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Optimally tuned range separated hybrid functionals are a new class of implicitly defined functionals.
Their important new aspect is that the range separation parameter in these functionals is determined
individually for each system by iteratively tuning it until a fundamental, non-empirical condition
is fulfilled. Such functionals have been demonstrated to be extremely successful in predicting elec-
tronic excitations. In this paper, we explore the use of the tuning approach for predicting ground state
properties. This sheds light on one of its downsides – the violation of size consistency. By analyzing
diatomic molecules, we reveal size consistency errors up to several electron volts and find that bind-
ing energies cannot be predicted reliably. Further consequences of the consistent ground-state use
of the tuning approach are potential energy surfaces that are qualitatively in error and an incorrect
prediction of spin states. We discuss these failures, their origins, and possibilities for overcoming
them. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4807325]

I. INTRODUCTION

Recent years have seen the advent of a new class of func-
tionals in density functional theory (DFT) and time-dependent
DFT (TDDFT). Functionals within this class are not and can-
not be expressed explicitly, but are defined implicitly, often
via a numerical procedure. Such functionals can be general
and non-empirical, yet allow for considerably greater flexibil-
ity in the functional definition. Therefore, they are a promis-
ing route for improving the accuracy of practical DFT and
TDDFT calculations without introducing empirical concepts.
In the spirit of the famous classification of density functionals
into three generations,1 one may think of numerically defined
functionals as the fourth generation. Examples for such func-
tionals include the adiabatically exact approximation,2 func-
tionals based on inversion arguments,3 functionals based on
the concepts of machine learning,4 and optimally tuned range
separated hybrid (RSH) functionals.5, 6 The latter are exam-
ined in this work.

The main idea in RSH functionals is the separation of the
Coulomb repulsion term into a short- and a long-range part,7, 8

e.g., in the form

1

r
= 1 − erf(γ r)

r
+ erf(γ r)

r
, (1)

where γ is a range separation parameter. For short distances,
the first term on the right hand side of Eq. (1) is the domi-
nant contribution. For large distances, the second term dom-
inates. They equally contribute at around 0.5 γ −1, the sepa-
ration point between short and long-range. The two ranges
of electron-electron distances are then treated with different
functionals. The most common realization is to treat the short-
range exchange with a semi-local functional and the long-
range exchange exactly, with the correlation energy described
by a semi-local functional without splitting into long-range
and short-range parts. RSH functionals have become popu-

lar in recent years because the range separation allows for a
self-interaction free description at large electron-electron dis-
tances while maintaining a balanced description of exchange
and correlation in the short range, based on well known semi-
local functional concepts. Different implementations of this
idea have been suggested and discussed, e.g., in Refs. 9–14
and more general forms involving a fraction of short-range ex-
act exchange have also been put forth, e.g., in Refs. 15 and 16.

The focus of this work is on investigating the specific
way of choosing the range separation parameter γ , which
has become known as “optimal tuning.” One way of deter-
mining γ is by empirical fitting against an appropriate train-
ing set.12, 14–17 However, various studies, e.g., Refs. 18–22,
have shown that the best value of γ can be strongly system-
dependent and that capturing this dependence correctly is
crucial for the quality of the results. “Optimal tuning” is a
successful strategy for choosing γ in a system-specific but
non-empirical way, in which γ is chosen so as to obey a
known exact property.5, 6 While other possibilities exist,23 in
the most popular and broadly applicable tuning approach γ

is chosen such that the eigenvalue of the highest occupied
molecular orbital (HOMO) is as close as possible to the neg-
ative ionization potential (IP) computed from total energy
differences,12 often for both the neutral and anionic system.24

The optimally tuned RSH approach was already successfully
employed for a great variety of systems. Two of its notable
achievements were the correct prediction of charge transfer
excitation energies, also in situations where other function-
als designed for charge transfer fail,21 and fundamental gaps
(see, e.g., Refs. 6, 18–21, 24–27 for an overview). For the
fundamental gaps, it is particularly important to keep in mind
that RSH functionals are implemented within the general-
ized Kohn-Sham scheme.28 It is therefore possible to tune
the generalized-Kohn-Sham HOMO-LUMO gap to be close
to the physically meaningful fundamental gap.6

