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Generalised adiabatic connection in ensemble density-functional theory for excited states:
example of the H2 molecule
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A generalised adiabatic connection for ensembles (GACE) is presented. In contrast to the traditional adiabatic connection
formulation, both ensemble weights and interaction strength can vary along a GACE path while the ensemble density is held
fixed. The theory is presented for non-degenerate two-state ensembles but it can in principle be extended to any ensemble
of fractionally occupied excited states. Within such a formalism an exact expression for the ensemble exchange–correlation
density-functional energy, in terms of the conventional ground-state exchange–correlation energy, is obtained by integration
over the ensemble weight. Stringent constraints on the functional are thus obtained when expanding the ensemble exchange–
correlation energy through second order in the ensemble weight. For illustration purposes, the analytical derivation of the
GACE is presented for the H2 model system in a minimal basis, leading thus to a simple density-functional approximation
to the ensemble exchange–correlation energy. Encouraging results were obtained with this approximation for the description
in a large basis of the first 1�+

g excitation in H2 upon bond stretching. Finally, a range-dependent GACE has been derived,
providing thus a pathway to the development of a rigorous state-average multi-determinant density-functional theory.

Keywords: ensemble density-functional theory; excited states; adiabatic connection; multiple excitations; range separation

1. Introduction

Time-dependent density-functional theory (TD-DFT) has
become over the years the method of choice for modelling
excited-state properties of electronic systems [1] due to its
lower computational cost, relative to wavefunction-based
methods, and its relatively good accuracy. Nevertheless,
standard TD-DFT calculations rely on the adiabatic ap-
proximation and, consequently, they cannot describe multi-
ple excitations. Remedies have been proposed to cure TD-
DFT in that respect but their accuracy usually lags behind
ab initio methods [1].

Let us stress that, even though they are not as popular as
TD-DFT, alternative time-independent DFT approaches for
excited states have been investigated over the years at both
formal and computational levels [2–19]. We shall focus in
this paper on DFT for ensembles of fractionally occupied
excited states as formulated by Gross, Oliveira, and Kohn
(GOK) [5]. GOK-DFT relies on a Rayleigh–Ritz varia-
tional principle for ensembles [20] which generalises the
seminal work of Theophilou [2] on equi-ensembles. Pas-
torczak et al.[21] have recently shown that the Helmholtz
free-energy variational principle can be connected to the
GOK variational principle. Despite the substantial theo-
retical investigations of ensemble DFT for excited states,
GOK-DFT has been applied only to the calculation of exci-
tation energies in atoms and small molecules [22–25]. One

∗
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of the reason for the lack of success of GOK-DFT is the ab-
sence of appropriate exchange–correlation functionals for
ensembles.

The adiabatic connection (AC) formalism [26–30] has
often been used as a guideline for the development of ap-
proximate ground-state exchange–correlation functionals
and, as it became recently possible to compute the AC for
molecular systems using accurate ab initio methodologies
[31–34], such a formalism could become effective in iden-
tifying and avoiding models that rely heavily on error can-
cellations. One can naturally assume that this statement
holds also for ensemble exchange–correlation functionals.
Indeed, Nagy [35] has shown that the ground-state AC for-
mula for the exchange–correlation energy can be easily
extended to ensembles. Nevertheless, in this formulation,
the ensemble density that is held fixed along the AC path
depends on the ensemble weights. It then becomes diffi-
cult to investigate, for a fixed density, the variation of the
exchange–correlation density-functional energy as the en-
semble weights vary. As shown by Gross et al.[5], this
variation plays a crucial role in GOK-DFT. When com-
puted for the ground-state density, it corresponds to the
exact deviation of the true physical excitation energy from
the energy gap between the Kohn–Sham (KS) lowest unoc-
cupied (LUMO) and highest occupied (HOMO) molecular
orbitals. In addition, a precise knowledge of the weight
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dependence of the ensemble exchange–correlation energy
for a fixed density would enable the construction of density-
functional approximations (DFAs) that rely on conventional
ground-state functionals. So far this has been investigated
semi-empirically [24,25,36].

In the light of these considerations, we propose in this
work a generalised AC for ensembles where the ensemble
density is held fixed along the AC path as both ensemble
weights and interaction strength vary. For clarity, the for-
malism is presented for non-degenerate two-state ensem-
bles but it can in principle be extended to any ensemble of
fractionally occupied excited states.

The paper is organised as follows: exact AC formulae
are first derived and discussed in Section 2. For illustration
purposes, ACs are then constructed analytically in Section
3 for the H2 model system in a minimal basis. A simple
DFA is thus obtained for two-state ensembles. This ap-
proximation is then tested in Section 4 with a large basis
and standard exchange–correlation functionals for the de-
scription of the first 1�+

g excited state of H2 upon bond
stretching. As a perspective and in connection with the re-
cent work of Pastorczak et al.[21], we propose in Section 5
to construct a range-dependent generalised AC, providing
thus a pathway to the development of a rigorous state-
average multi-determinant DFT based on range separation.
Conclusions are given in Section 6.

2. Theory

Exact expressions for the exchange–correlation energy of
non-degenerate two-state ensembles are investigated in this
section. It is organised as follows: after a short summary of
the GOK-DFT approach (Section 2.1) and a brief introduc-
tion to the AC formalism (Section 2.2), a generalised AC,
where both weight and interaction strength can vary along
the AC path while the ensemble density is held fixed, is
presented in Section 2.3. An exact Taylor expansion for the
ensemble exchange–correlation density functional through
second order in the ensemble weight is thus derived and
stringent constraints on the functional are obtained and
analysed in Section 2.4. The construction of the generalised
AC for ensembles is finally discussed in Section 2.5.

For pedagogical purposes, all adiabatic connections
will be derived as if the input density they rely on could
be represented by non-, partially-, and fully-interacting
pure ground states as well as by non-, partially-, and
fully-interacting non-degenerate two-state ensembles. The
Legendre–Fenchel-transform-based formalism introduced
in the following should, however, enable to tackle situa-
tions where v-representability problems occur. This should
obviously be investigated further and is left for future work.

Note also that the generalised AC discussed in this paper
could possibly be extended to ensembles of near-degenerate
or degenerate states for the purpose of representing ground-
state densities of strongly multi-configurational systems or

densities that are not pure-state-v-representable. Such sit-
uations will not be discussed in details here. When a non-
degenerate two-state ensemble is used for representing a
given density in the generalised AC we propose, that den-
sity will be assumed to be also pure-state-v-representable.

2.1. Gross–Oliveira–Kohn density-functional
theory

Let �̃1 and �̃2 denote the ground and first excited states of
an electronic system. Both fulfil the Schrödinger equation

(T̂ + Ŵee + V̂ne)|�̃i〉 = Ei |�̃i〉, i = 1, 2, (1)

where T̂ is the kinetic energy operator, Ŵee denotes the
two-electron repulsion operator, and V̂ne = ∫

dr vne(r) n̂(r)
is the nuclear potential operator. According to the GOK
variational principle [20], which generalises the seminal
work of Theophilou [2], the following inequality holds for
any trial set of orthonormal wavefunctions �1 and �2 and
any weight in the range 0 ≤ w ≤ 1

2 :

(1 − w) 〈�1|T̂ + Ŵee + V̂ne|�1〉
+w 〈�2|T̂ + Ŵee + V̂ne|�2〉 ≥ Ew, (2)

where the lower bound is the exact ensemble energy

Ew = (1 − w) E1 + w E2. (3)

As shown by Gross et al. [5], an important consequence of
this variational principle is that the ensemble energy is a
functional of the ensemble density

nw(r) = (1 − w) n�̃1
(r) + w n�̃2

(r). (4)

The former can be determined variationally as follows:

Ew = min
n

{
Fw[n] +

∫
dr vne(r) n(r)

}
, (5)

where the universal GOK functional, which is an extension
of the Hohenberg–Kohn (HK) functional [37] to ensembles,
can be written as follows using a Levy–Lieb constrained-
search formulation

Fw[n] = min
{�1,�2}w→n

{(1 − w) 〈�1|T̂ + Ŵee|�1〉 + w 〈�2|T̂

+ Ŵee|�2〉} = (1 − w)
〈
�w

1 [n]|T̂ + Ŵee|�w
1 [n]

〉
+w

〈
�w

2 [n]|T̂ + Ŵee|�w
2 [n]

〉
. (6)

The minimisation in Equation (6) is restricted to orthonor-
mal sets of wavefunctions {�1, �2}w whose ensemble
density (1 − w) n�1 + w n�2 equals n. By analogy with
KS-DFT, Gross et al. [5] proposed to split their func-
tional into a non-interacting kinetic energy contribution
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1686 O. Franck and E. Fromager

and a complementary Hartree–exchange–correlation (Hxc)
term

Fw[n] = T w
s [n] + Ew

Hxc[n], (7)

where

T w
s [n] = min

{�1,�2}w→n
{(1 − w) 〈�1|T̂ |�1〉 + w 〈�2|T̂ |�2〉}

= (1 − w)
〈
�w

1 [n]|T̂ |�w
1 [n]

