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New exchange-correlation functionals that address the important issue of many-electron
self-interaction are developed. This is carried out by considering the performance of the functional
on systems with fractional numbers of electrons at the same time as more standard thermochemical
tests. The inclusion of Coulomb-attenuated exchange in the functional is facilitated by use of the
adiabatic connection coupled with a short-range and long-range splittings. The new functionals have
a good performance on thermochemistry and a much improved description of the total energy versus
number of electrons and henceforth a much smaller many-electron self-interaction error. © 2007
American Institute of Physics. �DOI: 10.1063/1.2741248�

One of the most important challenges in density-
functional theory �DFT� is the proper description of frac-
tional charge systems, relating to the self-interaction error
�SIE�. Traditionally, the SIE has been formulated as a one-
electron problem,1 which has been addressed in several re-
cent functionals.2,3 However, these recent one-electron SIE-
free functionals, while greatly improving the description of
thermochemistry and reaction barriers in general, still exhibit
many of the same difficulties associated with SIE. Thus we
have further introduced the concept of many-electron self-
interaction error �N-SIE� in approximate density
functionals.4 Although it is difficult to define it in terms of
electron density, N-SIE has been shown to be related to the
exhibition of convexity in the curve of the total energy
E�N+�� as a function of the fractional number of electron �.4

Thus, functionals with N-SIE have too low energy for frac-
tional charges. This problem has also attracted much recent
attention.5

Functionals having SIE lead to many qualitative and
quantitative failures. Compared to normal chemical systems
with no fractional charge, SIE is much larger for systems
with fractional charge.6 SIE in general leads to too much
charge delocalization and too low total energies. For the gen-
eral dissociation of any molecule into two fragments, Zhang
and Yang showed that when one of the fragments has an
electron affinity similar to the ionization energy of the other
fragment, SIE will make each fragment incorrectly have a
fractional charge at large separation and too low total
energy.6 This occurs in one-electron systems and many-
electron radicals,6 and also in neutral molecules.7,8 For the
same reason, SIE also leads to too much binding energy in
charge transfer complexes and too low barriers of chemical
reactions. SIE has also been shown9 to account for the over-
estimation of polarizabilities observed.10

The analysis of fractional charges offers a useful under-
standing of these problems. We examine this directly by in-
corporating the occupation numbers ni in the density

��r� = �
i

ni��i�r��2, ni = �0, i � imax

� , i = imax

1, i � imax,
� �1�

where 0���1 and imax is the highest occupied molecular
orbital �HOMO�. We have also assumed no degeneracy in
HOMO for simplicity. Equation �1� thus describes the
ground state of a noninteracting system with a fractional
charge.

The exact behavior of the energy versus number of elec-
trons �E vs N� should be a straight line connecting the values
at integers based on the ensemble argument.11 The proof of
the linearity has also been given within the ground-state
wave function framework in the molecular dissociation lim-
its, without using the grand canonical ensemble.12 We have
recently studied the fractional charge behavior of many ap-
proximate functionals.4 All the standard local functionals
�LDA, GGA, meta-GGA� have a very poor description, giv-
ing a smooth convex, almost parabolic, interpolation be-
tween the integers; Perdew-Zunger correction1 applied to
these functionals straightens the curve for fractional charges
but significantly worsens the description of integers; Hartree-
Fock �HF� has the opposite behavior, with a concave inter-
polation between the integers; and finally hybrid and adia-
batic functionals which combine these two ingredients are
still, in general, quite convex. We also found that the only
class of functionals which showed signs of improvement in
the description of fractional numbers of electrons are func-
tionals which contain some Coulomb-attenuated exchange.4

The idea behind these Coulomb-attenuated functionals
�CAM� is a splitting up of the Coulomb operator into short-
range and long-range pieces,

�2�

and to then treat the two pieces differently, generally one
with DFT and the other with exact exchange. Some of the
early work on this area is from Gill13 and Savin.14 More
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recently several functionals have been proposed using short-
range DFT and long-range HF.15–18 Also the opposite split-
ting has been used with long-range DFT and short-range HF,
which may be a useful approach for solids.19

In this paper we investigate building functionals contain-
ing CAM HF and DFT components. We attempt to construct
an exchange-correlation functional that is accurate for ther-
mochemistry and other standard properties but with a much
improved performance on the description of fractional num-
bers of electrons, and therefore N-SIE related problems.