0021-9606/2013/138(20)/204115/11/$30.00 © 2013 AIP Publishing LLC138, 204115-1
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While virtually all applications of the optimal-tuning ap-
proach have so far confirmed a distinct system dependence of
γ , such a dependence, when incorporated into a global param-
eter as in the tuning, clearly also possesses conceptual draw-
backs, notably the violation of size consistency. It has long
been known that this problem exists in principle.12 With this
work, taking seriously the concept of treating the tuned RSH
functional as an implicitly defined one, we investigate how
the formal drawbacks manifest themselves in errors obtained
in practical scenarios. We demonstrate that there are situations
in which not only the choice of the range separation parame-
ter but also the choice of the semi-local approximation has a
major influence on the results. After a brief description of the
underlying methods in Sec. II and a detailed discussion of dif-
ferent tuning conditions in Sec. III, we quantify the size con-
sistency error and examine its impact on binding energies in
Sec. IV. In Sec. V, we show how related issues may result in
problems with the prediction of electronic spin configuration
and potential energy curves. Finally, we analyze and summa-
rize the reasons for the observed failures and close with an
outlook on approaches for overcoming these problems.

II. METHODOLOGY

As mentioned above, this work aims to quantify the size
consistency error and to calculate the binding energies of
molecules with optimally tuned RSH approaches in a com-
parative study of different tuning conditions and short-range
exchange expressions. In order to keep the analysis – which
is in fact quite involved – as transparent as possible, we fo-
cus on diatomic molecules. Of the various RSH functionals
that are available we here examine two specific choices: the
Baer-Neuhauser-Livshits (BNL) functional,11, 12 which em-
ploys a short-range version of the local density approxima-
tion (LDA) exchange functional and Lee-Yang-Parr (LYP)
semi-local correlation, and the ωPBE functional of Scuse-
ria and co-workers13 which employs a short-range version
of the Perdew-Burke-Ernzerhof (PBE) semi-local exchange
functional29 and semi-local PBE correlation.

For our calculations we used the program package
QChem,30 which has both the BNL and the ωPBE functionals
implemented. All calculations were carried out using the aug-
cc-pVQZ basis set, unless explicitly stated otherwise. Most of
the results presented below change considerably if a cc-pVQZ
basis set is used without diffuse functions, because calcula-
tions with anions are incorporated as part of the tuning pro-
cedure. Further details on basis set dependence are given in
Sec. III.

III. TUNING CONDITIONS

The general idea behind the tuning approach is to demand
that the HOMO is the negative of the IP – a condition that has
to be fulfilled for the exact functional.31–34 One possibility for
obtaining an approximation to the IP is the calculation of the
difference between the total energies of the N − 1 and the N
electron system. This leads to the tuning condition12

TN (γ ) = ∣∣εγ

HOMO(N ) + Eγ (N − 1) − Eγ (N )
∣∣ = min. (2)

The minimum of TN defines an optimal γ N for which the
HOMO energy is as close as possible to the approximate IP.
γ N has to be determined in an iterative procedure with suc-
cessive ground state energy calculations for the N and the
N − 1 electron system. For the ultimate functional, the condi-
tion of Eq. (2) would be perfectly fulfilled. For approximate
functionals the approach is still approximate as per construc-
tion, even when TN (γ ) = 0 is reached, it is limited to the pre-
dictive power of the IP approximation—a price to pay for hav-
ing a non-empirical tuning approach.

In order to obtain the fundamental gap from quasiparti-
cle energy differences, it is tempting to use a similar condi-
tion for connecting the LUMO (lowest unoccupied molecular
orbital) and the electron affinity (EA). However, there is no
rigorous theoretical basis for such a connection. A convenient
way around this problem is to apply the IP tuning to the N + 1
electron system. This leads to the second tuning condition24

TN1(γ ) = ∣∣εγ

HOMO(N + 1) + Eγ (N ) − Eγ (N + 1)
∣∣ = min.

(3)
To obtain the optimal fundamental gap it would be neces-
sary to enforce both conditions TN and TN1 at the same time.
However, this is not possible with just one parameter γ and
therefore both conditions have to be combined in a least
square approach to minimize the resulting error. This leads
to the third condition6

TLS(γ ) =
√

T 2
N (γ ) + T 2

N1(γ ) = min. (4)

The optimal γ obtained from this tuning condition, γ LS, lies
between γ N and γ N1, i.e., the optimal γ ’s that result from
using TN and TN1 as tuning conditions. It is thus a com-
promise between these both conditions. We note that a re-
lated, fourth tuning condition, used in some of our earlier
publications19, 21, 24, 25 combines the absolute values of TN

and TN1,

TJ2(γ ) = |TN (γ )| + |TN1(γ )| = min. (5)

We do not consider this tuning condition in the following be-
cause it tends to produce γ J2 which is very close to either γ N

or γ N1, depending on how the total and the HOMO energies
vary with γ .

