemble to be eigenstates of S2 and not sin-

gle Slater determinants. Such a choice has also led to improved accuracy of

the results (see table in Ref. 26). This point is discussed in Ref. 39, where

eigenstates of S2 are also used. Another way of bypassing the problem is to

use Boltzmann weights for the members of the ensemble, which guarantee

at least the existence of a smooth adiabatic connection between the

noninteracting and interacting systems.

Another challenge for ensemble DFT, seemingly of lesser importance

but with major impact on the quality of results is the lack of a clear

path to obtain the energies of specific states in the ensemble. In the

wavefunction approaches, it is fairly reasonable to identify the resulting

set of wavefunctions with the true eigenvectors of the Hamiltonian. In

the ensemble DFT, however, extracting the energies is not straightforward.

Various methods have been proposed1,20,35,40,41,42 but those which are the-

oretically justified are not feasible in practical calculations and vice versa

(with the exception of Levy’s method which involves calculation of the

first excitation energy from orbital energies resulting from an ensemble

calculation—this, however, limits the method to calculating only the first

excitation energy). We will not present all these methods in detail, this

problem will be briefly discussed in Section 4.3 in the context of multi-

configuration methods.

A final question which the quantum chemistry community has tried to

address concerns the actual capabilities of ensemble methods. It has been

shown25,28,38 that ensemble DFT methods employing the ground-state

approximations as the XC functionals can (at least for small molecules)

match the accuracy of some less sophisticated TD-DFTmethods. However,

so far only the multiconfiguration ensemble methods have been able to

surpass the limits of standard TD-DFT. In the next sections, we will

present basic ideas associated with this group of methods and some of

their results.
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2. MULTICONFIGURATION WAVEFUNCTION-BASED
METHODS FOR ENSEMBLES

Before moving on to multiconfiguration ensemble density methods,

we will briefly discuss how multireference effects in excited states can be

taken into account within ensemble wavefunction-based methods. As men-

tioned in Section 1, in the simplest ensemble wavefunction method, the

ensemble may be constructed from m single-determinant states ΦIf g. Then,
application of the ensemble variational principle leads to the ensemble HF

(eHF) method.42 In this method, the ensemble energy given as a weighted

sum of the state energies

EeHF¼
Xm
I¼1

ωI ΦI jĤjΦI

� �
, (13)

is optimized with respect to spinorbitals fφpg building single determinants

subject to their orthonormality. Note that since the ensemble energy is in

general not invariant to orbital rotations, it is possible to determine optimal

spinorbitals uniquely. An exception is the hyper Hartree–Fock (HHF)

method, an equiensemble method,14,43 where the ensemble is composed

of all the N-electron Slater determinants that can be constructed from a

given basis set of R orthonormal spin orbitals, with R�N. The inclusion

of all Slater determinants in the HHF ensemble restores the invariance of

the HHF ensemble energy with respect to orbital rotations and simplifies

the HHF equations.14,44

Since excited states are described in the eHF by single-determinant func-

tions, the excited state energies predicted by this method are expected to be

in error especially for states of multiconfigurational nature. A step beyond

ensemble HF method would involve first doing the eHF calculation to

obtained a set of eHF spinorbitals and then constructing an ensemble of states

formed as linear combination of determinants

8mI¼1 ψ I ¼
X
J

CIJΦeHF
J , (14)

where the superscript eHF indicates that spinorbitals used to construct a

given determinant have been obtained from the eHF method. The

corresponding ensemble energy would read
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E¼
Xm
I¼1

ωI

X
JK

CIJCIK ΦeHF
J jĤjΦeHF

K

D E
: (15)

Its minimization with respect to the configuration interaction (CI) expan-

sion coefficients CIJ

� �
with the constraint that wavefunctions ψ If g stay

orthonormal leads to a system of equations

ωI

X
K

ΦeHF
J jĤ jΦeHF

K

D E
CIK ¼

X
K

ΛIKCKJ , (16)

where Λ is a Lagrangian matrix. If all the weights are different, then the

minimization problem (16) is equivalent to diagonalisation of Hamiltonian

matrix in the space spanned by the states ΦeHF
I

� �
and approximating the gro-

und andexcited state energies of the systemas eigenvalues of theHamiltonian.

On the other hand, when the weights are equal, the ensemble energy (15) is

the trace of the Hamiltonian matrix and as such remains invariant to ortho-

gonal rotations among the determinants ΦeHF
I

� �
. Hence, diagonalisation of

the Hamiltonian in this case conserves the energy of the ensemble.