The main theoretical tool we use for building functionals
is the adiabatic connection.20 There are several ways to at-
tempt to include the CAM integrals in the adiabatic frame-
work. One is to use a generalized adiabatic connection,21

which has been used previously by Baer and Neuhauser to
develop a functional.22 The approach we take here is to use
the Langreth-Perdew linear adiabatic connection, as we have
done in previous work,3 but to apply the CAM splitting to
each of the integrals used in the construction of the func-
tional.

We build the exchange-correlation functional

Exc��� = 	
0

1

W����d� − J��� = 	
0

1


���Vee����d� − J���

�3�

by constructing a �1,1� Padé model for W�

W���� = a +
�b

1 + �c
, �4�

where a, b, and c are themselves functionals of electron den-
sity, and will be determined by three pieces of input infor-
mation at the initial point �W0�, the initial slope �W0��, and a
chosen point along the adiabatic curve �W�p

,0��p�1�.
Then we simply have to solve a set of simultaneous equa-
tions as shown previously.3

We make use of the inverse relationship constructing
adiabatic curve W���� from the knowledge of the density
functional Exc���,24,23

W���� =
d��2Exc��1/���

d�
= 2�Exc��1/�� + �2dExc��1/��

d�
,

�5�

which was developed from coordinate scaling.25 These
pieces can be easily calculated for a density functional ap-
proximation �DFA� by making the substitution �1/��r�
=��r /�� /�3 and ��1/��r�=���r /�� /�4 and with the integra-
tion performed over r /�.

In previous work, we used normal DFT or Hartree-Fock
ingredients for the input functionals.3 Here we consider the
effect of using the Coulomb-attenuated splitting for the func-
tionals. For each of the pieces we apply the Coulomb attenu-
ation only to exchange, and use DFA for the short-range part
�SR� and HF for the long-range part �LR�. For correlation a
standard density functional and corresponding derivatives
are used,

Exc��� = Ex
SR,DFA��� + Ex

LR,HF��� + Ec
DFA���

= Exc
DFA��� − Ex

LR,DFA��� + Ex
LR,HF��� . �6�

Long-range DFT exchange is given by the expression used in
Ref. 15,

Ex
LR,DFA��� =

1

2�
	
	 �	

4/3K	
DFA�8

3
a	
�
 erf� 1

2a	
�

+ 2a	�b	 − c	���dr , �7�

with a	, b	, and c	 and K	
DFA �with GGA as a specific case of

DFA� as defined in Ref. 15. The long-range HF is

Ex
LR,HF��� = −

1

2�
i�j
	 	 �i�r1�� j�r1�

erf��r12�
�r1 − r2�


�i�r2�� j�r2�dr1dr2, �8�

where � is a parameter which determines the splitting into
SR and LR parts.

If we apply the CAM splitting to each of the input func-
tionals we find that the initial point of the adiabatic connec-
tion is

W0��� = lim
�=0

�2��Ex
LR��1/�� + Ex

SR��1/���

+ �2d�Ex
LR��1/�� + Ex

SR��1/���
d�

� = Ex
HF��� , �9�

where the separation into short-range and long-range pieces
has no effect. CAM splitting of the initial slope gives

W0���� = 2Ec
DFA���� − 2Ex

LR,DFA���� + 2Ex
LR,HF���� . �10�

The HF contribution to the slope is

Ex
LR,HF����

= −
1

2
lim
�→0

�
i�j
	 	 �i�r1�� j�r1�

erf���r12�
��r1 − r2�


�i�r2�� j�r2�dr1dr2

= −
�

�

�
i�j
	 	 �i�r1�� j�r1��i�r2�� j�r2�dr1dr2

= −
�

�

N , �11�

where N is the number of electrons. CAM splitting of the
functional for the point � along the adiabatic curve is

W���� = W�
DFA��� − W�

LR,DFA��� + W�
LR,HF��� , �12�

where the DFT pieces are simply Eq. �5� for the appropriate
DFA and
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W�
LR,HF��� = Ex

LR,HF��1/�� + �2�Ex
LR,HF��1/��

��

= −
1

2�
i�j
	 	 �i�r1�� j�r1�



erf���r12�

�r1 − r2�
�i�r2�� j�r2�dr1dr2

−
��

2 �
i�j
	 	 �i�r1�� j�r1�


exp�− �2�2r12
2 ��i�r2�� j�r2�dr1dr2, �13�

including the CAM integral and also a second two-electron
integral, encountered previously in consideration of the erf-
gau interaction.26 In this way, we introduce the CAM and
related functionals into the adiabatic connection. There are
many other ways to do this with variation on these ideas,
which we hope to investigate in future work.