A first step in our work is to find the optimized γ -values
and energies for representative atoms and diatomic molecules
with these tuning conditions. A technical but important pre-
requisite to this task is to determine the basis set sensitivity
of the method. Generally, the basis set quality required for a
certain calculation strongly depends on the employed method
and the property of interest. Because RSH functionals are in
many ways similar to hybrid functionals, one could naively
expect equivalent basis set requirements. For an RSH with-
out tuning this is indeed the case, as demonstrated in Fig. 1
for the BNL functional, using the oxygen atom as an exam-
ple. In these two graphs we compare different basis sets with
the aug-cc-pVQZ basis set and plot the respective differences
for the total energy and the HOMO-LUMO gap. As expected,
data points obtained from B3LYP,35 a popular conventional
hybrid functional, are close to the “BNL without tuning” data
points (where we used γ = 0.6). If we perform the TLS tun-
ing for each basis set separately, however, we observe severe
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FIG. 1. Basis set dependence for the oxygen atom: Tuned BNL calculations with TLS (solid line), BNL calculations with a constant γ = 0.6 (dashed line), and
B3LYP calculations (dotted line). (Left) Difference of the ground-state energies obtained with the particular basis set and the aug-cc-pVQZ basis set. (Right)
HOMO-LUMO gap difference obtained with the particular basis set and the aug-cc-pVQZ basis set.

deviations from the calculations with constant γ . There are
two reasons for this increased basis set dependence. First,
the tuning depends on the anion and the cation, which them-
selves have a basis set sensitivity (especially the anion).
Second, changes due to the basis set enter a calculation twice.
On the one hand due to the RSH calculation itself and on the
other hand due to the tuning process. Hence it is necessary to
choose the basis set carefully if doing a tuned RSH calcula-
tion and to use or compare to a basis set with diffuse functions
if using the TN1 or the TLS tuning, as both depend on the anion.

Having addressed the basis set issue, we turn to evaluat-
ing the tuning procedure itself. The upper part of Fig. 2 shows
the optimized γ values for diatomic molecules composed of
first and second row atoms. All three tuning conditions exhibit
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FIG. 2. (Upper part) Optimized γ values for diatomic molecules. The tuning
conditions of Eqs. (2)–(4) were used. (Lower part) Inverse experimental36

bond lengths.

a similar behavior. With only a few exceptions, the BNL γ ’s
are just slightly larger than the ωPBE ones. As mentioned in
earlier work,18, 20, 21 the range separation parameter depends
inversely on the system size. Our calculations confirm this
finding, as seen by comparing γ to the inverse of the bond
length in the lower part of Fig. 2. As a corollary, γ N is larger
than γ N1, the latter being obtained for the (larger) anion, and
consequently γ LS is between γ N and γ N1. However, note that
there is one clear exception: the BeS molecule. This excep-
tion is related to tuning problems with alkali and earth alkali
atoms and is discussed in the following. We also note that this
behavior is very sensitive to the basis set. If we use the cc-
pVQZ instead of the aug-cc-pVQZ basis set, we obtain much
smaller γ N and γ LS for BeS; however, γ N of Be2 is then con-
siderably larger. That data points are missing for some sys-
tems indicates that the calculations in these cases lead to un-
stable anions. Therefore, the tuning conditions TN1 and TLS

are not well defined and are neglected in this graph and all
other graphs of this work.

In the upper part of Fig. 3 we plot the γ values for atoms
calculated again with both BNL and ωPBE. In the lower part
of the same Figure we plot the inverse of the calculated atomic
radii to demonstrate the system size dependence of γ as we
would expect it. Clearly, the BNL γ N and the BNL γ LS values
of all alkali and earth alkali atoms of this plot do not follow
the general trend. Their γ values are out of scale, just as in
the case of the BeS molecule. The reason is that for these sys-
tems TN(γ ) of Eq. (2) never intersects the zero line, whereas
a zero is found for all other systems that the authors know
about. Moreover, TN(γ ) exhibits just a shallow minimum at
very large γ , or it has no minimum and converges to a small
positive constant c, as in the case of Li. It is noteworthy that
in these cases the minimum value (or the constant c) is very
small (<0.5 eV) and therefore even in these cases the tun-
ing approach predicts the fundamental gap reliably as demon-
strated in Ref. 18. However, other properties, such as the total
energy in the ground state, may differ from reference values
by up to several 10 eV.
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IV. SIZE CONSISTENCY