The method based on the ensemble energy given in Eq. (15), introduced

in Ref. 42 and called Ens-WF, is then a simple ensemble counterpart of the

CI method. The accuracy of the state energies predicted by the Ens-WF

method hinges on the choice of the configurations that enter the calculation

and the choice of the ensemble weights. In Ref. 42, the configurations are

selected based on chemical intuition. Using the fact that the ensemble var-

iational principle is a special case of the Helmholtz free energy principle42,

the weights have been established as Boltzmann factors:

ωI ¼ exp �βEI½ �Xm
K

exp �βEK½ � (17)

with approximate state energy values EI and a tunable β parameter. Obvi-

ously, Boltzmann factors are only one possible choice but they have certain

attractive properties, such as

• Weights corresponding to degenerate states are equal. This ensures the

invariance of the ensemble energy to rotations among degenerate states;

• By choosing β parameter different from zero one can remove the

high-lying states from the ensemble (see Fig. 1);
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• It prevents the numerical phenomenon of “root flipping”, through

keeping the right order of the expectation values of the trial functions

throughout the optimization.

When β!1 (or, equivalently, the temperature T is 0, see star-marked

curve on Fig. 1), only the ground state has a nonzero weight. In such a case,

the eHF and HF approaches are equivalent and consequently the Ens-WF

method reduces to the CI method in the given space.

Since excited state energies result from a CI calculation anyway, does

introducing an ensemble method of the same cost makes sense at all? These

methods differ only in spinorbitals employed to built states (spinorbitals come

from HF and eHF methods for CI and Ens-WF methods, respectively). In

fact, it has been found that the Ens-WF method (with finite values of the

β parameter) can produce more accurate energies than CI for systems with

degenerate ground states (e.g., beryllium atom, see Fig. 2) and it can improve

the shape of the dissociation curves of diatomic molecules, see Ref. 42.

One could go a step further and construct a fully self-consistent method,

the ensemble analog of the multiconfiguration self-consistent field

(MCSCF) method. In fact, such an approach would be equivalent to the

Figure 1 Distribution of Boltzmann weights in a 10-state ensemble for different tem-
peratures. The horizontal axis represents the energies of states in the ensembles.
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state-average MCSCF (SA-MCSCF) method proposed by Werner and

Meyer45 without even referring to the ensemble theories. In

SA-MCSCF, the orbitals and the expansion coefficients of the wavefunction

are optimized in a self-consistent manner to minimize the mean average of

energy for all states. The states in this average can be weighted equally but

usually their weights reflect the significance of each state. SA-MCSCF was

primarily introduced to avoid the problem of root flipping—a phenomenon

in which the solution oscillates between two nearly degenerate states. It was

also shown that the algorithms employing SA-MCSCF have better conver-

gence properties than those for the standard MCSCFmethods. SA-MCSCF

is not entirely justified theoretically but it could be made rigorous if the

weights were not chosen arbitrarily but rather according to the energy cri-

terion. Interestingly, the SA-MCSCF method has been used to model

chemical reaction mechanisms and it was shown that the choice of

Boltzmann factors as weights improves in many cases the accuracy46 of

the method.

Figure 2 Energies of states of beryllium atom calculated for different values of β
parameter. Unmarked solid lines, LR-CCSD reference; marked lines, Ens-WF; open
markers, β!1 (CI) limit.
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The accuracy of the Ens-WF method (with or without orbital minimi-

zation) is limited by the length of expansion of states in single-determinant

function basis. Taking too large a space of determinants would lead to pro-

hibitively expensive calculations. Shorter expansions, on the other hand,

will still take into account multireference effects but the corresponding

approximations to the state energies will be missing an important amount

of the dynamic correlation energy. The remedy of this deficiency is offered

by multiconfiguration ensemble density functional theory discussed in the

next sections.

3. STATE-AVERAGED SPIN-RESTRICTED KS METHOD

One of the first density functional methods based on the ensemble

representation of electron density is the spin-restricted ensemble-referenced

Kohn-Sham method (REKS) developed by Filatov et al.47,48 Although

originally formulated for predicting ground states of molecules the elec-

tronic structure of which is dominated by static correlation,47 it has been

later expanded to treat both a ground and a first singlet excited state.49,50

The REKS method is particularly suited for molecules whose ground

state wavefunction is well described using two configurations. In such a case,

the ground state density of a physical (interacting) system of interest is rep-

resented by a two-state ensemble density of a noninteracting, KS, reference.

The multiconfiguration character of the interacting wavefunction is

manifested by non-integer occupation of some of the frontier KS orbitals.