The procedure we undertake to develop a functional is to
have the basic form determined by the adiabatic connection
and to introduce some parameters which are determined to
improve the behavior on certain criteria. Usually this is ther-
mochemical performance �e.g., 93 set,27 407 set,28 or G3
set29 of molecules�. However we can in principle fit to other
criteria. In the present study, we include the behavior of C+

→C→C− as a measure of the performance for fractional
systems.

In this work we fit to the 93 set27 of total energies the
ionization energies and atomization energies used in the de-
velopment of many previous functionals. To include N-SIE
in our functional construction, we define the following mea-
sure of the deviation from the correct fractional charge be-
havior:

Efrac�M� = E�M� − EPL�M� , �14�

where E�M� is the total energy of a system given by the
approximate functional for any fractional number of elec-
trons M, and EPL is the piecewise-linear interpolation of the
energies at integer numbers of electrons given by the same

approximate functional. For example, EPL�N+��= �1
−��E�N�+�E�N+1� for N an integer and 0���1. When
the error in fractional behavior Efrac�M� is negative, the E�M�
curve is convex and the functional has N-SIE; when Efrac�M�
is positive, the E�M� curve is concave, which is also a de-
viation from the correct fractional charge behavior. We use
the following positive definite measure in our functional con-
struction:

�frac�M1,M2� = 	
M1

M2

dM�Efrac�M��2. �15�

We thus included �frac�5,7� for the carbon atom and
evaluated the integral over the electron number in Eq. �15�
using a trapezoidal rule with a step size of 0.1 electron.

Upon including parameters in the above form for the
three ingredients W0, W0�, and W�p

we found that not all the
integrals were necessary to achieve the aim of a good per-
formance on thermochemistry and E vs N. In fact for the
slope no normal Ec���� is necessary and the simple LR HF is
all that is needed. In the fitting, post-BLYP calculations with
a cc-pVQZspd basis set �cc-pVQZ with only s, p, and d
functions� were carried out on all the systems using a modi-
fied version of CADPAC.30 We minimized Q=MAE93

+wfrac�frac �where MAE93 is the mean absolute error for the
93 set and wfrac is a weighting factor chosen to be 100� for
several different values of �p and � and we found the opti-
mum functionals to be

W0 = Ex
HF, �16�

W0� = − c1
2�

�

N , �17�

W�p
= W�p

BLYP − c2W�p

LR,B88 + c3W�p

LR,HF, �18�

with the long-range parameter �=0.2 and the chosen point
on the adiabatic curve �p=0.71 and other parameters c1

=0.23163 and c2=1+a, c3=1−a with a=0.05601. The over-
all energy expression is the same as in our previous MCY
functionals3 but with the above modified components,

Exc
MCY3��� = W0 + W0�� ��W�p

− �pW0� − W0�/��p�W0 − W�p
��� − log�1 + ��W�p

− �pW0� − W0�/��p�W0 − W�p
����

��W�p
− �pW0� − W0�/��p�W0 − W�p

���2 � . �19�

We also found that if we attempt to refit normal GGA
and standard hybrid forms that it is very difficult to achieve
a straight line for fractional numbers of electrons. Even if it
is possible to get a straight line then the performance on
thermochemistry gets considerably worse; for example, if we
refit B3LYP and the �frac reduces to around 0.2 then the error
on the 93 set is more than 10 kcal/mol. If we try to fit func-
tionals which include the CAM integrals then we can find a
much improved performance for the E vs N curve and a good

performance for thermochemistry. Hence we give a func-
tional, rCAM-B3LYP, very similar to CAM-B3LYP �Ref. 16�
�with different parameters� which gives a much improved
performance for E vs N,

Exc
rCAM-B3LYP = �Ex

HF + �1 − ��Ex
Slater + cB88�Ex

B88

+ ��Ex
LR,HF − Ex

LR,B88� + Ec
LYP, �20�

with �=0.33, �=0.183 52, �=0.949 79, and cB88=0.952 38.
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For comparison the original CAM-B3LYP parameters are
�=0.33, �=0.19, �=0.46, and cB88=0.81; also the correla-
tion functional was Ec=0.81Ec

LYP+0.19Ec
VWN�5�.

All the above functionals have been implemented self-
consistently in a modified version of CADPAC,30 with the new
two-electron integrals implemented following Ref. 26.