〉+ w
〈
�w

2 [n]|T̂ |�w
2 [n]

〉
(8)

is expressed in terms of the non-interacting ground �w
1 [n]

and first excited �w
2 [n] GOK determinants whose ensem-

ble density equals n. According to Equation (5), the exact
ensemble energy is expressed within GOK-DFT as

Ew = min
n

{
T w

s [n] + Ew
Hxc[n] +

∫
dr vne(r) n(r)

}
= (1 − w)

〈
�̃w

1 |T̂ |�̃w
1

〉+ w
〈
�̃w

2 |T̂ |�̃w
2

〉+ Ew
Hxc[nw]

+
∫

dr vne(r) nw(r), (9)

where the GOK determinants reproducing the exact en-
semble density nw fulfil the following self-consistent equa-
tions [5]:

(
T̂ + V̂ne + V̂ w

Hxc[nw]
)|�̃w

i 〉 = Ew
s,i |�̃w

i 〉, i = 1, 2,

V̂ w
Hxc[n] =

∫
dr

δEw
Hxc

δn(r)
[n] n̂(r). (10)

An exact extension of KS-DFT to excited states is thus
formulated. Let us stress that, for a fixed density n, the en-
semble Hxc density-functional energy Ew

Hxc[n] varies with
the ensemble weight w. As shown by Gross et al.[5] and
discussed further in the rest of the paper, the exact devi-
ation of the physical excitation energy E2 − E1 from the
KS HOMO-LUMO gap is directly related to this weight
dependence. Note that the interacting and non-interacting
wavefunctions decorated with a ‘∼’ are those that enable to
reproduce the ensemble density nw of the physical system
with local potential vne. This notation will also be used in
the following for partially interacting wavefunctions.

2.2. Adiabatic connection formula for ensembles

As shown by Nagy [35], an exact expression can be derived
for the ensemble Hxc energy within the AC formalism. By
analogy with the ground-state formulation [26–30], we in-
troduce auxiliary equations based on a partially interacting
system

(T̂ + λŴee + V̂ λ)|�λ
i 〉 = Eλ

i |�λ
i 〉, i = 1, 2, (11)

where �λ
1 and �λ

2 are the ground and first excited auxil-
iary states, respectively. The local potential operator V̂ λ =∫

dr vλ(r) n̂(r) ensures that the density constraint

nw(r) = (1 − w) n�λ
1
(r) + w n�λ

2
(r) (12)

is fulfilled for any interaction strength in the range
0 ≤ λ ≤ 1. Note that, for λ = 1, vλ(r) equals the nu-
clear potential vne(r) and the wavefunctions �λ

i reduce to
the physical ones �̃i , while for λ = 0, vλ(r) reduces to the
GOK potential vne(r) + δEw

Hxc[nw]/δn(r) and the auxiliary
wavefunctions �λ

i become the GOK determinants �̃w
i .

According to Equation (7), the ensemble Hxc energy
can be expressed as

Ew
Hxc[nw] = Fw[nw] − T w

s [nw]

=
∫ 1

0
dλ

dFλ,w[nw]

dλ
, (13)

where we introduced the partially interacting GOK
functional

Fλ,w[nw] = (1 − w)
〈
�λ

1 |T̂ + λŴee|�λ
1

〉
+w

〈
�λ

2 |T̂ + λŴee|�λ
2

〉
. (14)

Since, according to the Hellmann–Feynman theorem and
the density constraint in Equation (12)

dFλ,w[nw]

dλ
= (1 − w)

〈
�λ

1 |Ŵee|�λ
1

〉
+w

〈
�λ

2 |Ŵee|�λ
2

〉
, (15)

we finally recover the expression of Nagy [35]:

Ew
Hxc[nw] = (1 − w)

∫ 1

0
dλ
〈
�λ

1 |Ŵee|�λ
1

〉
+w

∫ 1

0
dλ
〈
�λ

2 |Ŵee|�λ
2

〉
. (16)

This formulation is appealing as it would potentially enable
the accurate calculation of ensemble Hxc energies from ab
initio methods [31–33]. Nevertheless, the computed ener-
gies would be obtained for a given ensemble density nw

that depends on the ensemble weight w. In other words,
Nagy’s AC cannot be used straightforwardly for computing
the Hxc density-functional energy as the ensemble weight
varies while the density is fixed. Being able to perform
such a calculation is highly desirable as it would enable to
develop DFAs for ensembles based on conventional ground-
state DFAs. Constructing an AC where the density is held
fixed as both interaction strength and ensemble weight vary
is appealing in this respect.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 L

av
al

] 
at

 0
8:

03
 2

4 
Ju

ne
 2

01
4 



Molecular Physics 1687

Figure 1. Graphical representations of both traditional (left) and
generalised adiabatic connections (right) for a two-state ensemble.
See text for further details.

2.3. Generalised adiabatic connection
for ensembles

In order to investigate the weight dependence of the uni-
versal ensemble Hxc density functional Ew

Hxc[n], we pro-
pose to construct a generalised adiabatic connection for
ensembles (GACE) which is based on the following auxil-
iary equations:

(T̂ + λŴee + V̂ λ,ξ )|�λ,ξ
i 〉 = Eλ,ξ

i |�λ,ξ
i 〉, i = 1, 2, (17)

where the local potential operator V̂ λ,ξ = ∫
dr vλ,ξ (r) n̂(r)

ensures that the density constraint

n(r) = (1 − ξ ) n�
λ,ξ
1

(r) + ξ n�
λ,ξ
2

(r) (18)

is fulfilled not only for all interaction strengths in the range
0 ≤ λ ≤ 1, but also for all ensemble weights in the range
0 ≤ ξ ≤ w. In the particular case where ξ = w and n = nw,
the GACE reduces to Nagy’s AC [35]. Let us stress that,
for any physical ensemble density n, there is in principle no
guarantee that the local potential vλ, ξ exists for all λ and
ξ values. This so-called ‘v-representability problem’ can
be addressed formally when using a Legendre–Fenchel-
transform formalism as discussed further in Section 2.5.
As mentioned previously, we will assume for pedagogical
purposes that the density n is v-representable for all λ and
ξ values.

Since the ground-state Hartree density-functional en-
ergy expression is usually employed for the ensemble
Hartree energy [5]

Ew
H [n] = EH[n] = 1

2

∫ ∫
drdr′ n(r)n(r′)

|r − r′| , (19)

the latter is by definition weight-independent and the exact
ensemble exchange–correlation functional is defined as

Ew
xc[n] = Ew

Hxc[n] − EH[n]. (20)

One of the advantage of the GACE relative to Nagy’s AC
is that various adiabatic paths can be followed for calculat-
ing the ensemble exchange–correlation energy. In order to
connect the ensemble exchange–correlation functional to
its ground-state (w = 0) limit Exc[n], we choose the path

represented in blue in Figure 1, leading thus to

Ew
xc[n] =

∫ 1

0
dλ

dFλ,w[n]

dλ
− EH[n]

=
∫ 1

0
dλ

[
dFλ,0[n]

dλ

+
∫ w

0
dξ

d2Fλ,ξ [n]

dξdλ

]
− EH[n]

= Exc[n] +
∫ w

0
dξ

(
dF 1,ξ [n]

dξ
− dF 0,ξ [n]

dξ

)
, (21)

where the partially interacting GOK functional equals along
the GACE

Fλ,ξ [n] = (1 − ξ )
〈
�

λ,ξ
1 |T̂ + λŴee|�λ,ξ

1

〉
+ ξ

〈
�

λ,ξ
2 |T̂ + λŴee|�λ,ξ

2

〉
. (22)

Since, according to Appendix A

dFλ,ξ [n]

dξ
= Eλ,ξ

2 − Eλ,ξ
1 , (23)

we finally obtain

Ew
xc[n] = Exc[n] +

∫ w

0
dξ
[(E1,ξ

2 − E1,ξ
1

)
− (E0,ξ

2 − E0,ξ
1

)]
. (24)

The exact deviation of the ensemble exchange–correlation
energy from the ground-state one is, therefore, obtained by
integrating the difference in excitation energies

�ξ
xc[n] = (E1,ξ

2 − E1,ξ
1

)− (E0,ξ
2 − E0,ξ

1

)
(25)

between the physical and non-interacting GOK systems
over the weight interval [0, w] while keeping the ensemble
density fixed. Equivalently, �

ξ
xc[n] is the first-order deriva-

tive of the ensemble exchange–correlation energy:

�ξ
xc[n] = dE

ξ
xc[n]

dξ
. (26)

According to Equations (24) and (25), the ensemble
exchange–correlation energy can be expanded through sec-
ond order in w as follows:

Ew
xc[n] = Exc[n] + w�0

xc[n] + w2

2

d�
ξ
xc[n]

dξ

∣∣∣∣∣
ξ=0

+O(w3),

(27)

where the first-order Taylor expansion coefficient

�0
xc[n] = (E1,0

2 − E1,0
1

)− (E0,0
2 − E0,0

1

)
(28)
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1688 O. Franck and E. Fromager

can be rewritten more explicitly as

�0
xc[n] = (

E2[n] − E1[n]
)− (

ε0
2[n] − ε0

1[n]
)
, (29)

where, for convenience, the first excitation in the non-
interacting KS system (to which the GOK system reduces
for ξ = 0) is assumed to be a single excitation. The corre-
sponding excitation energy E0,0

2 − E0,0
1 is then equal to the

HOMO-LUMO gap ε0
2[n] − ε0

1[n] in the KS system whose
ground-state density equals n. In case of multiple excita-
tions, the excitation energy would simply be written as the
sum of KS orbital energy differences. On the other hand,
the first excitation energy E1,0

2 − E1,0
1 in the fully interact-

ing system whose ground-state density equals n is simply
denoted E2[n] − E1[n].