The underlying assumption in the REKS approach is that if a singlet ground

state interacting wavefunction is well represented by a combination of two

configurations …φaφ
�
a

�� �
and …φbφ

�
b

�� �
, then a corresponding electron den-

sity can be obtained by taking an ensemble of two KS determinants. One of

the determinants includes HOMO, φa,φ
�
a

� �
, orbitals whereas the other one

LUMO, φb,φ
�
b

� �
. HOMO and LUMO orbitals form an active space. Thus,

the REKS ensemble density takes the form

ρREKSðrÞ¼ 2
X
i

φiðrÞj j2 + na φaðrÞj j2 + nb φbðrÞj j2, (18)

where na and nb are the occupation numbers constrained to a range 0,2½ � and
summing up to 2, and the summation with respect to i runs through all

orbitals, which are fully occupied in both determinants. Although the

ensemble REKS density only approximately corresponds to the true
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multiconfiguration wavefunction of the physical system, it is constrained to

have the same spin and spatial symmetry as the interacting ground-state

wavefunction. Such an approach, despite not being entirely rigorous, is very

effective for systems where static correlation plays an important role. The

REKS functional for the ensemble density given in Eq. (18) has been pro-

posed to comprise a weighted sum of the KS density functional energies of

the two configurations and a coupling term involving singly excited config-

urations generated out of the active space. It reads47

E0 ¼ na

2
EKS Ψ 1½ �+ nb

2
EKS Ψ 2½ �

� f na, nbð Þ EKS ΨT
	 
�1

2
EKS Ψ S1

	 
�1

2
EKS Ψ S2

	 
� �
, (19)

where Ψ1, Ψ2 are the two possibly nearly degenerate configurations,

…φaφ
�
a

�� �
and …φbφ

�
b

�� �
, and ΨT ¼ …φaφbj i, ΨS1¼ …φaφ

�
b

�� �
and

ΨS2 ¼ …φ�aφb

�� �
are the remaining (respectively, triplet and two singlets)

configurations constructed from the active orbitals. The function f(na,nb)

has been found empirically and it interpolates between a single-

configuration (na � 2,nb � 0) case and a case when static correlation

dominates (na � nb � 1). A ground state energy follows by optimization

of the functional (19) with respect to the orbitals and the occupation num-

bers na,nbf g under the orthonormality constraint for the former and the

non-negativity and the normalization conditions for the latter.

Using orbitals and the occupation numbers obtained from the minimi-

zation of the REKS functional it is possible to find an approximation to

the energy of the first open-shell singlet excited state and it is given by

the following expression51

E1¼EKS ΨS1
	 


+EKS ΨS2
	 
�EKS ΨT

	 

: (20)

Kazaryan et al.49 proposed to obtain a better approximation to the excitation

energy from the ground to the first open shell singlet state by considering a

weighted sum of E0 and E1, namely

ESA�REKS¼ω0E
0 +ω1E

1, (21)

where ω0 + ω1¼1; minimizing it with respect to the KS orbitals and the

fractional occupation numbers and finally computing the energies of the

ground and excited states from Eqs. (19) and (20), respectively. The state-

averaged REKS (SA-REKS) functional given in Eq. (21) can be seen as
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an orbital-dependent approximate realization of the Gross–Oliveira–Kohn

(GOK) functional (Eq. (9)). Notice that functionals (19) and (20) are free

from the ghost interaction and include spin polarization. Like the

SA-MCSCF the choice of weights in the ensemble energy expression

(21) is arbitrary. The application of the SA-REKS method is more justified

for homosymmetric systems (e.g., molecules dissociating to equal frag-

ments).48 For heterosymmetric systems, it has been argued that more accu-

rate values of the excitation energies will follow from diagonalization of the

Hamiltonian in the two-dimensional space consisting of configuration

state functions corresponding to a ground and an excited state50 resulting

in the state-interacting-state-averaged-REKS (SI-SA-REKS) method.

Because only a very small active space is used in the SI-SA-REKS

methods, they are fairly computationally inexpensive and can be used for

rather large systems.48,50 They offer a well-balanced treatment of the

dynamic and static correlation and their multiconfiguration character allows

conical intersections and some potential energy surfaces to be described. On

the other hand, they are limited to only ground and open-shell first singlet

excited states and the number of active orbitals is limited to 2. Moreover,

their use demands some preliminary knowledge of the chemical system

under study. Also, the theoretical foundations of SI-SA-REKS contain con-

siderable empiricism—in the choice of the density functionals as well as in

the construction of the function f(na,nb).