A. Size consistency error

The size consistency criterion is a fundamental constraint
that applies to any electronic structure approach, and thus also
to approximations in DFT. It states that the sum of the ener-
gies EA and EB of two well-separated, independent subsys-
tems A and B should be equal to the energy E that one obtains
when A and B are considered as one large combined system.
The RSH functional itself is expected to be properly size con-
sistent if no tuning is performed, because all of its exchange
and correlation ingredients are. Nevertheless, by construction
a tuned RSH functional is not size consistent,12 because due
to its implicit definition it generally has different γ values for
the whole system and the two separate subsystems. As a con-

sequence

�SC = EγA (A) + EγB (B) − EγA+B (A + B) �= 0, (6)

with �SC defining the size-consistency error. While this ar-
gument establishes that the tuning procedure in principle vi-
olates the size consistency condition, we do not know of any
study so far that systematically quantified the error. There-
fore, we examine it here in the transparent, hallmark test case
of two atoms that are far from each other. In this situation we
expect large γ differences due to the large γ variations seen
in Fig. 3. Our theoretical setup is a system of two atoms with
a distance of 20 Å, large enough such that all orbitals are lo-
calized on either one of the two atoms A or B with vanishing
orbital overlap. Consider, for example, the simple TN or TN1

tuning criteria. If we assume that the HOMO of the whole
(neutral or anionic, respectively) system, A+B, is localized
on atom A, we obtain γ A+B = γ A as the range separation pa-
rameter for the whole system. The size consistency error can
then be expressed as

�SC = EγA (A) + EγB (B) − EγA (A + B) (7)

and therefore reduces to EγB (B) − EγA (B) owing to the size-
consistency of the RSH functional itself. Whether the result-
ing size consistency error is negligible or worrisome depends
on the difference γ A − γ B and how strongly the total energy
of B varies with γ .

In Fig. 4, we plot the size consistency errors of several
diatomic molecules calculated with the BNL (left graph) and
ωPBE functional (right graph). The error strongly depends on
the system and the applied tuning condition. The largest er-
rors are observed for (Na+Cl) and (Be+S). This is related to
the fact that in these atom pairs the differences between the
atomic γ values are the largest (compare Fig. 3). It is exacer-
bated by the fact that one atom dominates the ionization po-
tential and therefore TN, whereas the other atom dominates the
electron affinity and therefore TN1. The monoatomic systems
(O+O) and (N+N) exhibit no size consistency error since
the combined system has the same γ as its subsystems. Us-
ing an RSH approach without tuning is size consistent and is
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FIG. 4. The size consistency error according to Eq. (6) for atom pairs calculated with the BNL (left) and the ωPBE functional (right). The distance between
the two subsystems is 20 Å. Note that B3LYP data points exhibit no size consistency error, which proves that the calculations were properly set up. The data
points “BNL γ = 0.6” (no tuning, γ constant for all systems) are also all zero, confirming that the RSH approaches itself (without tuning) are size consistent
(the same applies to ωPBE). Note the different scales on the energy axes in the left and right viewgraph.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

77.234.225.163 On: Sun, 27 Apr 2014 04:51:21



204115-5 Karolewski, Kronik, and Kümmel J. Chem. Phys. 138, 204115 (2013)

-35
-25
-15
-5

Na2 NaCl O2 Cl2 BN Be2 BeS Li2 N2 CO

BNL TN
BNL TN1

BNL TLS

BNL γ = 0.6

 5

 15

 25

          

-2

-1

 0

 1

 2
ΔE

 =
 E

bi
nd

in
g 

- E
bi

nd
in

g,
 e

xp
 

 [e
V

]

-2

-1

 0

 1

 2
ΔE

 =
 E

bi
nd

in
g 

- E
bi

nd
in

g,
 e

xp
 

 [e
V

]

-2

-1

 0

 1

 2
ΔE

 =
 E

bi
nd

in
g 

- E
bi

nd
in

g,
 e

xp
 

 [e
V

]

-35
-25
-15
-5

Na2 NaCl O2 Cl2 BN Be2 BeS Li2 N2 CO

ωPBE TN
ωPBE TN1

ωPBE TLS

B3LYP

 5

 15

 25

          

-2

-1

 0

 1

 2

ΔE
 =

 E
bi

nd
in

g 
- E

bi
nd

in
g,

 e
xp

 
 [e

V
]

-2

-1

 0

 1

 2

ΔE
 =

 E
bi

nd
in

g 
- E

bi
nd

in
g,

 e
xp

 
 [e

V
]

-2

-1

 0

 1

 2

ΔE
 =

 E
bi

nd
in

g 
- E

bi
nd

in
g,

 e
xp

 
 [e

V
]