Note that, in the particular case where n equals the
exact ground-state density n0 = n�̃1

of the true physical
system that is described by the Schrödinger Equation (1),
the exact excitation energy E2 − E1 and the conventional
KS HOMO-LUMO gap ε0

2 − ε0
1 are recovered, leading

thus to

�0
xc[n0] = (E2 − E1) − (

ε0
2 − ε0

1

)
. (30)

Levy [6] has shown that the term on the left-hand side of
Equation (30) can be interpreted as a discontinuous change
in the exchange–correlation potential as w → 0. For that
reason we will refer to �

ξ
xc[n] as the exchange–correlation

derivative discontinuity (DD) density functional in the
following.

Let us now focus on the second-order Taylor expansion
coefficient in Equation (27). Since, according to Equation
(17) and the Hellmann–Feynman theorem

dEλ,ξ
i

dξ
=
∫

dr
∂vλ,ξ (r)

∂ξ
n�

λ,ξ
i

(r), i = 1, 2, (31)

the first-order derivative of the exchange–correlation DD
functional can be expressed, according to Equation (25),
as

d�
ξ
xc[n]

dξ

∣∣∣∣∣
ξ=0

=
∫

dr
∂v1,ξ (r)

∂ξ

∣∣∣∣
ξ=0

(
n�

1,0
2

(r) − n�
1,0
1

(r)
)

−
∫

dr
∂v0,ξ (r)

∂ξ

∣∣∣∣
ξ=0

(
n�

0,0
2

(r)−n�
0,0
1

(r)
)
.

(32)

With the notations of Equations (6) and (8), the first ex-
cited states of the fully interacting (�1,0

2 ) and KS (�0,0
2 )

systems whose ground-state densities equal n simply corre-
spond to �0

2 [n] and �0
2[n], respectively. As n�

1,0
1

= n�
0,0
1

=
n, according to the density constraint in Equation (18),

we obtain

d�
ξ
xc[n]

dξ

∣∣∣∣∣
ξ=0

=
∫

dr
∂v1,ξ (r)

∂ξ

∣∣∣∣
ξ=0

(
n�0

2 [n](r) − n(r)
)

−
∫

dr
∂v0,ξ (r)

∂ξ

∣∣∣∣
ξ=0

(
n�0

2[n](r) − n(r)
)
.

(33)

Moreover, as shown in Appendix B, the fully interacting
and GOK local potentials are connected as follows:

v0,ξ (r) = v1,ξ (r) + δE
ξ
Hxc

δn(r)
[n], (34)

which leads to the final expression

d�
ξ
xc[n]

dξ

∣∣∣∣∣
ξ=0

=
∫

dr
∂

∂ξ

δE
ξ
xc

δn(r)
[n]

∣∣∣∣∣
ξ=0

(
n(r) − n�0

2 [n](r)
)

+
∫

dr
∂v0,ξ (r)

∂ξ

∣∣∣∣
ξ=0

(
n�0

2 [n](r) − n�0
2[n](r)

)
, (35)

or, equivalently, according to Equation (26)

d�
ξ
xc[n]

dξ

∣∣∣∣∣
ξ=0

=
∫

dr
δ�0

xc

δn(r)
[n]
(
n(r) − n�0

2 [n](r)
)

+
∫

dr
∂v0,ξ (r)

∂ξ

∣∣∣∣
ξ=0

(
n�0

2 [n](r) − n�0
2[n](r)

)
. (36)

Note that the Hartree density-functional potential does
not appear in the first term on the right-hand side of Equa-
tion (35) since the ensemble Hartree density-functional en-
ergy is weight-independent (see Equation (19)). In addition,
in the particular case where n equals the exact ground-
state density n0 of the true physical system, Equation (36)
becomes

d�
ξ
xc[n0]

dξ

∣∣∣∣∣
ξ=0

=
∫

dr
δ�0

xc

δn(r)
[n0]

(
n0(r) − n�̃2

(r)
)

+
∫

dr
∂vξ

s [n0](r)

∂ξ

∣∣∣∣
ξ=0

(
n�̃2

(r) − n�̃0
2
(r)
)
, (37)

where �̃2 and �̃0
2 are the first excited states of the physical

and KS systems, respectively (see Equations (1) and (10)).
For clarity the local GOK potential for which the ensem-
ble density remains equal to the exact ground-state density
n0 as the weight of the ensemble varies in the vicinity of
ξ = 0 has been denoted vξ

s [n0]. As shown in the next section,
the Taylor expansion we obtained within the GACE for the
ensemble exchange–correlation energy leads to stringent
constraints on the functional.
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2.4. Exact ensemble and excitation energies

Let us consider the GACE in the particular case where the
density n equals the exact ensemble density nw of the phys-
ical system. According to Equations (1) and (10), the local
potentials v1, w(r) and v0, w(r) correspond then to the nu-
clear vne(r) and GOK vne(r) + δEw

Hxc[nw]/δn(r) potentials,
respectively. Consequently, the fully interacting excitation
energy becomes the true physical one E2 − E1, while the
non-interacting excitation energy is the GOK one obtained
from Equation (10), leading thus to the following expres-
sion for the ensemble exchange–correlation DD energy:

�w
xc[nw] = E2 − E1 − (Ew

s,2 − Ew
s,1

)
. (38)

When the first excitation in the GOK system corresponds
to a single excitation, the corresponding excitation energy
can be rewritten as an orbital energy difference

Ew
s,2 − Ew

s,1 = εw
2 − εw

1 , (39)

and, consequently, the expression of Gross et al. [5] for the
exact first excitation energy is recovered:

E2 − E1 = εw
2 − εw

1 + �w
xc[nw]

= εw
2 − εw

1 + dE
ξ
xc[nw]

dξ

∣∣∣∣∣
ξ=w

. (40)

It becomes clear from Equation (40) that the weight-
dependent exchange–correlation DD density functional
�w

xc[n] plays a crucial role in the calculation of excitation
energies in GOK-DFT.

In the rest of this work, we will show how the GACE
could be used for the development of ensemble DFAs. Be-
fore, let us mention that stringent constraints on the density
functional �w

xc[n] can be derived from Equation (40) when
rewriting, according to Equation (3), the excitation energy
as the first-order derivative of the ensemble energy with
respect to the ensemble weight w:

dEw

dw
= E2 − E1, 0 ≤ w ≤ 1

2
. (41)

In the exact theory this derivative should, therefore, not vary
with w or, equivalently, the ensemble energy should have
no curvature:

dkEw

dwk
= 0, 0 ≤ w ≤ 1

2
, k ≥ 2. (42)

Note that differentiability with respect to the ensemble
weight w will be assumed (but it is in principle not guar-
anteed) for individual terms on the right-hand side of
Equation (40).

For the purpose of constructing ensemble DFAs from
regular ground-state DFAs, as proposed by Nagy [36] and

Paragi et al. [24,25], Equations (41) and (42) should be
taken in the w = 0 limit. Here we will consider derivatives
through second order only (k = 2), which leads to the two
exact conditions

dEw

dw

∣∣∣∣
w=0

= E2 − E1, (43)

and

d2Ew

dw2

∣∣∣∣
w=0

= 0. (44)

Since, according to Equation (4), the ensemble exchange–
correlation DD energy is expanded through first order as

�w
xc[nw]

= �w
xc[n0] +

∫
dr

δ�w
xc

δn(r)
[n0]

(
nw(r) − n0(r)

)+ O(w2)

= �0
xc[n0] + w

(
d�

ξ
xc[n0]

dξ

∣∣∣∣∣
ξ=0

+
∫

dr
δ�0

xc

δn(r)
[n0]

(
n�̃2

(r) − n0(r)
))+ O(w2), (45)

which gives, according to Equation (37)

�w
xc[nw] = �0

xc[n0] + w

∫
dr

∂vξ
s [n0](r)

∂ξ

∣∣∣∣
ξ=0

× (n�̃2
(r) − n�̃0

2
(r)
)+ O(w2), (46)

we obtain through first order, from Equations (40) and (41)

dEw

dw
= (

ε0
2 − ε0

1

)+ �0
xc[n0] + w

[
d

dw

(
εw

2 − εw
1

)∣∣∣∣
w=0

+
∫

dr
∂vξ

s [n0](r)

