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It is shown that the exact difference between the ground-state and first-excited-state electronic energies can
be obtained, in principle, as the difference of highest occupied orbital energies from two separate Kohn-Sham
calculations. Alternatively, this excitation energy may be taken as the difference between the lowest unoccu-
pied and highest occupied orbital energies of a single Kohn-Sham calculation, provided that one corrects for a
certain derivative discontinuity in the exchange-correlation potential that is analogous to the one for the band

gap in solids.

PACS number(s): 31.15.Ew, 71.10.+x, 31.25.—v

The employment of single-particle orbital energies from
effective Hamiltonians, for multiparticle systems, has been
ubiquitous since the beginning of quantum theory. These or-
bital energies have typically been used for qualitative de-
scriptions of excitation energies, in part, because of the sim-
plicity of the corresponding models.

From a quantitative numerical point of view, the beauty of
taking the difference between two orbital energies, to ascer-
tain a true physical excitation energy, is that the difference
between two small numbers is involved, rather than between
two large numbers, as is generally the case when the excita-
tion energy is computed by subtracting the N-electron
ground-state energy from the N-electron excited-state en-
ergy. Consequently, the employment of orbital energy differ-
ences has special appeal for obtaining approximate excitation
energies, through approximate methods, because of the ulti-
mate potential for the generation of highly accurate results.

With this in mind, it is the purpose here to show, for a
finite electronic system (or a nucleus), that the exact differ-
ence between the first-excited-state energy and ground-state
energy, of the real physical Hamiltonian, may be obtained, in
principle, as the difference between two Kohn-Sham orbital
energies [1] within the formulations of Theophilou and Had-
jisavvas [2,3] and of Gross, Oliveira, and Kohn [4-6]. In
particular, this excitation energy is given as the difference
between the highest occupied orbital energy of a calculation
involving an ensemble of fractionally occupied states and the
highest occupied orbital energy of a ground-state calculation.
Alternatively, the excitation energy may be viewed as the
difference between the (N+ 1)th and Nth orbital energies of
either the ground-state calculation or the ensemble calcula-
tion for weight w— 0, provided that a certain derivative dis-
continuity is incorporated into the exchange-correlation por-
tion of the appropriate effective potential. This derivative
discontinuity, which shall here be shown to be equal to the
correction factor in Ref. [4], as w—O0, is analogous to the
familiar derivative discontinuity involving fractional particle
number [7] and the band gap in solids [8,9].

Let us consider the ground state and first-excited state of
the following N-electron Hamiltonian:

N
ﬁ:f+vee+2 v(;i)’ (1)

i=1
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where, in atomic units,

N N—-1 N
TZ_%E V?’VeeZE E ]ri_rjl_l’
i=1 i=1 j=i+l

and where v(;) is a local-multiplicative attractive potential.
For this problem, Gross, Oliveira, and Kohn [4,5] general-
ized the equiensemble formulation of Theophilou [2,3] to
different weights, in order to establish their key relation in-
volving orbital energies, and defined a universal density
functional to generate E,,, where

E,=(1—-w)E,+wEpg. 2)

Here E 4 is the ground-state energy of the N-electron Hamil-
tonian H, E g is its first-excited-state energy, and w is a sca-
lar with 0<<w<=3}. The formulation of Theophilou applies for
the special case of w=3.

In the density-functional generation of E,,, upon minimi-
zation one obtains [4,5]

n,=(1—w)n,twng, 3)

where n, is the ground-state electron density of Handn g is
the corresponding first-excited-state density. When n,, is a
noninteracting ensemble v-representable in a certain sense,
there exists a local potential v such that
2 e 2= e o
{_ ;—V +U;V([nw]’r)}(p:"(r)_8:V¢:V(r), 1= 1’27 LR} (4)
where ey<e)<ej --en<éep,,..., i0 a manner consis-
tent with the Pauli principle, and where
N-1
hep 2 2 2
(=2 e PP+ =wilepl>+wlera > )
=
For simplicity of presentation, explicit spin polarization is
not shown. However, the results within carry over for a spin-

polarized v} as well as for noninteracting systems consisting
of more involved ensembles.

In expression (4), adjust v;“([nw];;), if necessary, by a
constant, so that it vanishes as |r|—o. Then, in this limit,
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@r(Irh)~ exp (—v—2¢&7|7)),

so that it follows from ey, ,=¢} for all i<N+1 and from
expression (5) that

i=1,2,...,N+1, (6)

n,(|F])~exp(—2v—2¢&kN, |7 o<w=i. (7

Next, note that studies [10-20] concerning the asymptotic
decay of n, do not rely on the fact that n, is an N-electron
ground-state density. In other words, the asymptotic ground-
state proof carries over when the N-electron wave function is
an excited state [15], in the sense that for |7|—, nj decays

as

np(|7 —2uglr)), ®)
just as n, decays as [10-20]
o =247, ©)
where
up=Eg—E%% ., (10)
ua=E,—E% |, (11)

and where E§* | is the (N— 1)-electron ground-state energy
of H. [Only if the corresponding (N — 1)-electron ground-
state wave function is “inaccessible,” as |;|~>00, would ei-
ther expression (8) or expression(9) not hold.]