FIG. 5. Differences of calculated binding energies (according to Eq. (8)) and experimental binding energies. The calculations were performed with all three
tuning conditions for the BNL functional (left) and the ωPBE functional (right). It also shows B3LYP data points (right) and data points for the case of BNL
without tuning (“BNL γ = 0.6”, left). Note the change of scale in the energy axis. Missing TN1 and TLS data points indicate that either the anion of the molecule
or at least one of its atoms is unstable (cf. Sec. III).

demonstrated with the data points “BNL γ = 0.6” in the left
part of Fig. 4 where we used a constant γ = 0.6 in all calcu-
lations. The comparison of the BNL and the ωPBE functional
is the most noteworthy aspect of Fig. 4. The size consistency
errors of both methods differ substantially, with the BNL er-
ror being one order of magnitude larger than the ωPBE one.
(Na+Cl) is the most extreme case that we encountered, with
an error of 18 eV for the TLS tuning of BNL. We attribute
this to the above-discussed abnormal tuning behavior of the
sodium atom. Even when such extreme cases are disregarded,
the size consistency violation for BNL is nevertheless gen-
erally severe, as a consequence of the strong γ dependence
of the total energy (compare Fig. 7). This γ dependence is
smaller for ωPBE (compare Fig. 7) resulting in a moderate
error. However, even for ωPBE it may be considerably large,
as in the case of (Na+Cl).

B. Binding energies of diatomic molecules

In this section, we address an important consequence of
the violation of size consistency: the incorrect prediction of
binding energies. As in Secs. III and IV A, we focus our anal-
ysis on diatomic molecules. In order to calculate their binding
energies with the implicitly defined tuned RSH functionals,
we have to conduct the tuning process for the atoms and the
molecules separately. Therefore, we obtain a difference in the
γ values of the molecule (γ AB) and its constituent atoms (γ A

and γ B). Due to this difference the resulting binding energy,

Ebinding = EγA (A) + EγB (B) − EγAB (AB), (8)

incorporates an error that is closely connected to the size con-
sistency error. We calculated these binding energies for di-
atomic molecules composed of first and second row elements
with all three tuning approaches for the BNL and the ωPBE
functional. In Fig. 5 we plot the differences of our calculated
binding energies and the experimental binding energies.38 The

graph shows severe deviations of the BNL calculations (left
part of Fig. 5) from the experiment. A binding energy error of
1–3 eV is the normal case, but 10 eV and more are observed
for the molecules containing alkali and earth alkali atoms. By
using a constant range separation parameter, γ = 0.6 (chosen
without specific optimization, but considered “reasonable” for
thermochemistry12), the deviations from the experiment are
less than 0.3 eV. This is the same order of error as observed
for the B3LYP data points presented in the right part of Fig. 5.
This part of Fig. 5 also shows the ωPBE calculations with a
binding energy error smaller than 0.8 eV, consistent with the
more moderate size consistency error of this functional. The
only exception is BeS, with an error of 4.4 eV. This large error
is related to the above-discussed abnormal tuning behavior of
this system (cf. Sec. III).

On the whole, these results reflect the size consistency
errors of Sec. IV A. The differences between the two ap-
plied RSH approaches are consistent with our finding that
the total energies depend more strongly on γ for the BNL
functional than for the ωPBE functional. This is reflected in
Fig. 6, which shows the difference of γ AB (molecule AB) to
the mean atomic γ , i.e., the average of γ A and γ B. Although
these differences are very similar for BNL and ωPBE (ex-
cept for molecules containing alkali and earth alkali atoms),
the binding energy errors are much larger for the BNL func-
tional. Note that the general structure of the graphs in Fig. 6
(γ differences) and Fig. 5 (binding energy errors) is very sim-
ilar. This falls in line with the other arguments in this section,
i.e., the differences in the γ values obtained for molecules
and atoms in the tuning approach are the main reason for the
notable errors.

V. TUNING-RELATED SHORTCOMINGS

In this section, we address some situations where the tun-
ing approach leads to problems in an indirect way that is not
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FIG. 6. Difference �γ between γ AB (molecule) and 1/2(γ A + γ B) (average over atoms) for the BNL functional (left) and the ωPBE functional (right). Systems
with a large �γ are expected to have a large binding energy error if calculated with tuned RSH functionals. Note the change of scale in the ordinate. Missing
TN1 and TLS data points indicate that either the anion of the molecule or at least one of its atoms is unstable (cf. Sec. III).

strictly related to the violation of size consistency. In these
situations, tuning has to be conducted with great care, or not
at all.