∂ξ

∣∣∣∣
ξ=0

(
n�̃2

(r) − n�̃0
2
(r)
)]

+O(w2). (47)

Equation (30) is thus recovered from Equation (43) while
the second constraint in Equation (44) leads to

d

dw

(
εw

2 − εw
1

)∣∣∣∣
w=0

= −
∫

dr
∂vξ

s [n0](r)

∂ξ

∣∣∣∣
ξ=0

(
n�̃2

(r) − n�̃0
2
(r)
)
. (48)

By rewriting the derivative on the left-hand side of Equa-
tion (48), according to the Hellmann–Feynman theorem and
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1690 O. Franck and E. Fromager

Equations (10) and (39), as

d

dw

(
εw

2 − εw
1

)∣∣∣∣
w=0

=
〈
�̃0

2

∣∣∣∣ d

dw
V̂ w

Hxc[nw]

∣∣∣∣
w=0

∣∣∣∣ �̃0
2

〉

−
〈
�̃0

1

∣∣∣∣ d

dw
V̂ w

Hxc[nw]

∣∣∣∣
w=0

∣∣∣∣ �̃0
1

〉

=
∫

dr
d

dw

δEw
Hxc

δn(r)
[nw]

∣∣∣∣
w=0

× (n�̃0
2
(r) − n0(r)

)
, (49)

and using

d

dw

δEw
Hxc

δn(r)
[nw]

∣∣∣∣
w=0

= ∂

∂w

δEw
xc

δn(r)
[n0]

∣∣∣∣
w=0

+
∫

dr′ KHxc(r′, r)
(
n�̃2

(r′) − n0(r′)
)
, (50)

where KHxc(r′, r) = δ2EHxc[n0]/δn(r′)δn(r) denotes the
ground-state Hxc kernel, we conclude from Equation (48)
that the exact constraint in Equation (44) is equivalent to

∫
dr

δ�0
xc

δn(r)
[n0]

(
n�̃0

2
(r) − n0(r)

)
+
∫ ∫

drdr′ KHxc(r′, r)

× (n�̃2
(r′) − n0(r′)

)(
n�̃0

2
(r) − n0(r)

)
= −

∫
dr

∂vξ
s [n0](r)

∂ξ

∣∣∣∣
ξ=0

(
n�̃2

(r) − n�̃0
2
(r)
)
. (51)

Note that, when simplifying the Hartree contribution only
in Equation (50), relation (51) can alternatively be rewritten
as

−
∫

dr
d

dw

δEw
xc

δn(r)
[nw]

∣∣∣∣
w=0

(
n�̃0

2
(r) − n0(r)

)
−
∫

dr
∂vξ

s [n0](r)

∂ξ

∣∣∣∣
ξ=0

(
n�̃2

(r) − n�̃0
2
(r)
)

=
∫

dr

([
n�̃0

2
(r) − n0(r)

] ∫
dr′

[
n�̃2

(r′) − n0(r′)
]

|r − r′|

)
,

(52)

which is nothing but Levy’s constraint (see Equation (30)
in Ref. [6]) in the w → 0 limit. Interestingly, we obtain
in the second integral on the left-hand side of Equation
(52) an explicit expression for the contribution that arises
from the discontinuous change of the exchange–correlation
potential as w → 0. Note that this contribution comes di-
rectly from the GACE, where the ensemble density of the
non-interacting system is held fixed to the ground-state den-
sity n0 while the ensemble weight varies in the vicinity of
ξ = 0.

Returning to the formulation in Equation (51), an ac-
curate value for the integral on the right-hand side could
in principle be obtained when constructing the GACE with
ab initio methods, as discussed further in Section 2.5. The
contributions on the left-hand side of Equation (51) can,
on the other hand, be computed with DFAs. The stringent
constraint we derived could thus be used for developing
DFAs to �0

xc[n]. Interestingly the ground-state kernel, that
plays a key role in TD-DFT [1], appears in the derivation of
the excitation energy within GOK-DFT. Connections be-
tween the two approaches should be investigated further
in the light of the recent work of Ziegler and coworkers
[17,19] on constricted variational density-functional theory
(CV-DFT). A formal connection might also be obtained
when considering imaginary temperatures in Boltzmann
factors for the ensemble weights [21]. Work is in progress
in these directions.

2.5. Construction of the GACE

By analogy with traditional ground-state AC calculations
[31–33], the GACE could in principle be constructed from
the partially interacting GOK functional introduced in
Equation (22). Note that the functional is defined for ensem-
ble v-representable densities. The domain of the functional
can be enlarged to ensemble N representable densities by
using a Levy–Lieb constrained-search formulation [5,21]

Fλ,ξ [n] = min
{�1,�2}ξ →n

{
(1 − ξ ) 〈�1|T̂ + λŴee|�1〉

+ ξ 〈�2|T̂ + λŴee|�2〉
}
, (53)

where the minimisation in Equation (53) is restricted to
orthonormal sets of wavefunctions {�1, �2}ξ whose en-
semble density (1 − ξ ) n�1 + ξ n�2 equals n.

The minimising wavefunctions �
λ,ξ
1 and �

λ,ξ
2 can alter-

natively be reached when searching for the local potential
vλ, ξ that was introduced in Equation (17). For that purpose
we define, for a given local potential v, the partially interact-
ing Hamiltonian Ĥ λ[v] = T̂ + λŴee + ∫

dr v(r) n̂(r) and
denote Eλ

1 [v] and Eλ
2 [v] the associated ground- and first-

excited-state energies, respectively. According to the GOK
variational principle

(1 − ξ ) 〈�λ,ξ
1 |Ĥ λ[v]|�λ,ξ

1 〉
+ ξ 〈�λ,ξ

2 |Ĥ λ[v]|�λ,ξ
2 〉 ≥ (1 − ξ )Eλ

1 [v] + ξ Eλ
2 [v], (54)

or, equivalently

Fλ,ξ [n] ≥ (1 − ξ )Eλ
1 [v] + ξ Eλ

2 [v] −
∫

dr v(r) n(r). (55)
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The partially interacting GOK functional can, therefore, be
rewritten as a Legendre–Fenchel transform [38–41]

Fλ,ξ [n] = sup
v

{Fλ,ξ [v, n]}, (56)

where

Fλ,ξ [v, n] = (1 − ξ )Eλ
1 [v] + ξ Eλ

2 [v] −
∫

dr v(r) n(r),

(57)

and the maximising potential in Equation (56), if it ex-
ists, equals vλ, ξ . In the latter case, where we assume that
the density n can be represented by a non-degenerate two-
state partially interacting ensemble, expressions in Equa-
tions (53) and (56) are equivalent. In the special case
ξ = 0, it would therefore be assumed that the density n
is pure-state-v-representable. For any density, the ground-
state Legendre–Fenchel transform recovered when ξ = 0
is in fact equivalent to the Levy–Valone–Lieb functional
[42]. Degeneracies associated with the ground-state energy
Eλ

1 [v] can indeed allow for the description of densities that
are not pure-state-v-representable.

Returning to non-degenerate two-state ensemble v-
representable densities, we note that Nagy’s AC [35] can
be constructed by fixing the ensemble weight ξ to a given
value w and by choosing the weight-dependent ensemble
density nw as input density in Equation (56). In this case
the maximising local potential ṽλ,w is determined from the
stationary condition

δFλ,w

δv(r)
[ṽλ,w, nw] = 0. (58)

On the other hand, the GACE is constructed when varying
both ensemble weight and interaction strength while keep-
ing the density fixed to n. The maximising potential vλ, ξ is
then obtained from the variational condition

δFλ,ξ

δv(r)
[vλ,ξ , n] = 0, 0 ≤ ξ ≤ w, (59)

which, according to Equation (57), is equivalent to

(1 − ξ )
δEλ

1

δv(r)
[vλ,ξ ] + ξ

δEλ
2

δv(r)
[vλ,ξ ] = n(r), 0 ≤ ξ ≤ w.

(60)

Since, according to the Hellmann–Feynman theorem, each
individual functional derivatives correspond to the individ-
ual densities

δEλ
i

δv(r)
[vλ,ξ ] = n�

λ,ξ
i

(r), i = 1, 2, (61)

the density constraint in Equation (18) is recovered from
Equation (60).

Let us consider the particular case where the input den-
sity n equals nw. In contrast to Nagy’s AC, the variational
condition in Equation (59) will be fulfilled along the GACE
for any value of the ensemble weight in the range 0 ≤ ξ

≤ w

δFλ,ξ

δv(r)
[vλ,ξ , nw] = 0. (62)

Nagy’s AC is simply recovered when ξ =w. In this case vλ, ξ

reduces to the local potential ṽλ,w introduced in Equation
(58).

The GACE could in principle be computed along those
lines by using ab initio methods for the description of the
partially interacting ensemble. For that purpose, the recent
work of Teale et al.[31–33] on the computation of ground-
state ACs should be extended to ensembles. Such an ap-
proach would provide precious data for the development of
ensemble DFAs.