4. RANGE-SEPARATED APPROACHES

4.1 Generalized Adiabatic Connection for Ensembles
As hinted in Section 1, the XC component of the GOK universal functional

(Eq. (12)) can be formulated in the adiabatic connection (AC) framework.

Adiabatic connection52 allows one to find an XC ground state density func-

tional by linking a physical system of interest with a KS (noninteracting) one.

It is achieved by gradually turning on electron–electron interaction by

increasing a coupling strength parameter and modifying the external poten-

tial so that a density of the partially interacting system equals that of the fully

interacting one. The adiabatic connection approach has been brought to the

realm of ensemble DFT by Nagy34 who has shown that a Hartree-XC

(HXC) ensemble density functional can be obtained by integrating ensem-

ble electron interaction energy of the partially interacting system with

respect to the coupling constant λ, namely
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EHXC
m,ω ½ρens� ¼

Xm
I¼1

ωI

Z 1

0

dλ Ψλ
I jV̂ eejΨλ

I

� �
(22)

where the wavefunctions are eigenfunctions of a partially interacting

Hamiltonian

T̂ + λ V̂ ee + V̂ λ
� �

Ψλ
I

�� �¼Eλ
I Ψ

λ
I

�� �
(23)

with a local potential V̂ λ assuring that the density constraint

ρensðrÞ¼
Xm
I¼1

ωI hΨλ
I jρ̂ðrÞjΨλ

I i (24)

is fulfilled for any value of the coupling strength λ2 0,1½ �. Therefore, in the

Nagy formulation, the density is fixed along the adiabatic connection and

the ensemble weights are not varied.

Franck and Fromager35 proposed a generalized adiabatic connection for

ensembles (GACE) by demanding the density to be weight independent

along the connection and varying coupling strength together with ensemble

weights. This approach naturally leads to a weight-dependent ensemble

density functional, in line with the early work of Gross, Oliveira, and

Kohn.17 The greatest advantage of the generalized AC is that for a two-state

ensemble the ω-dependent XC functional can be Taylor-expanded with

respect to ω. This has led to deriving rigorous conditions satisfied by the

exact ensemble functional.

In the GACE approach, an ensemble density ρens(r) is weight indepen-
dent and one considers two-state ensembles formed from a ground and a first

excited state of a partially interacting system (the electron–electron interac-

tion is scaled with λ)

T̂ + λV̂ ee + V̂ λ,ξ� �
Ψλ,ξ

I

��� E
¼Eλ,ξ

I Ψλ,ξ
I

��� E
, (25)

where a local potential V̂ λ,ξ fixes the ensemble density

ρens¼ð1� ξÞρΨλ,ξ
1

+ ξρΨλ,ξ
2

, (26)

The density is constant both for varying coupling parameter λ2 0,1½ � and
weight parameter ξ 2 [0,ω]. For a two-state ensemble with (1 � ω) and
ω being weights of the ground and the excited state, respectively, the

generalized adiabatic connection expression for the XC ensemble density

functional defined in Eq. (12) can be written as35
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EXC
2,ω ρens½ � ¼EXC ρens½ �+

Z ω

0

dξ Eλ¼1,ξ
2 �Eλ¼1,ξ

1


 �
� Eλ¼0,ξ

2 �Eλ¼0,ξ
1


 �h i
(27)

where EXC is the ground state functional. Interestingly, it is evident from

(27) that a deviation of the ensemble XC energy from its ground state coun-

terpart results from a difference of excitation energies of the fully interacting

(λ¼1) and noninteracting (λ¼0) systems integrated with respect to an

ensemble weight ξ. Franck and Fromager have shown that a GACE

approach can be employed to rigorously define an ω-dependent short-range
ensemble density functional, which is a component of the range-separated

multideterminant ensemble DFT formalism presented in the next section.

Using the generalized adiabatic connection allows one to attempt to con-

struct exact functionals for simple cases and use them together with the

derived exact conditions to obtain approximations for ensemble density

functionals in the future.

4.2 Range-Separated Ensemble DFT
While the pragmatic construction of a multiconfiguration method based on

ensemble DFT proposed by Filatov et al. leads to encouraging results,48

other approaches are feasible on firm theoretical ground. One of the possi-

bilities to introduce multiconfiguration effects in ensemble DFT is based on

using a range-separated ensemble density functional. Just like in ground-

state theories,53 in order to avoid double counting of the electron–electron

interaction, one separates the electron–electron interaction operator 1/r into

a short-range υSRee
� �

and a long-range υLRee
� �

part, namely

1

r
¼ υSRee ðrÞ+ υLRee ðrÞ, (28)

where

lim
r!1 r υLRee ðrÞ¼ 1 (29)

and

lim
r!0

r υSRee ðrÞ¼ 1: (30)