A. Spin configuration

Spin multiplicity introduces an additional problematic
aspect of tuning. Generally, a modification of the spin con-
figuration may modify the optimal value of γ and, in turn,
introduce changes in the energy that go beyond the physical
energy changes demanded by the changes in the spin configu-
ration. To explore this effect, consider the prototypical exam-
ple of the O2 molecule, well-known to possess a triplet ground
state. Fig. 7 shows the energy of the O2 molecule, at the ex-
perimental bond length, as a function of γ . For both the BNL
and the ωPBE functionals, the triplet energy is correctly iden-
tified as lower than the singlet energy, for any choice of γ .
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FIG. 7. Energy of the O2 molecule at its experimental bond length36 for dif-
ferent RSH approaches and spin configurations. The solid vertical and hor-
izontal line illustrate the optimally tuned BNL γ LS and its corresponding
energy E(γ LS) for the singlet state. The dashed vertical and horizontal line
indicate γ LS and E(γ LS) of BNL for the triplet state.

For the BNL functional, however, the TLS optimally tuned γ

of the singlet state (solid vertical line) is larger than that of
the triplet state (dashed vertical line). Due to the strong γ -
dependence of the energy, the tuned singlet energy is lower
than the tuned triplet energy, i.e., the triplet and singlet energy
ordering at their respective optimal γ values (solid and dashed
horizontal line, respectively) is erroneous. Note that due to the
weaker γ -dependence of its energy, the ωPBE functional pre-
dicts the correct order of the singlet and the triplet energy (the
singlet and triplet γ of ωPBE are close to the solid and dashed
vertical line). However, the same quantitative limitation re-
mains in force, even if it does not translate into a qualita-
tive difference in this case. Thus, if one constructs the energy
at optimal tuning as a function of bond length, as shown in
Fig. 8, the equilibrium bond length is obtained correctly, at
least qualitatively, but the predicted spin configuration itself is
incorrect. For a system with a spin state that is unknown prior
to calculation, a naive tuned-RSH approach may therefore be
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FIG. 8. Singlet (solid) and triplet (dashed) energy of the O2 molecule as
a function of the bond length calculated with the BNL functional with TLS

tuning. For the parts of the curves that are within the shaded area the tuning
approach is not well defined. Although the neutral system is stable at these
bond lengths the anion is unstable as the HOMO value of the anion calculated
with the optimally tuned γ LS is slightly positive.
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FIG. 9. BNL (left) and ωPBE (right) energy as a function of distance between Be and S for a singlet and a triplet spin configuration and for two different γ

values.

misleading and the correct spin state has to be determined by
considering a range of γ values (as in Fig. 7) and/or with a
different functional beforehand.

B. Potential energy curve

In this subsection, we analyze how the tuning approach
performs for the calculation of potential energy surfaces. We
again focus on diatomic molecules as these allow for a trans-
parent analysis. The discussion is motivated by and related to
the effects reported in Sec. V A for O2 close to its equlib-
rium bond length. However, here we discuss two additional
conceptual problems.

In Subsection V A we pointed out possibly spurious spin-
related issues of the neutral species. But even if no such is-
sue arises, the energy of the neutral system may still exhibit
a spurious dependence of the energy on the multiplicity of
the anion and the cation of the system under consideration.
By going from the equilibrium bond length to a very large
one, the multiplicity of the system may change at a specific
distance where a different spin configuration becomes more
favorable, e.g., the systems could go from a singlet to a triplet
state. The dilemma is that the anion and cation of the sys-

tem could also change their spin states and this could happen
at a different distance or even several times, e.g., the mul-
tiplicity could change from 2 to 4 and than again from 4
to 6. For a specific example, consider the heterodimer com-
prised of beryllium (Be) and sulfur (S) with the following
configuration:

Neutral Anion Cation

Molecule (multiplicity) 1 2 2
Well separated (multiplicity) 3 2 4

For a common functional one would calculate a singlet
and a triplet energy curve that would intersect at a certain
bond length. The same applies to RSH functionals without
tuning. Fig. 9 displays these singlet and triplet energy curves
for Be and S for the BNL and ωPBE functionals (without
tuning), for two different values of the range separation
parameter. For both γ values, both functionals behave
correctly and predict the correct binding energy of 3.5 eV,38

as the difference of the triplet energy at large internuclear
separation and the singlet energy at the equilibrium bond
length. A different situation, however, occurs when either
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FIG. 10. Tuned BNL (left) and ωPBE (right) energies of Be-S as a function of distance between Be and S for four different spin configurations. The TN tuning
was applied at each distance separately. “E(x − y)” encodes the energy of the four different spin configurations according to E(<multiplicity of the neutral
system> − <multiplicity of the cation>). The multiplicity of the anion is always 2.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