Let us finally stress that the GACE offers some flexibil-
ity in the choice of the input density. For convenience, one
may wish to construct a GACE where the local potential
vλ, ξ does not depend on the ensemble weight ξ . Conse-
quently, individual densities of the ground- and first-excited
states in the partially interacting system would be weight-
independent. Since the ensemble density is fixed along the
GACE, it would simply mean that the individual densities
are equal. As an illustration, we propose in the following
to construct such a GACE analytically for the simple H2

model system in a minimal basis.

3. Analytical derivation of the GACE for H2 in a
minimal basis

We consider in this section the H2 molecule in a Slater
minimal basis consisting of the 1sA and 1sB atomic or-
bitals localised on the left and right hydrogen atoms, re-
spectively [43,44]. The basis functions are identical with
ζ = 1. For large bond distances the bonding and anti-
bonding molecular orbitals are equal to 1σg = 1√

2
(1sA+1sB )

and 1σu = 1√
2

(1sA−1sB ), respectively. Both traditional AC and
GACE will be constructed in the following within the 1�+

g

symmetry. The space of two-electron wavefunctions to be
considered reduces then to the two Slater determinants 1σ 2

g

and 1σ 2
u . Since these two determinants differ by a double

excitation, they are not coupled by one-electron operators
such as local potential operators. Even though equations are
derived explicitly for H2, any two-level system that fulfils
the latter condition could be described similarly. Return-
ing to H2, in the dissociation limit, the two-state ensemble
will therefore consist of the neutral 1√

2
(1σ 2

g −1σ 2
u ) and ionic

1√
2

(1σ 2
g +1σ 2

u ) states.
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1692 O. Franck and E. Fromager

The analytical derivation of the Legendre–Fenchel
transform is first presented for the ground state in
Section 3.1. The extension to the two-state ensemble is then
given in Section 3.2. In the light of these derivations we fi-
nally propose in Section 3.3 a simple DFA to the ensemble
exchange–correlation functional.

3.1. AC for the ground state

Let the matrix representation of the physical fully interact-
ing Hamiltonian in the basis of the 1σ 2

g and 1σ 2
u determi-

nants be

[Ĥ ] =
[

Eg K

K Eu

]
, (63)

where

Ei = 〈
1σ 2

i |T̂ + Ŵee + V̂ne|1σ 2
i

〉
, i = g, u,

K = 〈
1σ 2

g |Ŵee|1σ 2
u

〉
. (64)

The ground-state wavefunction �1 and ground-state energy
E1 are obtained by diagonalising [Ĥ ], which leads to

E1 = 1

2

(
Eg + Eu −

√(
Eg − Eu

)2 + 4K2

)
, (65)

and

|�1〉 = 1√
1 + C2

u

(
|1σ 2

g 〉 + Cu|1σ 2
u 〉
)
, (66)

with

Cu = E1 − Eg

K
. (67)

Since 1σ 2
g and 1σ 2

u differ by a double excitation, they are
not coupled by the density operator. Hence the ground-state
density can be expressed as

n0(r) = 〈�1|n̂(r)|�1〉 = 1

1 + C2
u

(
ng(r) + C2

u nu(r)
)
, (68)

where ng and nu denote the densities associated with the
1σ 2

g and 1σ 2
u determinants, respectively.

Before constructing the AC for the ground-state den-
sity n0, let us first mention that the HK theorem may not
be fulfilled in a finite basis [45,46]. Here a non-interacting

Hamiltonian Ĥ 0 = T̂ + ∫
dr v(r) n̂(r) will simply be rep-

resented by a diagonal matrix since the local potential op-
erator does not couple the 1σ 2

g and 1σ 2
u determinants:

[Ĥ 0] =
[ 〈1σ 2

g |T̂ |1σ 2
g 〉 + Vg 0

0 〈1σ 2
u |T̂ |1σ 2

u 〉 + Vu

]
, (69)

where the two matrix elements Vg and Vu defined as

Vi =
∫

dr v(r) ni(r), i = g, u, (70)

fully determine the potential in the minimal basis. In the
particular case where the density ng is considered, the KS
local potential is obviously not unique since the ground
state of the non-interacting system remains equal to the 1σ 2

g

determinant as long as the following condition is fulfilled:

Vg − Vu <
〈
1σ 2

u |T̂ |1σ 2
u

〉− 〈
1σ 2

g |T̂ |1σ 2
g

〉
. (71)

On the other hand, the ground-state density n0 is a lin-
ear combination of ng and nu. Consequently, the KS 1σ 2

g

and 1σ 2
u determinants must be degenerate so that the non-

interacting density equals the interacting one. In other
words an ensemble is required in the minimal basis while, in
larger basis sets and for a finite bond distance, it is not (see,
for example, Ref. [31]). This will be discussed further in the
following. The KS potential is, therefore, uniquely defined
(up to a constant) in the minimal basis by the equality

V 0
g − V 0

u = 〈
1σ 2

u |T̂ |1σ 2
u

〉− 〈
1σ 2

g |T̂ |1σ 2
g

〉
. (72)

It is then relevant to construct an AC for the ground-
state density within the minimal basis. For that purpose we
introduce the matrix representation of the partially interact-
ing Hamiltonian

[Ĥ λ] =
[ 〈

1σ 2
g |T̂ + λŴee|1σ 2

g

〉+ Vg λK

λK
〈
1σ 2

u |T̂ + λŴee|1σ 2
u

〉+ Vu

]
, (73)

and, for convenience, substitute the parameters Vg and Vu

for Vg and Vu, respectively, where

Vi = λEi − 〈
1σ 2

i |T̂ + λŴee|1σ 2
i

〉+ λVi , i = g, u.

(74)

Note that one single parameter

υ = Vg − Vu (75)

is in fact sufficient, since the local potential is determined up
to a constant. This leads to the following parameterisation
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of the partially interacting Hamiltonian

[Ĥ λ] = λ

[
Eg + υ K

K Eu

]
+ λVu. (76)

Note that, within this parameterisation, the degeneracy of
the KS determinants is ensured for λ = 0.

The ground-state Legendre–Fenchel transform, from
which we will construct the AC for the ground-state density
n0, is obtained as follows [38–40]:

Fλ[n0] = sup
υ

{Fλ[υ, n0]}, (77)

where, according to Equations (68) and (70)

Fλ[υ, n0] = Eλ
1 (υ) −

∫
dr v(r) n0(r),

= Eλ
1 (υ) − 1

1 + C2
u

(
Vg + C2

uVu

)
, (78)

and, according to Equation (76), the auxiliary ground-state
energy equals

Eλ
1 (υ) = λ

2

(
Eg + υ + Eu −

√(
Eg + υ − Eu

)2 + 4K2

)
+ λVu. (79)

Since in our parameterisation Vu is a constant, Vu does not
vary with υ and

dVg

dυ
= λ, (80)

according to Equations (74) and (75). The maximising pa-
rameter υλ in Equation (77) is therefore obtained when
solving

d

dυ
Fλ[υ, n0] = dEλ

1 (υ)

dυ
− λ

1 + C2
u

= 0, (81)

which, according to Appendix C, leads to the unique
solution

υλ = 0, 0 ≤ λ ≤ 1, (82)

or, equivalently,

V λ
g − V λ

u = 〈
1σ 2

u |T̂ − λ[T̂ + V̂ne]|1σ 2
u

〉
− 〈

1σ 2
g |T̂ − λ[T̂ + V̂ne]|1σ 2

g

〉
. (83)

We thus conclude from Equation (76) that the ground-state
AC can simply be constructed in the minimal basis when

multiplying the fully interacting Hamiltonian by the inter-
action strength λ:

[Ĥ λ] = λ[Ĥ ] + λVu, (84)

which means that the ground-state wavefunction does not
vary along the AC,

�λ
1 = �1, 0 ≤ λ ≤ 1. (85)

Note that the description in the minimal basis of the phys-
ical ground-state wavefunction of H2 becomes exact in the
dissociation limit. For dissociated systems, the Legendre–
Fenchel transform will, however, be ill-defined in the sense
that the functional derivative of the energy with respect to
the electron density does not exist [47]. Let us therefore
stress that what is described here is the near dissociation
of H2 when neglecting the overlap between 1sA and 1sB

orbitals.
According to Equation (85), when approaching the dis-

sociation limit, the exact value for the ground-state Hxc
integrand 〈�λ

1 |Ŵee|�λ
1 〉 should therefore be expected to be-

come independent on the interaction strength λ. This was
observed numerically by Teale et al. [31]. An important
difference though between their calculations, which were
performed in large basis sets, and the analytical ones pre-
sented here lies in the fact that, in the λ = 0 limit, Teale
et al. [31] obtain a single determinantal KS wavefunction
while we need to use an ensemble of two states to reproduce
the ground-state density. Consequently, the large increase
in the integrand curvature that Teale et al.observed for large
bond distances when approaching the λ=0 limit cannot be
reproduced in the minimal basis.