The most commonly used range partitioning54,55 uses the error function and

assumes the following expressions for the range components of the electron

repulsion operator:
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υSR,μee ðrÞ ¼ 1� erf μrð Þ
r

, (31)

υLR,μee ðrÞ ¼ erf μrð Þ
r

: (32)

The parameter μ governs the range separation and for μ¼0 the long-

range function υee
LR,μ(r) vanishes, while in the limit μ!1 it accounts

for the full-range electron interaction, i.e., limμ!1υLRee ðrÞ¼ 1=r and

limμ!1υSRee ðrÞ¼ 0. The range-separated ensemble energy functional can

be formally defined if the GOK universal functional (Eq. (10)) is

decomposed into long- and short-range parts

Fm,ω½ρens� ¼FLR,μ
m,ω ½ρens�+ESR,μ

m,ω ½ρens� (33)

and the LR functional is defined by employing a Levy–Lieb constrained-

search formulation, i.e.,

FLR,μ
m,ω ½ρens� ¼ min

ΨIf g!ρens

Xm
I¼1

ωI ΨI jT̂ + V̂
LR,μ
ee jΨI

D E
: (34)

The functional ESR,μ
m,ω ρens½ � is therefore a short-range ensemble density com-

plement, which can be further divided into a classical Hartree part being

explicitly given in terms of an ensemble density and the remainder—the

XC short-range ensemble density functional

ESR,μ
m,ω ½ρens� ¼ESR�H,μ

m,ω ½ρens�+ESR�XC,μ
m,ω ½ρens�: (35)

If the ensemble energy functional is defined as follows

Em,ω ψ If g½ �¼
Xm
I¼1

ωI ψ I jT̂ + V̂
LR,μ
ee + V̂ extjψ I

D E
+ESR,μ

m,ω ρens½ �, (36)

with ρens yielded by states ψ If gmI¼1 by the relation (11) and weights ωIf gmI¼1,

the GOK variational principle implies in a straightforward manner that a full

minimization of the functional (36) under the orthonormality constraint for

states leads to obtaining the exact energy of the ensemble

min
ψ If g

8IJ ψ I jψ Jh i¼δIJ

Em,ω½ ψ If g�¼Em,ω½ ΨLR
I

� �� ¼Xm
I¼1

ωIE
ð0Þ
I

(37)

and the exact ensemble density of a fully interacting system
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ρð0ÞensðrÞ¼
Xm
I¼1

ωI Ψð0Þ
I jρ̂ðrÞjΨð0Þ

I

D E
¼
Xm
I¼1

ωI ΨLR
I jρ̂ðrÞjΨLR

I

� �
: (38)

ΨLR
I

� �m

I¼1
are the first m eigenfunctions of the equation with a partially

interacting Hamiltonian, i.e.,

T̂ + V̂
LR,μ
ee + V̂

SR,μ
m,ω ½ρens�+ V̂


 �
ΨLR

I ¼ELR
I ΨLR

I (39)

sharing an external potential V̂ with the fully interacting Hamiltonian

Ĥ ¼ T̂ + V̂ ee + V̂ the eigenfunctions and eigenvalues of which are fΨð0Þ
I g

and fEð0Þ
I g, respectively. The short-range local potentialV SR,μ

m,ω ρens½ � present
in Eq. (39) follows from taking a functional derivative of ESR,μ

m,ω with respect

to the density. Clearly, while a density of a partially interacting system

coincides with the fully interacting density, cf. Eq. (38), the ensemble

energies of the two systems are different. Thus Eq. (37) impliesPm
I¼1ωIE

LR
I 6¼Em,ω ΨLR

I

� �	 

.

Note that a formal definition of the short-range ensemble functional pro-

vided by Eq. (33) does not provide much insight on how to construct

approximations. Interestingly, Franck and Fromager35 derived an expression

for ESR,μ
m,ω ½ρens� within a generalized adiabatic connection formalism for

ensembles (GACE) and it may serve as a better starting point for finding rig-

orous conditions satisfied by the short-range functional and developing

approximations to it. As it has been mentioned in Section 4.1, in GACE

both a coupling constant and weights are varied along the adiabatic connec-

tion. In a range-dependent GACE, a range-separation parameter ν takes the
coupling constant role c.f. λ in Eqs. (25)–(27). By considering a partially

interacting system described by the equation

T̂ + V̂
LR,ν
ee + V̂ ν,ξ


 �
Ψν,ξ

I

��� E
¼Eν,ξ

I Ψν,ξ
I

��� E
, (40)