77.234.225.163 On: Sun, 27 Apr 2014 04:51:21



204115-8 Karolewski, Kronik, and Kümmel J. Chem. Phys. 138, 204115 (2013)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6

γ 
 [b

oh
r]

Be − S  distance   [Å]

γ (1−2)
γ (1−4)
γ (3−2)
γ (3−4)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6

γ 
 [b

oh
r]

Be − S  distance   [Å]

γ (1−2)
γ (1−4)
γ (3−2)
γ (3−4)

FIG. 11. γ values from TN tuning for Be-S as a function of distance between Be and S for four different spin configurations, for the BNL (left) and ωPBE
(right). The TN tuning was applied at each distance separately. “γ (x − y)” means γ (<multiplicity of the neutral system> − <multiplicity of the cation>). The
multiplicity of the anion is always 2.

functional is used in combination with the tuning approach.
Because the tuning procedures depend on the anion and/or
the cation, the spin states of the latter also affect the results.
This means one would not simply get a singlet and triplet
curve, but a singlet(neutral)-duplet(cation), a singlet(neutral)-
quartet(cation), a triplet(neutral)-duplet(cation), and a
triplet(neutral)-quartet(cation) curve (if we neglect the anion
because its spin state does not change in the case of Be
and S). The mere existence of these curves is physically
incorrect. For Be and S they are depicted in Fig. 10 for the TN

tuning.
A second conceptual failure is connected to the basic con-

cept of the tuning itself – the system dependence of the range
separation parameter. It leads to a change of γ as a function
of the distance between the two atoms. Fig. 11 demonstrates
this dependence for Be and S for the different spin configu-
rations. The consequence is that the potential energy curves
exhibit unphysical trends, as seen in Fig. 10. The curve that
one would obtain by choosing the lowest possible energy at
each internuclear separation (not explicitly shown in Fig. 10
for reasons of clarity) zig-zags up and down and finally re-
sults in a negative binding energy for the optimally tuned BNL
functional. The largest change occurs around 4 Å. This may
be related to the transition from orbitals that are delocalized
over the molecule to orbitals that are localized on the sepa-
rate atoms. The unphysical curves can be understood by con-
sidering Fig. 9 again. Because γ mainly varies in the range
between 0.1 and 0.6, the energy “jumps” between the curves
of these two different γ values. In contrast to all other cal-
culations in this paper, here we used the cc-pVQZ basis set
because then the tuning is more well behaved than with the
aug-cc-pVQZ basis set. However, the same effects can be ob-
served for other basis sets as well. Furthermore, we found a
similar behavior for all other tuning conditions and other di-
atomic systems such as BN, NaCl, CO, and O2; sometimes the
failures were not as pronounced as in this case and sometimes
even more severe. For the ωPBE functional the curves are,
again, generally better behaved because the γ dependence of
the total energy is smaller. However, the conceptual problems
remain for this functional too.

These results once more demonstrate that energies from
calculations with different range separation parameters cannot
be compared. Viewing γ as a system dependent quantity and
performing the tuning for each configuration of a potential en-
ergy curve separately, generally leads to spurious results. As
mentioned above, an alternative would be to apply the tuning
procedure to molecules at their equilibrium bond length and
to use the resulting γ also for all other bond lengths. How-
ever, this would be in contradiction to the general philosophy
of regarding γ as an implicit density functional and in prac-
tice would lead to irreconcilable inconsistencies in the limit
of large inter-nuclear separation. Clearly, this calls for a size
consistent extension of the current tuning approach.

VI. SUMMARY

The main aim of this work was to analyze the tuning of
RSH functionals with respect to the question of size consis-
tency. For this purpose we examined diatomic systems at large
distances, where we observed large size consistency errors –
up to several electron volts. In the rest of the paper we dis-
cussed consequences of the size consistency violation. Likely
the most prominent one is that the tuning approach may fail
in predicting binding energies correctly and that a strict def-
inition of potential energy surfaces is not possible. We also
demonstrated that due to the tuning procedure, spin configu-
rations might be predicted incorrectly and that tuning results
depend also on the anion and/or cation of a system and their
spin configurations. This, in fact, is an additional factor that
can adversely influence potential energy surfaces.