Let us finally mention that, by applying Nagy’s for-
mula in Equation (16) for w = 0 and using Equation (85),
we obtain the following expression for the ground-state
exchange–correlation energy:

Exc[n0] =
∫ 1

0
dλ
〈
�λ

1 |Ŵee|�λ
1

〉− EH[n0]

= 〈�1|Ŵee|�1〉 − EH[n0], (86)

which gives, in the dissociation limit [43,44],

Exc[n0] −→
R→+∞

−5

8
. (87)

Interestingly, since Eg = Eu and K = 5/16 a.u. in the disso-
ciation limit [43,44], the first excitation energy E2 − E1 of
the physical system, where

E2 = 1

2

(
Eg + Eu +

√(
Eg − Eu

)2 + 4K2

)
, (88)
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1694 O. Franck and E. Fromager

according to Equation (63), reduces to

E2 − E1 −→
R→+∞

2K = 5

8
. (89)

Since the KS determinants are degenerate in the minimal
basis, the non-interacting KS excitation energy in Equation
(30) equals zero and the exchange–correlation DD energy
computed for the ground-state density becomes

�0
xc[n0] = E2 − E1 −→

R→+∞
−Exc[n0]. (90)

3.2. ACs for the ensemble

The AC constructed in Section 3.1 for the ground state of
H2 in a minimal basis is also valid for the two-state ensemble
{�1, �2}w where

|�2〉 = 1√
1 + C2

g

(
Cg|1σ 2

g 〉 + |1σ 2
u 〉
)

(91)

is the physical excited state whose energy E2 is given in
Equation (88) and

Cg = E2 − Eu

K
. (92)

Indeed, since the physical fully interacting Hamiltonian is
simply scaled by the interaction strength along the ground-
state AC (see Equation (84)), both ground and excited states
do not vary with λ,

�λ
i = �i, 0 ≤ λ ≤ 1, i = 1, 2, (93)

and the density constraint of Nagy’s AC is therefore
fulfilled

(1 − w) n�λ
1
(r) + w n�λ

2
(r)

= (1 − w) n�1 (r) + w n�2 (r), 0 ≤ λ ≤ 1. (94)

Note that, due to the degeneracy of the non-interacting GOK
states and according to Equation (38), relation (90) remains
fulfilled for any value of w:

�w
xc[nw] = E2 − E1 −→

R→+∞
−Exc[n0]. (95)

Let us now discuss the construction of the GACE in the
minimal basis. For simplicity, we will consider the situation
where the local potential that holds the ensemble density
fixed, as both ensemble weight ξ and interaction strength
λ vary along the GACE, does not depend on ξ . In the
particular case where λ = 1, the fully interacting densities
of the ground and first-excited states should therefore be

equal. Since, according to Equation (91), the density of the
excited state can be expressed as

n�2 (r) = 〈�2|n̂(r)|�2〉 = 1

1 + C2
g

(
C2

g ng(r) + nu(r)
)
,

(96)

we deduce from Equation (68) the following condition:

C2
uC

2
g − 1 = (CuCg − 1)(CuCg + 1) = 0, (97)

which, when combined with the inequalities Cg < 0 and
Cu > 0, leads to

CuCg = −1. (98)

Since K > 0, we finally conclude from Equations (67) and
(92) that the 1σ 2

g and 1σ 2
u determinants should be degener-

ate in the fully interacting system:

Eg = Eu. (99)

Consequently, the fully interacting Hamiltonian to be used
in the GACE equals

[Ĥ 1,ξ ] =
[

Eg K

K Eg

]
. (100)

The corresponding weight-independent ground-state
wavefunction

|�1,ξ
1 〉 = |�1〉 = 1√

2

(|1σ 2
g 〉 − |1σ 2

u 〉), (101)

whose energy equals E1,ξ
1 = Eg − K, describes the neutral

dissociated state of H2 while the weight-independent ex-
cited state

|�1,ξ
2 〉 = |�2〉 = 1√

2

(|1σ 2
g 〉 + |1σ 2

u 〉), (102)

whose energy equals E1,ξ
2 = Eg + K , describes the ionic

state. It is then clear that the ensemble density remains
fixed as the ensemble weight ξ varies:

n(r) = (1 − ξ ) n
�

1,ξ
1

(r) + ξ n
�

1,ξ
2

(r) = 1

2

(
ng(r) + nu(r)

)
.

(103)

The GACE can now be constructed with the partially
interacting Hamiltonian written in Equation (73) by substi-
tuting the variables Vg and Vu for Vg and Vu, respectively,
with

Vi = λEg − 〈1σ 2
i |T̂ + λŴee|1σ 2

i 〉 + λV i ,

i = g, u, (104)
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Molecular Physics 1695

which leads to the following parameterisation

[Ĥ λ] = λ

[
Eg + υ K

K Eg

]
+ λVu, (105)

where υ = Vg − Vu is the parameter that defines uniquely
(up to a constant) the local potential in the minimal ba-
sis. The auxiliary ground- and excited-state energies are
therefore expressed as

Eλ
1 (υ) = λ

2

(
2Eg + υ −

√
υ2 + 4K2

)
+ λVu, (106)

and

Eλ
2 (υ) = λ

2

(
2Eg + υ +

√
υ2 + 4K2

)
+ λVu, (107)

respectively. According to Equation (56), we can thus ex-
press the Legendre–Fenchel transform for the ensemble as

Fλ,ξ [n] = sup
υ

{Fλ,ξ [υ, n]}, (108)

where, according to Equations (70) and (103),

Fλ,ξ [υ, n] = (1 − ξ )Eλ
1 (υ) + ξ Eλ

2 (υ) −
∫

dr v(r) n(r),

= λ

2

(
2Eg + υ + (2ξ − 1)

√
υ2 + 4K2

)
+ λVu − 1

2
(Vg + Vu). (109)

Since in our parameterisation Vu is a constant, Vu does not
vary with υ and dVg/dυ = λ, according to Equation (104).
Consequently, the maximising υλ,ξ parameter in Equa-
tion (108) fulfils

d

dυ
Fλ,ξ [υ, n] = λ(2ξ − 1)

2

υ√
υ2 + 4K2

= 0, (110)

which leads to the unique solution

υλ,ξ = 0, 0 ≤ λ ≤ 1, 0 ≤ ξ ≤ w, (111)

or, equivalently,

V λ,ξ
g − V λ,ξ

u = 〈
1σ 2

u |T̂ + λŴee|1σ 2
u

〉
− 〈

1σ 2
g |T̂ + λŴee|1σ 2

g

〉
. (112)

We thus conclude from Equation (105) that the GACE can
be constructed in the minimal basis when using the partially
interacting Hamiltonian

[Ĥ λ,ξ ] = λ

[
Eg K

K Eg

]
+ λVu. (113)

In this simple model both ground- and excited-state wave-
functions will therefore not vary along the GACE

�
λ,ξ
i = �i, 0 ≤ λ ≤ 1, 0 ≤ ξ ≤ w,

i = 1, 2, (114)

and the auxiliary excitation energy equals

Eλ,ξ
2 − Eλ,ξ

1 = 2λK. (115)

According to Equation (24), the ensemble exchange–
correlation energy is then equal to

Ew
xc[n] = Exc[n] + 2Kw. (116)

Since the density n defined in Equation (103) corresponds
to the exact ground-state density n0 in the dissociation limit
of H2, we obtain from Equations (87) and (89)

Ew
xc[n] −→

R→+∞
(1 − w)Exc[n], (117)

or, equivalently,

�w
xc[n] −→

R→+∞
−Exc[n]. (118)

3.3. The GSxc approximation

From the ensemble exchange–correlation energy expres-
sion in Equation (117), which is exact for the dissociated
H2 molecule in a minimal basis, we deduce the following
DFA for a two-state ensemble:

Ew,DFA

xc [n] = (1 − w)EDFA
xc [n], (119)

or, equivalently,

�w,DFA

xc [n] = −EDFA
xc [n], (120)

where any pure ground-state exchange–correlation density
functional can in principle be used. We thus define from
Equation (30) the approximate ground-state exchange–
correlation energy (GSxc)-corrected excitation energy
expression

(E2 − E1)GSxc = ε0
2 − ε0

1 − EDFA
xc [n0], (121)

where the exchange–correlation energy computed for the
ground-state density is subtracted from the KS orbital en-
ergy difference. Note that in case of multiple excitations
the latter will be replaced by a sum of orbital energy
differences.
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1696 O. Franck and E. Fromager

4. Illustrative result: the 21�+
g state of H2 upon

bond stretching

The first 1�+
g excitation energy in H2 has been com-

puted within the GSxc approximation introduced in Sec-
tion 3.3. Comparison is made with Full Configuration In-
teraction (FCI) and regular TD-DFT results. The local den-
sity (LDA) [48] as well as the semi-local Perdew–Burke–
Ernzerhof (PBE) [49] and 1994 Leeuwen–Baerends (LB94)
[50] approximations have been considered. The large aug-
cc-pVQZ basis set [51] has been used. Calculations were
performed with the DALTON2011 program [52].