Now, since u,<pup, it follows from Egs. (3), (8), and
(9), that n,, decays as

n,(r)~ exp(—2V=2ug|r), (12)
so that comparison of expressions (7) and (12) implies

eny1=Mp=Ep— O<w=j. (13)

Finally, we already know that [7,17,18,20]

81‘4\//: = MAT EA E}g\ls_l . (14)
As a result, for 0<w$%,
EB“"EA:S}'\V/,*_I_sR], (15)

which means that the excitation energy, |Ez—E,|, is ob-
tained as the difference of Kohn-Sham orbital energies from
two different calculations, one at w=0 and one at 0<w<
1. This is our first desired result. [Note, however, that the
form of Eq. (15) changes whenever the (N—1)-electron
ground-state wave function is ‘“‘inaccessible” as I;N|—>00 in
the N-electron excited-state wave function, for then E%* | in
Eq. (10) is replaced by the energy of that acces51ble
(N—1)-electron state with the lowest energy as |ry|—.]
It is important to compare the result at w=0 with the
result for the limit w—0. At w=0, n, in Eq. (3) is
ng=n,, so that v, ([no] r) is the Kohn-Sham potential for
the N-electron ground state of H. On the other hand, one

should not assume that v¥([n,];r)|, o is the same as
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v%([no];7), because TY is highly nonlocal and because at all
w>0, no matter how close w is to zero, n,, has a different
asymptotic decay than ny; n, decays as ng, and not as
Ry .

The result is that, while a;\v,:{) = up, without further in-
formation one should not expect that ewao— ,u A- It would
be nice if the latter equality were true, for if ey~ =, , it

would mean that ey )—eh? Would give exactly

w—0

Eg—E, . In any case, since ¢; —q;l , except as |r|—~>°0

the exact expression for £} 0 s
en 0=, — Avy (16)
where
Av, (1) =02([ne]:") = v ([1,]:P) w0 (17)

and where Avxc(;) is constant throughout space, except at
, where Av,.(|r|)—0. Hence, we have

very large |7]

Eg—Es=shi)—ep "+ Av, (18a)
Alternatively, we may express the excitation energy in terms
of Av,, and the orbital energies from the ground-state calcu-

lation. That is,

—E =gy, —e9tAv,, (18b)
so that
—0_ _0 —0_ _0
Avxc_e;\‘; —ENT Slv\‘;+1 EN+1- (19)

The right-hand side of expression (17) shall now be iden-
tified as a discontinuous-change in the exchange-correlation
potential. Start with [4,5]

Ew=min[ f v(An(r)+T[n]

o [

Srid’ry,+EX[n]t,  (20)

where
N-1
T¢[n]= ; (@i = 3 Vo) +(1=w){enl— 3 V? o)
+wlon+1l— 13 V]onr1), (21)

where n(r) is given by the right-hand side of expression (5),
except for deletion of the superscript w, and where the ¢’s
are the first N+ 1 eigenfunctions, consistent with the Pauli
principle, of some single-particle multiplicative potential.

Hence, v"([n,,];r) is given by

w( 2)

rry—r

o ([ l; r)—v<r>+f| oL 1)
22)

where
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vi[n,lir)=

By substituting Eq. (22) into Eq. (17), we identify
Avxc(;) as

6Ew[n]/5n(r)|n n,, (23)

Av, (P =vRl[noli) —vel[nu i) |wmo,  (24)
because
r no(r
iyl 2) j of 2,) d*r, as w—O.
|ro— rl [ry—rl
The EY, in expression (20) is defined through [4,5]
n,,(rn,(r
EX[n]=F"[n]—T"[n]— %J J—(—,I)—(——Q—) 3rid3ry,
|"1_"2|
(25)
where
Fw[n]zmin{(l_W)<Wl‘f+veel\yl>
+w(Wy|T+ V.. | ¥y}, (26)

where ¥ and ¥y; form an orthonormal set, and consistent
with the constrained-search orientation, the ¥’s in expres-
sion (26) are constrained by

n=(1—w){(¥{p|¥)+w(¥yp| ¥y, (27)

where p is a density operator. [Note that each expectation
value in Egs. (26) and (27) may be replaced by an expression
involving an ensemble, if necessary.]

For the purpose of establishing new key requirements for
Av,. and E},, in order to approximate them, first combine
expression (18) with the following basic expression of Gross,
Oliveira, and Kohn [4]:

JEY[n]

ow

w

Eg—E =¢en, —¢&n , w—0, (28)
n=n

w
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to obtain
JEY, [n]
Av, .= , w—0. (29)
aw n=n
Also, from expressions (3), (4), (13), (22), and the

Hellmann-Feynman theorem, one arrives at

-, 0 e([n,]57)
_ 3 w 2 XC w
Jd ”|€9N+1(r)' e

=Jd%wmﬂBPJ229¥lwﬁﬁ , (30)

|r—r2|

for all w in the range 0<<w= 3. Relation (30) is a conse-
quence of the fact that e}, ; is independent of w in the latter
range. Expressions (29) and (30) should provide useful strin-
gent constraints for helping to model Av,, and E} [n]. Re-
cent scaling constraints [21] should also be con51dered.

It is appropriate to emphasize in closing that the discon-
tinuity in vy,, as manifested on the right-hand side of ex-
pression (24), is analogous to what happens in the well-
known band-gap problem in solids. The difference is that,
unlike with the band-gap problem, the discontinuity in Eq.
(24) does not involve a change in the number of electrons, in
that n,, refers to the same number of electrons as n and that
EY[n,] is the exchange-correlation energy for the same
number of electrons as is given by E2[n,]. Moreover, the
band-gap problem involves a ground-state ionization energy
of N electrons and a ground-state electron affinity of N elec-
trons (or the corresponding ground-state ionization energy of
N+1 electrons).
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