with the external potential V̂ ν,ξ being such that Eq. (26) is satisfied (if λ is
replaced with ν) Franck and Fromager obtained the following expression for

the short-range XC ensemble functional for a two-state (m¼2) ensemble

E
SR�XC,μ
2,ω ρens½ � ¼ESR�XC,μ ρens½ �+

Z ω

0

dξ Eν¼1,ξ
2 �Eν¼1,ξ

1


 �h
� Eν¼μ,ξ

2 �Eν¼μ,ξ
1


 �i
,

(41)
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where ESR�XC,μ ρens½ � is simply a ground state short-range XC functional. It

is therefore evident from Eq. (41) that the error one introduces by neglecting

the ω dependence of the ensemble functional and using a ground state

functional instead amounts to neglecting differences between excitation

energies of the fully interacting system (ν¼1) and the partially interacting

one (ν¼μ).

4.3 Multiconfiguration Methods Based on Range-Separated
Ensemble DFT

The range-separated ensemble DFT has only been introduced as a means to

construct a multiconfiguration method and is not generally expected—using

the currently available XC approximations—to be able to capture bond-

breaking and double excitations. If, however, one allows for the multi-

configuration wavefunctions in the ensemble, one can correctly reproduce

whole dissociation curves of molecules.42 Explicitly, if the wavefunctions

are expressed as linear combinations of the Slater determinants ΦeHF
I

� �
built

of optimal orbitals obtained from ensemble HF, then the ensemble energy

functional takes the form

Em,ω ½ � ¼
Xm
I¼1

ωI

X
JK

CIJCIK ΦeHF
J jT̂ + V̂

LR,μ
ee + V̂ jΦeHF

K

D E
+ESR,μ

m,ω ρens½ �:

(42)

Minimization of the functional (42) with respect to CIJ coefficients on con-

dition that  is unitary (in fact,  is orthogonal, as we chose CIJ to be real

numbers) is equivalent to a diagonalization of the effective Hamiltonian,

defined as

H 0
JK ¼ ΦeHF

J jT̂ + V̂
LR,μ
ee + V̂

SR,μ
m,ω ρens½ �+ V̂ jΦeHF

K

D E
, (43)

where

V̂
SR,μ
m,ω ρens½ � ¼

XN
i¼1

δESR,μ
m,ω ½ρens�
δρens rið Þ (44)

is the short-range potential. Hence, this gives a method very similar to the

above Ens-WF method (cf. Section 2) and therefore we will denote it as

Ens-lrWF+srDF.

Of course, one still needs to choose the short-range density functional

describing the ensemble. Here, the chosen general form is
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ESR,μ
m,ω ρens½ � ¼ 1

2

ZZ
ρens r1ð Þρens r2ð Þerfc μr12ð Þ

r12
dr1dr2 +ESR�XC,μ ρens½ �,

(45)

where the functional is split into the short-range Hartree interaction and the

XC part of the functional chosen to be a ground state functional. Since there

are no XC functionals available designed specifically for ensembles, the

short-range PBE functional56,57 was used in Ref. 42 and the following

numerical examples. Although most states described have an open-shell

character, a non-spin-polarized version of the functional was used. Hence,

spin polarization is only introduced through the wavefunction part of

the method.

Another problem in this method is that it is not clear how to calculate the

energies of specific states. Identifying the states with the resulting

wavefunctions is only justified in the μ!1 limit (which corresponds to

the Ens-WF method). Nevertheless, calculating the energies as the expec-

tation values of the (effective) Hamiltonian w.r.t. its eigenvectors seems

to produce the best results. A result of such an approach is shown in

Fig. 3 presenting the dissociation curves of the three lowest Σ states of

BH molecule. When compared to Ens-WF and CI curves, definite

improvement is visible—as expected, the method produces lower absolute

energies then the purely wavefunction approaches but it does not signifi-

cantly change the shapes of the curves. It still seems that a significant part

of the correlation energy is missing.

Calculating the expectation value of the effective Hamiltonian w.r.t. to

its eigenvectors is not the only possible way of calculating the energies. For

example, Rebolini et al.9 suggested taking the differences of the eigenvalues

of the effective Hamiltonian, Eq. (43),

ΔEI ¼E
LR,μ
I �E

LR,μ
0

(46)

as a rather crude approximations for excitation energies. In Ref. 9, this pos-

sibility has been explored for various systems along the adiabatic connection,

with the exact (obtained form a full configuration interaction calculation)

ground-state density used inV SR,μ. We, on the other hand, did not perform

a full CI calculation in the limit but used CI in the space built of the states

included in the ensemble and compared ground-state (see Fig. 4) calculation

with an equiensemble (β¼0) one (Fig. 5) and an ensemble one, where the

ground state is dominant—Fig. 6. The errors from the ground-state calcu-

lation are very large, up to 4.5 eV. If a full CI calculation was performed, the
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excitation energies would be close to exact for large (10–15 a.u.) values of μ.
Because of the small ensemble (i.e., also the configuration space), for large μ,
e.g., the excitation energies of Π states are too high in the dissociation limit.