Regular adiabatic TD-DFT fails in describing the 21�+
g

excited state of H2 upon bond stretching since, for bond
distances larger than 3 a.u., this state exhibits a strong
doubly-excited character [53], as shown in Figure 2. The
avoided crossing obtained at the FCI level around R=3 a.u.
indicates the change in character for the 21�+

g state, from
singly [1σ g → 2σ g] to doubly [(1σ g)2 → (1σ u)2] excited,
while the TD-DFT curves remain associated with the single
excitation even for large bond distances. Before discussing
the performance of the GSxc approximation, we should
first stress that the minimal basis model on which it relies
is exact for the ground 11�+

g state of H2 in the dissocia-
tion limit. However, as shown by the CI(2,2) and CI(2,4)
excitation energy curves (see caption of Figure 2), it pro-

vides a qualitatively correct description of the 21�+
g state

only in the range 4 ≤ R ≤ 5 a.u., where the doubly-excited
configuration 1σ 2

u is dominant in the wavefunction. On the
other hand, the singly-excited configuration 1σ g2σ g, which
is not included into the minimal basis model, increasingly
dominates as R decreases and becomes, for R ≥ 5 a.u., as
important as the doubly-excited configuration. In the latter
case it enables to describe the atomic 1s → 2s excitation as
R → + ∞. The corresponding excitation energy (3/8 a.u.)
is indeed lower than the one associated with the excitation
from the neutral ground-state to the ionic dissociated state
(5/8 a.u.). The latter excitation is the only one described in
the minimal basis. We should therefore not expect the GSxc
approximation to perform well for all bond distances when
a large basis set is used.

We now discuss the results shown in Figure 3. Let us
first stress that using a two-state ensemble enables the de-
scription of the double excitation (1σ g)2 → (1σ u)2 upon
bond stretching, as reflected by the sudden change in slope
for the excitation energy curves, even when the GSxc cor-
rection is not employed. In the latter case the computed
excitation energy simply equals the KS orbital energy dif-
ference ε0

2σg
− ε0

1σg
when R ≤ Rc and 2(ε0

1σu
− ε0

1σg
) when

R ≥ Rc, where Rc denotes the distance for which the cross-
ing between the singly-excited 1σ g2σ g and doubly-excited

Figure 2. First 1�+
g excitation energy in H2 along the bond-breaking coordinate obtained with regular TD-DFT (solid coloured lines)

and CI (black lines) methods. FCI (solid line) is compared to CI(2,2) (dashed line), where the two electrons are distributed among the 1σ g

and 1σ u orbitals, and to CI(2,4) (dotted line) where the two electrons are distributed among the 1σ g, 2σ g, 1σ u, and 2σ u orbitals.
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Molecular Physics 1697

Figure 3. First 1�+
g excitation energy in H2 along the bond-breaking coordinate obtained within the GSxc approximation with local and

semi-local functionals (dashed coloured lines). Comparison is made with FCI (solid black line) and with the KS excitation energy without
the GSxc correction (solid coloured lines). Crossings of singly- and doubly-excited KS states are shown for each functional with coloured
‘+’ points. See text for further details.

1σ 2
u KS states occurs. Interestingly, in the particular case

of LB94, this crossing is relatively close to the FCI avoided
crossing (Rc ≈ 3 a.u.). A slightly larger Rc value is obtained
with LDA and PBE and, for R ≤ Rc, the computed excita-
tion energies are less accurate relative to LB94. This was
expected as the latter approximation includes corrections
for a proper description of the exchange–correlation poten-
tial in the asymptotic region of atoms [50]. For R ≥ Rc, the
excitation energy decreases rapidly to zero with the bond
distance for all the functionals simply because the 1σ g and
1σ u KS orbitals or, equivalently, the 1σ 2

g and 1σ 2
u KS deter-

minants become degenerate, like in the minimal basis. As
shown in Figure 3 employing the GSxc correction enables
to recover reasonable excitation energies in the dissociation
limit, with a slight overestimation relative to FCI though.
This is not too surprising since, as mentioned previously,
the neutral → ionic excitation underlying the GSxc approx-
imation is higher than the atomic 1s → 2s excitation. On the
other hand, for shorter bond distances, the GSxc-corrected
excitation energies are much too high. In the range 4 ≤
R ≤ 5 a.u., the error is partially due to the fact that, in
the minimal basis model, the KS determinants are degen-
erate while, in the larger aug-cc-pVQZ basis, they are not.
The large error at equilibrium (R = 1.4 a.u.) is due to the
absence of single excitations in the minimal basis model.

Obviously the singly excited 1σ g2σ g configuration should
be included into the ensemble in order to improve the GSxc
model, especially in that region. As it might be difficult
to reproduce the FCI avoided crossing without treating ex-
plicitly couplings between the states included into the en-
semble, the development of a multi-determinant GOK-DFT
scheme is an appealing alternative. Pastorczak et al. [21]
recently proposed such an approach based on the range sep-
aration of the two-electron repulsion. As discussed briefly in
Section 5, a range-dependent GACE could be used in this
context for the development of appropriate short-range en-
semble exchange–correlation density functionals.

5. Perspective: range-dependent GACE

Pastorczak et al. [21] recently formulated a multi-
determinant extension of GOK-DFT that relies on the sepa-
ration of the two-electron repulsion into long-range (lr) and
short-range (sr) parts

1

r12
= wlr,μ

ee (r12) + wsr,μ
ee (r12), (122)

where μ is a parameter that controls the range separa-
tion with wlr,μ

ee (r12) = 1/r12 in the μ → + ∞ limit and
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1698 O. Franck and E. Fromager

wlr,μ
ee (r12) = 0 for μ = 0. By analogy with ground-state

multi-determinant range-separated DFT [54], they decom-
posed the universal GOK functional as follows:

Fw[n] = F lr,μ,w[n] + E
sr,μ,w
Hxc [n], (123)

where the universal long-range GOK functional is defined
as

F lr,μ,w[n] = min
{�1,�2}w→n

{
(1 − w) 〈�1|T̂ + Ŵ lr,μ

ee |�1〉

+w 〈�2|T̂ + Ŵ lr,μ
ee |�2〉

}
= (1 − w) 〈�μ,w

1 |T̂ + Ŵ lr,μ
ee |�μ,w

1 〉
+w 〈�μ,w

2 |T̂ + Ŵ lr,μ
ee |�μ,w

2 〉, (124)

and E
sr,μ,w
Hxc [n] is the μ-dependent complementary short-

range Hxc density functional for the ensemble. According
to the GOK variational principle in Equation (5), the exact
ensemble energy can then be written as follows:

Ew = (1 − w)
〈
�̃

μ,w
1 |T̂ + Ŵ lr,μ

ee |�̃μ,w
1

〉
+w

〈
�̃

μ,w
2 |T̂ + Ŵ lr,μ

ee |�̃μ,w
2

〉
+E

sr,μ,w
Hxc [nw] +

∫
dr vne(r) nw(r), (125)

where the auxiliary long-range-interacting wave functions
�̃

μ,w
i (i = 1, 2) that reproduce the exact ensemble density

nw fulfil the following self-consistent equations:

(
T̂ + Ŵ lr,μ

ee + V̂ne + V̂
sr,μ,w

Hxc [nw]
)
|�̃μ,w

i 〉 = Ẽμ,w
i |�̃μ,w

i 〉,
i = 1, 2,

V̂
sr,μ,w

Hxc [n] =
∫

dr
δE

sr,μ,w
Hxc

δn(r)
[n] n̂(r). (126)

While regular GOK-DFT and wavefunction theory ap-
proaches are recovered in the μ = 0 and μ → + ∞ limits,
respectively, an exact state-average multi-determinant DFT
is obtained for 0 < μ < + ∞.

For convenience, Pastorczak et al. [21] substituted
the ground-state short-range Hxc functional E

sr,μ,0
Hxc [n] =

E
sr,μ
Hxc [n] for the ensemble one in their practical calcula-

tions. This is a crude approximation which obviously can
have an impact on the accuracy of the computed excitation
energy, especially if small μ values are used [55,56], since
the range-separated approach is then closer to GOK-DFT
than wavefunction theory. Better approximations might be
developed from a range-dependent GACE. For that purpose
we introduce the auxiliary equations

(T̂ + Ŵ lr,ν
ee + V̂ ν,ξ )|�ν,ξ

i 〉 = Eν,ξ
i |�ν,ξ

i 〉,
i = 1, 2, (127)

where the local potential V̂ ν,ξ = ∫
dr vν,ξ (r) n̂(r) ensures

that the density constraint

n(r) = (1 − ξ ) n�
ν,ξ
1

(r) + ξ n�
ν,ξ
2

(r), 0 ≤ ν < + ∞,

0 ≤ ξ ≤ w, (128)

is fulfilled. By integration of the universal long-range GOK
functional over the interval [μ, + ∞[ we obtain from Equa-
tions (123), (124), (127), and (128)

E
sr,μ,w
Hxc [n] =

∫ +∞

μ

dν
d

dν
F lr,ν,w[n]

= (1 − w)
∫ +∞

μ

dν
dEν,w

1

dν
+ w

∫ +∞

μ

dν
dEν,w

2

dν

−
∫ +∞

μ

dν

∫
dr

∂vν,w(r)

