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Excitation energies from density-functional orbital energies
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It is shown that the exact difference between the ground-state and first-excited-state electronic energies can
be obtained, in principle, as the difference of highest occupied orbital energies from two separate Kohn-Sham
calculations. Alternatively, this excitation energy may be taken as the difference between the lowest unoccu-

pied and highest occupied orbital energies of a single Kohn-Sham calculation, provided that one corrects for a
certain derivative discontinuity in the exchange-correlation potential that is analogous to the one for the band

gap in solids.

PACS number(s): 31.15.Ew, 71.10.+x, 31.25.—v

The employment of single-particle orbital energies from
effective Hamiltonians, for multiparticle systems, has been
ubiquitous since the beginning of quantum theory. These or-
bital energies have typically been used for qualitative de-
scriptions of excitation energies, in part, because of the sim-

plicity of the corresponding models.
From a quantitative numerical point of view, the beauty of

taking the difference between two orbital energies, to ascer-
tain a true physical excitation energy, is that the difference
between two small numbers is involved, rather than between
two large numbers, as is generally the case when the excita-
tion energy is computed by subtracting the N-electron
ground-state energy from the N-electron excited-state en-

ergy. Consequently, the employment of orbital energy differ-
ences has special appeal for obtaining approximate excitation
energies, through approximate methods, because of the ulti-
mate potential for the generation of highly accurate results.

With this in mind, it is the purpose here to show, for a
finite electronic system (or a nucleus), that the exact differ-
ence between the first-excited-state energy and ground-state
energy, of the real physical Hamiltonian, may be obtained, in
principle, as the difference between two Kohn-Sham orbital
energies [1]within the formulations of Theophilou and Had-
jisavvas [2,3] and of Gross, Oliveira, and Kohn [4—6]. In
particular, this excitation energy is given as the difference
between the highest occupied orbital energy of a calculation
involving an ensemble of fractionally occupied states and the
highest occupied orbital energy of a ground-state calculation.
Alternatively, the excitation energy may be viewed as the
difference between the (N+ 1)th and ¹horbital energies of
either the ground-state calculation or the ensemble calcula-
tion for weight m~0, provided that a certain derivative dis-
continuity is incorporated into the exchange-correlation por-
tion of the appropriate effective potential. This derivative
discontinuity, which shall here be shown to be equal to the
correction factor in Ref. [4], as w —+0, is analogous to the
familiar derivative discontinuity involving fractional particle
number [7] and the band gap in solids [8,9].

Let us consider the ground state and first-excited state of
the following N-electron Hamiltonian:

N

H = T+ V„+g v (r;),

where, in atomic units,

N N —1 N

T=- —,'y V'„V„=Xi=1 i=1 j=i+1

and where v (r) is a local-multiplicative attractive potential.
For this problem, Gross, Oliveira, and Kohn [4,5] general-
ized the equiensemble formulation of Theophilou [2,3] to
different weights, in order to establish their key relation in-
volving orbital energies, and defined a universal density
functional to generate F, where

E~= (1 —w) E„+wEs . (2)

Here Ez is the ground-state energy of the N-electron Hamil-

tonian H, Ez is its first-excited-state energy, and w is a sca-
lar with 0(~( —,'. The formulation of Theophilou applies for
the special case of w= —,'.

In the density-functional generation of F. , upon minimi-
zation one obtains [4,5]

n =(1 w)nA+wn—tt,

where nz is the ground-state electron density of H and nz is
the corresponding first-excited-state density. When n is a
noninteracting ensemble v-representable in a certain sense,
there exists a local potential U, such that

+ v, ([n ];r))ltp; (r) =e, tp, (r), i = 1,2, . . . , (4)

W W W W( Wwhere 1 - e2 3 N N+1 ' ' ' &n a mann r co
tent with the Pauli principle, and where

N —1

For simplicity of presentation, explicit spin polarization is
not shown. However, the results within carry over for a spin-
polarized U, as well as for noninteracting systems consisting
of more involved ensembles.

In expression (4), adjust v, ([n ];r), if necessary, by a

constant, so that it vanishes as
l rl ~~. Then, in this limit,
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v; (lrl) exp ( g —2e;lrl). t= 1 2 "»+ I (6)

so that it follows from eN+, ~e, for all i ~N+ 1 and from
expression (5) that

n (!rl)-exp( —2Q —2m~~, lrl), 0&w- —,'. (7)

Next, note that studies [10—20] concerning the asymptotic
decay of nz do not rely on the fact that nz is an N-electron
ground-state density. In other words, the asymptotic ground-
state proof carries over when the N-electron wave function is

an excited state [15], in the sense that for
I r!~~, n~ decays

as

v, ([no];r), because T, is highly nonlocal and because at all
w&0, no matter how close w is to zero, n has a different
asymptotic decay than no, n decays as nB, and not as
nw ~

The result is that, while eN+, = p,B, without further in-

formation one should not expect that eN = p,&. It would
be nice if the latter equality were true, for if eN =pz, it
would mean that eN+, —~N would give exactly

E~ E„.I—n any case, since y, =y;, except as lrl~
the exact expression for eN is

W~O
8N —PA AV xc

nz( r )- exp( —2 v' —2p~l r ),

just as nA decays as [10—20]