Still, for the ground-state calculation for most excitations the CI limit of the

method is optimal due to the fact that CI correctly separates the triplet and

singlet states. On the other hand, both for the equiensemble case (see Fig. 5)

and the β¼0.5 (see Fig. 6) one, the errors for small and medium μ are much

smaller than for the ground-state calculation. The optimal value of the range

parameter μ both for β¼0.5 and the equiensemble is μ¼1, while the opti-

mum for the dissociation limit is shifted toward DFT—μ¼0.2 and μ¼0.3,

respectively. While Rebolini’s approach (i.e., Eq. (46)) of obtaining the

excitation energies does not seem suitable for Ens-lrWF+srDF method, it

is encouraging that the quality of the excitation energies obtained from

ensemble calculations is better than those arising from a ground-state one.

More examples of Ens-lrWF+srDF calculations can be found in Ref. 42

but it is clear that while the method includes the description of both static

Figure 3 Dissociation curves of the first 3 Σ states of BH Ens-lrWF+srDF (β¼1, μ¼2)
versus Ens-WF (β¼1.0) compared to CCSD results. Full markers, LR-CCSD; half-filled,
Ens-WF; empty, Ens-lrWF+srDF. Squares, 11Σ+ state; circles, 13Σ+; triangles, 21Σ+.
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Figure 4 BH (RBH¼2.329 a.u.—left fig. RBH¼7.0 a.u.—right fig.) excitation energies along the μ parameter. Ground state (Ens-lrWF+srDF with
β!1) calculation versus LR-CCSD benchmark.



Figure 5 BH (RBH¼2.329 a.u.—left fig. RBH¼7.0 a.u.—right fig.) excitation energies along the μ parameter. Equiensemble (β¼0) Ens-lrWF+
srDF calculation versus LR-CCSD benchmark.



Figure 6 BH (RBH¼2.329 a.u.—left fig. RBH¼7.0 a.u.—right fig.) excitation energies along the μ parameter. Ens-lrWF+srDF (β¼0.5) calculation
versus LR-CCSD benchmark.



anddynamic correlation atmodest cost, it suffers from some serious problems.

One of the sources of errors is the previously mentioned issue of describing

open-shell stateswith a density functionalwithout spin polarization. Another

is the problem of “ghost interaction”, specific to ensemble DFT. To deal

with those problems, a different density functional must be employed.

The solution of the first problem is fairly simple—one can just use a spin-

polarized short-range functional. This would of course destroy the initial

simplicity of the method—with the spin densities instead of the total ensem-

ble density one cannot calculate a common short-range potential and it is

impossible to construct an effective Hamiltonian which could then be diag-

onalized. To minimize the ensemble energy with respect to the expansion

coefficients, one needs to use some direct minimization algorithm which is

both more costly and more cumbersome.

The problem of the ghost interaction can be solved in a similar manner.

As previously mentioned (see Section 1), best results seem to be obtained

when the density functional is made ghost-interaction-free by construc-

tion.38,39,58 This leads to the following expression for the ensemble energy

Em,ω ½ � ¼
Xm
I¼1

ωI

X
JK

CIJCIK ΦJ Ĥ
LR

��� ���ΦK

D E
+ESR�HXC

m,ω ραI ,ρ
β
I

h i( )
:

(47)

where Ĥ
LR
, the long-range Hamiltonian, consists of the one-electron oper-

ator and the long-range part of the two-electron interaction and ραI ,ρ
β
I are

the state spin densities. The possibility of building such a method will be

explored in more detail in future work but the result of a test calculation

for the hydrogen molecule, involving minimization of the expression (47)

with respect to the expansion coefficients and the orbitals is presented in

Table 1 along with results calculated by other ensemble methods and a stan-

dard TD-DFT calculation. The new method, labeled here MCeDFT, pro-

duces more accurate excitation energies (ΔE) than TD-DFT, SA-REKS,

and Ens-WF methods but slightly worse than Ens-lrWF+srDF, which

can be explained by the introduction of some spin contamination during

the optimization of the expansion coefficients. Results for the equilibrium

geometry of the hydrogen molecule are not presented because of the lack of

data for SA-REKS but also because all the methods are expected to perform

well for that case. It has to be emphasized, however, that in MCeDFT a spin

adaptation scheme is needed to improve quality of the results.
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5. SUMMARY AND OUTLOOK

Despite being somewhat older than the—currently most popular

method for the excited states calculations—time-dependent density func-

tional theory, the ensemble methods for the excited states are still in their

infancy.