∂ν
n(r), (129)

which leads, according to the Hellmann–Feynman theorem,
to the final expression

E
sr,μ,w
Hxc [n] = (1 − w)

∫ +∞

μ

dν
〈
�

ν,w
1 |∂Ŵ lr,ν

ee

∂ν
|�ν,w

1

〉

+w

∫ +∞

μ

dν
〈
�

ν,w
2 |∂Ŵ lr,ν

ee

∂ν
|�ν,w

2

〉
. (130)

By analogy with GOK-DFT, we use a weight-independent
definition for the ensemble short-range Hartree density-
functional energy

E
sr,μ,w
H [n] = E

sr,μ
H [n]

= 1

2

∫ ∫
drdr′n(r)n(r′)wsr,μ

ee

(|r − r′|) , (131)

and thus define the short-range exchange–correlation en-
ergy for the ensemble as

Esr,μ,w
xc [n] = E

sr,μ,w
Hxc [n] − E

sr,μ
H [n]. (132)

Like in the linear GACE that was introduced in Section 2.3,
the exact deviation of the ensemble short-range exchange–
correlation energy from the ground-state one can be derived
by integration over the ensemble weight:

Esr,μ,w
xc [n] = Esr,μ

xc [n] +
∫ w

0
dξ �sr,μ,ξ

xc [n], (133)

where

�sr,μ,ξ
xc [n] = dE

sr,μ,ξ
Hxc [n]

dξ

=
∫ +∞

μ

dν
d2F lr,ν,ξ [n]

dνdξ
, (134)
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Molecular Physics 1699

will be referred to as the short-range exchange–correlation
DD since it reduces to the standard exchange–correlation
DD when μ = 0. By analogy with the linear GACE (see Ap-
pendix A), the derivative of the long-range GOK functional
with respect to the ensemble weight equals

dF lr,ν,ξ [n]

dξ
= Eν,ξ

2 − Eν,ξ
1 , (135)

which leads to

�sr,μ,ξ
xc [n] = (E+∞,ξ

2 − E+∞,ξ
1

)− (Eμ,ξ
2 − Eμ,ξ

1

)
. (136)

In the particular case where ξ = w and n equals the ex-
act ensemble density nw, the first term on the right-hand
side of Equation (136) becomes the excitation energy E2

− E1 of the true physical system while the second term
reduces to the excitation energy Ẽμ,w

2 − Ẽμ,w
1 of the long-

range-interacting system whose ensemble density equals nw

(see Equation (126)), leading thus to the exact expression

E2 − E1 = Ẽμ,w
2 − Ẽμ,w

1 + �sr,μ,w
xc [nw]. (137)

As readily seen from Equations (134) and (137), neglect-
ing the weight dependence of the ensemble short-range
exchange–correlation functional is equivalent to approx-
imating the excitation energy with the long-range inter-
acting one. In order to investigate the variation in w

and μ of the short-range exchange–correlation DD con-
tribution, a simple procedure would consist in neglect-
ing the weight dependence in the ensemble short-range
exchange–correlation density-functional potential as Pas-
torczak et al. [21] did in their range-separated ensemble
calculations, and computing the excitation energy differ-
ence (E2 − E1) − (Ẽμ,w

2 − Ẽμ,w
1 ) at the CI level for various

systems. The derivation of exact Taylor expansions in w

and μ for the short-range exchange–correlation DD, in the
light of Section 2.3 and Ref. [54], would also be of in-
terest for the development of approximate short-range en-
semble functionals. Work is currently in progress in these
directions.

6. Conclusions

A generalised adiabatic connection for ensembles (GACE)
has been presented in this work. In contrast to the adi-
abatic connection (AC) proposed initially by Nagy [35],
both ensemble weights and interaction strength vary along
the GACE while the ensemble density is held fixed. For
clarity the theory has been presented for non-degenerate
two-state ensembles but the GACE can in principle be con-
structed for any ensemble consisting of an arbitrary number
of non-degenerate states and complete sets of degenerate
states [20]. Within such a formalism an exact expression
for the deviation of the ensemble exchange–correlation

density-functional energy from the conventional ground-
state one has been derived. Levy’s stringent constraint of
Ref. [6] has been recovered when expanding the ensemble
exchange–correlation functional through second order in
the ensemble weight. In addition, an explicit expression for
the exchange–correlation derivative discontinuity contribu-
tion to this condition has been obtained within the GACE.
In the light of the recent work of Teale et al. [31–33] on
the accurate computation of ground-state ACs, we briefly
explained how the GACE could be constructed by using
a Legendre–Fenchel transform for ensembles. As an illus-
tration, the GACE has been derived analytically for the H2

model system in a minimal basis, providing thus a simple
density-functional approximation for two-state ensembles.
This approximation has been tested with a large basis on
the calculation of the first 1�+

g excitation energy in H2

upon bond stretching. Encouraging results were obtained
at large distance (the double excitation could be described)
but better ensemble exchange–correlation functionals are
needed for describing the excitation at all bond distances,
especially in order to reproduce the avoided crossing at
R = 3 a.u. A more accurate description of the GACE
would be useful for developing such functionals. Following
Pastorczak et al. [21], we finally discussed as a perspec-
tive the development of a state-average multi-determinant
DFT approach based on a range-dependent GACE. Exact
expressions for the complementary short-range ensemble
exchange–correlation density-functional energy have been
derived and guidelines for the development of density-
functional approximations have been provided. Work is cur-
rently in progress in this direction. We hope that the paper
will stimulate further developments in ensemble DFT.
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Appendix A. Derivative of the partially interacting
GOK functional with respect to the
ensemble weight

When rewriting, according to Equations (17) and (18), the partially
interacting GOK functional as

F λ,ξ [n] = (1 − ξ ) Eλ,ξ
1 + ξ Eλ,ξ

2 −
∫

dr vλ,ξ (r) n(r), (A1)

we obtain

dF λ,ξ [n]

dξ
= Eλ,ξ

2 − Eλ,ξ
1 + (1 − ξ )

dEλ,ξ
1

dξ
+ ξ

dEλ,ξ
2

dξ

−
∫

dr
∂vλ,ξ (r)

∂ξ
n(r), (A2)

which, according to the Hellmann–Feynman theorem in Equa-
tion (31) and the density constraint in Equation (18), leads to
Equation (23).

Appendix B. Exact local potential for the
non-interacting ensemble

According to the GOK variational principle the density n for
which the GACE is constructed minimises the density-functional
ensemble energy

E ξ [ρ] = T ξ
s [ρ] + E

ξ
Hxc[ρ] +

∫
dr (v1,ξ (r) + C) ρ(r), (B1)

where C is an arbitrary constant. The minimum equals
(1 − ξ )E1,ξ

1 + ξ E1,ξ
2 + CN where N denotes the number of elec-

trons (which is fixed in this work). Consequently

δ

δρ(r)

⎡
⎣E ξ [ρ] + μξ

⎛
⎝∫ dr ρ(r) − N

⎞
⎠
⎤
⎦
∣∣∣∣∣∣
ρ=n

= δT ξ
s

δρ(r)
[n] + δE

ξ
Hxc

δρ(r)
[n] + v1,ξ (r) + C + μξ = 0, (B2)
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where the Lagrange multiplier μξ is the chemical potential. When
choosing C = −μξ , we finally obtain Equation (34) since

δT ξ
s

δρ(r)
[n] = −v0,ξ (r). (B3)

Appendix C. Maximum of the ground-state
Legendre–Fenchel transform for H2 in
a minimal basis

According to Equation (79), the first-order derivative of the aux-
iliary ground-state energy can be expressed as

dEλ
1 (υ)

dυ
= λ

2

⎛
⎜⎜⎝1 − δ + υ√(

δ + υ
)2

+ 4K2

⎞
⎟⎟⎠ , (C1)

where δ = Eg − Eu. Using[√(
δ + υ

)2
+ 4K2 − (δ + υ)

][√(
δ + υ

)2
+ 4K2 + (δ + υ)

]

= 4K2, (C2)

Equation (C1) becomes

dEλ
1 (υ)

dυ
= 2λK2√(

δ + υ
)2

+ 4K2

[√(
δ + υ

)2
+ 4K2 + (δ + υ)

]

= 2λK2

(δ + υ)

[
(δ + υ) +

√(
δ + υ

)2
+ 4K2

]
+ 4K2

. (C3)

Since, according to Equations (65) and (67)

1 + C2
u = 1 + 1

4K2

(
δ +

√
δ2 + 4K2

)2

=
4K2 + δ

(
δ + √

δ2 + 4K2
)

2K2
, (C4)

we conclude that Equation (81) is equivalent to

f (υ) = f (0), (C5)

where the function f is defined as

f (υ) = (δ + υ)

[
(δ + υ) +

√(
δ + υ

)2
+ 4K2

]
. (C6)

Finally, since

df

dυ
=

[
(δ + υ) +

√(
δ + υ

)2
+ 4K2

]2

√(
δ + υ

)2
+ 4K2

> 0, (C7)

f is monotonically increasing with υ which leads to Equation (82).
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