(8)
where

b, v„,(r)=v, ([no];r) —v, ([n ];r)l (17)

n~(lrl) —exp( —2 v' —2~~lrl). (9)
and where Av„(r) is constant throughout space, except at

very large lrl, where Av„(lr )—&0. Hence, we have
where w~0 w~OEB EA N+1 N + ~Vxc. (18a)

PB EB EN —1 ~

P,g =Eg —EN —1 ~

(10)
Alternatively, we may express the excitation energy in terms
of 5v„and the orbital energies from the ground-state calcu-
lation. That is,

n.(r)- exp( —2v' —2»lrl),

so that comparison of expressions (7) and (12) implies

(12)

and where Es~", is the (N 1)-electro—n ground-state energy
of H. [Only if the corresponding (N 1)-electron gr—ound-

state wave function is "inaccessible, " as!rl~~, would ei-
ther expression (8) or expression(9) not hold. ]

Now, since pz~», it follows from Eqs. (3), (8), and

(9), that n decays as

0 0EB Eg —EN+1 8N+ AVxc & (18b)

so that

w~O 0 w~0 0
~Vxc N N +N+1 N+1 ' (19)

The right-hand side of expression (17) shall now be iden-
tified as a discontinuous-change in the exchange-correlation
potential. Start with [4,5]

g.S.
N+1 +B EB EN—1 ~

0+w~~ 2 (13) E = min
n

v(r)n(r)+ T, [n]

Finally, we already know that [7,17,18,20]

8N = Pg=Eg EN
w=0 gs. (14)

r n(r, )n(r~)+ 2 ~
d rjd rz+E&&[n] ', (20)

As a result, for O~w~-,', where

w 0EB—E~ —N+1 —N (15) N —1

T;[nl= X (~;I —
2 ~'lv;)+(I —w)&~~l —l ~'l~~)

+w(~~+il —
2 ~'l~v+i) (21)

where n(r) is given by the right-hand side of expression (5),
except for deletion of the superscript w, and where the y's
are the first N+ 1 eigenfunctions, consistent with the Pauli
principle, of some single-particle multiplicative potential.

Hence, v, ([n ];r) is given by

n (r~)
v, ([n ];r)=v(r)+ d rq+v„([n ];r),

where

which means that the excitation energy, IE~ Ezl, is ob-—
tained as the difference of Kohn-Sham orbital energies from
two different calculations, one at w = 0 and one at 0&w ~
—,'. This is our first desired result. [Note, however, that the
form of Eq. (15) changes whenever the (N 1)-electron—
ground-state wave function is "inaccessible" as lr~l~~ in
the N-electron excited-state wave function, for then EN'1 in
Eq. (10) is replaced by the energy of that "accessible"
(N 1)-electron state w—ith the lowest energy as

I rtvl ~~.]
It is important to compare the result at w=0 with the

result for the limit w~0. At w=0, n in Eq. (3) is

no=n„, so that v, ([no];r) is the Kohn-Sham potential for0

the N-electron ground state of H. On the other hand, one
should not assume that v, ([n ];r)l o is the same as
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v„,([n ];r)= BE„[n]IBn(r)l„ (23) to obtain

By substituting Eq. (22) into Eq. (17), we identify

Av„,(r) as
oIE„[n]

Av„=
n, =n

W

w~0. (29)

Av„,(r)=v„,([no];r) —v„,([n ];r)l o, (24)

because

n (r2) & no(r2)
d r2~ d r2 as w~O.

Also, from expressions (3), (4), (13), (22), and the
Hellmann-Feynman theorem, one arrives at

The E„, in expression (20) is defined through [4,5]

where

F [n]=min((1 —w)(%",IT+ V„I%'i)
+ w(+nl T+ V..I+it)). (26)

where 'P& and 'P» form an orthonormal set, and consistent
with the constrained-search orientation, the 0"s in expres-
sion (26) are constrained by

n = (I w) &+il PI +i) + w(+nl PI +n), (27)

where P is a density operator. [Note that each expectation
value in Eqs. (26) and (27) may be replaced by an expression
involving an ensemble, if necessary. ]

For the purpose of establishing new key requirements for
Av„and E„, in order to approximate them, first combine
expression (18) with the following basic expression of Gross,
Oliveira, and Kahn [4]:

I' n (r, )n (r2)
E„,[n]=F [n] —T, [n] —

—,
' d rid rz,

(25)

Bv„,([n ];r)
d rl&w+t(r)l

Bw

I nB(r2) nA(r2)]
d rlgiv+t(r)l - „dr2 (30)

for all w in the range 0&w~-,'. Relation (30) is a conse-
quence of the fact that ~~+, is independent of w in the latter
range. Expressions (29) and (30) should provide useful strin-

gent constraints for helping to model Av„and E„,[n]. Re-
cent scaling constraints [21] should also be considered.

It is appropriate to emphasize in closing that the discon-
tinuity in v„, as manifested on the right-hand side of ex-
pression (24), is analogous to what happens in the well-
known band-gap problem in solids. The difference is that,
unlike with the band-gap problem, the discontinuity in Eq.
(24) does not involve a change in the number of electrons, in
that n refers to the same number of electrons as no and that

E„,[n ] is the exchange-correlation energy for the same
number of electrons as is given by E„[no]. Moreover, the
band-gap problem involves a ground-state ionization energy
of N electrons and a ground-state electron affinity of N elec-
trons (or the corresponding ground-state ionization energy of
N+ 1 electrons).

8E„[n]
&I —&~ —w+ i

—w+
Av n=n

W
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