This group of methods is founded upon the ensemble variational (min-

imum) principle, which states that a weighted sum ofm expectation values of

the Hamiltonian of the system is greater or equal than the sum of m lowest

eigenvalues of this Hamiltonian, provided that the expectation values are

taken with respect to mutually orthogonal trial functions and weights in

the sum form a nongrowing sequence with respect to the eigenvalues.

This simple inequality is essential in the proof of a HK-type theorem for

ensembles that maps the ensemble electron density to an external potential.

The ensemble density functional theory established on the basis of the HK

theorem is the most promising ensemble method, as it shares DFT’s favor-

able scaling with the size of the system and is potentially able to describe

electron correlation.

While ensemble DFT does not share some of TD-DFT’s shortcomings

caused by, e.g., the use of adiabatic approximations, it has a number of its

own challenges and problems. Among them, lack of suitable HXC ensemble

functional approximations is the gravest obstacle. Over the years, a number

Table 1 Energies of the First Two Singlet States of H2 Molecule and the Difference
Between them (ΔEexc) in Hartree, Obtained with Different Methods for Two Separations
of Hydrogen Nuclei

R (a.u.) Ens-WFa
Ens-
lrWF+srDFa SA-REKSb MCeDFTa TD-DFTb Exactc

11Σ+
g

3 �1.0327 �1.0343 �1.0522 �1.0584 �1.0532 �1.0573

7 �0.9798 �0.7212 �0.9994 �1.0188 �0.9197 �1.0002

11Σ+
u

3 �0.5631 �0.9686 �0.8329 �0.6841 �0.7891 �0.7525

7 �0.5681 �0.6229 �0.8210 �0.5969 �0.8461 �0.6772

ΔE 3 0.4696 0.3131 0.2193 0.3743 0.2640 0.3048

7 0.4018 0.3457 0.1784 0.4219 0.0736 0.3230

aAug-cc-pVDZ basis set,
bData from Ref. 49,
cData from Refs. 59,60
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of exact conditions and some clues pointing toward such approximations

have been formulated but still most of the available expressions are only

slightly modified versions of the ground-state functionals. In addition,

imposing the orthogonality condition on the wavefunctions is a challenge

in practical calculations and the task of extracting the state energies from

the result of an ensemble calculation has no apparent solution.

All these problems inhibited the development and exploration of ensem-

ble methods to theoretical considerations and calculations on small systems

which made it difficult to evaluate their true potential. On the other hand,

the experience of the ground-state DFT development suggests that even

when good XC functional approximations are available, modeling multi-

configuration effects—which is the key motivation to developing time-

independent DFT for excited states—is not necessarily an easy task when

using a single-reference wavefunction. One can expect similar problems

when dealing with the excited states.

Through adapting the ground state DFT’s solution to this problem, two

types of multiconfiguration approaches to ensemble DFT have been devel-

oped. One, based on spin-restricted ensemble-referenced KS methods

designed originally for strongly correlated systems, is indeed able to repro-

duce conical intersections of fairly large systems but is restricted to calcula-

tion of the first excited singlet state energy and contains a substantial portion

of empiricism. The other path is a range-separated method combining an

ensemble wavefunction configuration-interaction-like method and an

ensemble density functional. It is able to reproduce dissociation curves of

diatomic molecules but it also slightly overestimates the absolute energies

(especially of the ground state) and requires some preliminary knowledge

about the system. Currently, work is in progress to use ghost-interaction-

free, spin-polarized density functionals in the multiconfiguration methods.

Summing up, ensemble DFT, in particular its multiconfiguration realiza-

tions have the potential to become an alternative to TD-DFT, especially for

systems where multiconfiguration effects come into play. None of the exis-

ting approaches, however, has a “black-box” character, nor it is able to treat a

wide class of systemswith uniform accuracy, or is computationally efficient in

its current implementation. These are obstacles that can be overcome in the

future by formulating conditions regulating the size of the ensemble, the

weights, using more suitable density functional approximations and formu-

lating more efficient and fully self-consistent implementations. Until then,

TD-DFT will most likely continue to dominate the density functional

approach to the world of excited state calculations.
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