In Table I we present the performance of several func-
tionals upon four sets of molecules: �1� the standard set of 93
atoms and molecules which was used in the development of
MCY3 and rCAM-B3LYP functionals �the parameters in
CAM-B3LYP and B3LYP were also determined from fitting
to this set�, �2� the 227 heats of formation in the G3 set,29 �3�
the BH42/04 set of Truhlar et al.31 of 42 hydrogen-transfer
energy barriers, and �4� carbon with fractional numbers of
electrons, �frac.

For the new functionals MCY3 and rCAM-B3LYP we
see a very reasonable performance on thermochemistry com-
parable to standard functionals such as B3LYP. This is not
only true for the 93 set, for which the functionals were fitted
to, but also to the much larger G3 set. Also the performance
of MCY3 and rCAM-B3LYP for the hydrogen-transfer bar-
riers is an improvement over normal GGA and hybrid func-
tionals, though the improvement is not as much as seen for
the MCY2 functional. The main difference of the new func-
tionals is in the performance on fractional systems with a
marked improvement in �frac over other functionals. This can
be seen more clearly in Fig. 1 where we plot the energy of

carbon with fractional numbers of electrons for the different
functionals. We also see very similar straight line behavior
for many other atoms and molecules with fractional numbers
of electrons with the new functionals.32

We have also tested the new functionals for the SIE tests
on dissociation of CO− and polarizability of hydrogen chains
outlined in our previous paper.4 As expected we see an im-
provement in the description of these systems. For MCY3
and rCAM-B3LYP we find an energy difference at 8 bohrs of
CO− to be only 0.016 and 0.013 Eh; the corresponding values
for HF, B3LYP, and CAM-B3LYP are 0.017, 0.046, and
0.030 Eh. The corresponding values for the self-consistent
polarizability of �H2�14 are only 50 and 48 a.u. per oligomer
for MCY3 and rCAM-B3LYP and the corresponding values
for HF, B3LYP, and CAM-B3LYP are 40, 69, and 57 a.u. per
oligomer. In Fig. 2 we show the full curve for CO− dissocia-
tion and we see a similar trend in the energy for both MCY3
and rCAM-B3LYP which are much closer to the CCSD
curve. Also we show the charges at 7.5 a0 and see that there
is a difference in the charges in MCY3 and rCAM-B3LYP
from those of CCSD. However we do not believe that the
charge differences are as important as the energy: the exact
energy will be degenerate for any charge distribution in the
molecular dissociation limit when the ionization energy of
one fragment is equal to the electron affinity of the other
fragment.6 For example, in a homonuclear diatomic ion �e.g.,
H2

+� dissociating with the exact functional, it is degenerate in
energy no matter what are the charges �H+H+ has the same
energy as H0.5++H0.5+�.

In conclusion we have developed new exchange-
correlation functionals which have a much improved descrip-
tion of systems with fractional numbers of electrons while
performing well on normal thermochemical tests. Previously
other functionals which had an improved description of frac-
tional numbers of electrons performed markedly worse on
these thermochemical tests. There are two important ingredi-
ents in the present functional development: �1� the use of the
deviation from the correct fractional charge behavior as de-
fined by Efrac and �frac of Eqs. �14� and �15� and �2� the
Coulomb-attenuated exchange integrals. We now have
simple density functionals with an improved description of

TABLE I. Performance of different functionals for thermochemistry �mean
absolute error in kcal/mol� and fractional number of electrons ��frac in
1000Eh

2�. All calculations are self-consistent using the cc-pVQZspd basis set.

93 G3 Barrier �frac

BLYP 4.23 9.96 8.23 22.48
LC-BLYP 8.62 31.44 5.78 1.37
B3LYP 3.30 7.37 4.65 12.80
CAM-B3LYP 3.37 3.62 2.96 4.09
rCAM-B3LYP 3.52 5.59 2.73 0.21
MCY2 2.14 3.39 1.93 10.67
MCY3 2.44 6.53 2.75 0.20

FIG. 1. Energy of carbon with fractional number of electrons relative to the
neutral atom from unrestricted self-consistent calculations using the cc-
pVQZspd basis set.

FIG. 2. Dissociation curve of CO− from unrestricted self-consistent calcu-
lations using the aug-cc-pVQZ basis set.
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many-electron self-interaction and we hope to investigate
these for more complicated tests in the future.
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funding from the National Science Foundation.
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