The scenario considered throughout this work – a very
small system with a very large difference in the optimal γ be-
tween its sub-systems – is in some sense a deliberately con-
structed “worst case scenario” for the optimal tuning method.
It may well be that larger and/or more homogeneous systems,
where the dependence on γ may be less pronounced, will
exhibit more modest errors. This, in fact, has also been ob-
served in some of the examples studied. We believe the in-
formation given here to be useful, as these extreme examples
teach us most about potential pitfalls and allow us maximal
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caution in the application of the method and the interpreta-
tion of its results. Specifically, a re-tuning during static or
dynamic processes that changes the electronic configuration
(including the case of reaction barriers) should be avoided if
energetic changes are of interest. In cases where a tuned long-
range correction is beneficial, it is advisable to conduct a tun-
ing step just once. This procedure is not consistent with the
interpretation of the tuning procedure as making the range-
separation parameter an implicit density functional, but may
lead to pragmatically more useful results. Interestingly, while
all optimally tuned RSH functionals are subject to these limi-
tations, they do not necessarily suffer from them to the same
extent. In our case, ωPBE and BNL were found to perform
very differently under identical tuning procedures. The size
consistency errors for the ωPBE functional were nearly an
order of magnitude smaller than the ones for the BNL func-
tional, with a similar observation for binding energy errors.
We attribute this behavior to the improved compatibility of the
semi-local correlation and short-range exchange in the ωPBE
functional.

What are the underlying reasons for the failures described
above? A first observation is that with the tuning approach
the functional is able to adjust its range separation parameter
to a specific system. This adjustment has proven to be very
important for the prediction of spectroscopic properties. The
price to pay for this system dependence of γ are the limita-
tions described in this work. They originate from the implicit
construction of the functional itself. The tuning of γ , when
being regarded as turning the range-separation parameter into
an implicit density functional, must be seen as a definition
of a highly non-local functional and global non-localities fre-
quently lead to size-consistency violations.39

A second observation is that one could simply think about
γ as a parameter that is fixed anew for each system. From
this perspective, different values for γ correspond to differ-
ent functionals and it is therefore immediately obvious that
energies obtained from the tuning approach cannot be com-
pared. This perspective, however, is too simplistic. Due to the
tuning, one is in fact using a system dependent range separa-
tion parameter that can in principle be seen as a functional of
the density γ [n]. However, in taking the functional derivative
to derive the exchange potential from the exchange energy, γ

has been treated as a constant here as well as in all other ap-
plications of the optimally tuning idea that we know of. Yet,
if one would take the concept of viewing γ as an implicit den-
sity functional seriously, then one should obtain an additional
term in the exchange potential of the form

∂E

∂γ

δγ [n]

δφi

, (9)

that is not present if γ is held constant. The latter expression
refers to a generalized Kohn-Sham approach,28 where the ex-
change energy derivative has to be taken with respect to the
generalized Kohn-Sham orbitals φi, i.e.,

δE[n, γ [n]]

δφi(�r)
. (10)

From this perspective, the optimally tuned calculations that
have been done so far used an inconsistent combination of en-

ergy and potential, or, in other words, a potential that does not
rigorously minimize the energy, because they neglected the
term of Eq. (9). Energy-potential inconsistencies are known
to generally lead to problems40, 41 and the present case can be
seen as a somewhat more subtle manifestation of this general
principle.

VII. OUTLOOK

Which conclusions can we draw for the future use and
development of tuned functionals in view of the presented
findings on the size consistency error and related problems?
One conclusion could be to avoid tuned functionals, at least
in circumstances when ground-state energetics are relevant,
and resort to other approaches. For example, it has been
demonstrated that self-interaction free functionals based on
exact Kohn-Sham exchange42, 43 or a self-interaction correc-
tion (SIC) used in the Kohn-Sham framework44–46 tremen-
dously improve on many of the deficiencies of semi-local
functionals and lead to, e.g., occupied eigenvalues that are
much more amenable to physical interpretation47–54 and an
accurate description of charge transfer45, 55 and charge trans-
fer excitations.56, 57 Some of these improvements may even be
achieved with semi-local functionals.58, 59

Yet, in our opinion, avoiding tuned functionals altogether
would be a serious misconception. The tuned RSH functionals
and approaches such as the Kohn-Sham SIC each have their
individual strengths and neither one makes the other super-
fluous. Rather, each offers specific advantages and one may
choose one of the approaches depending on the requirements
of the problem at hand. Advantages of, e.g., the Kohn-Sham
SIC are the availability of a consistent energy-potential com-
bination and the lack of the requirement to do many calcula-
tions to tune a parameter. On the other hand, the tuned RSH
functionals offer opportunities that are beyond what can be
reached with any Kohn-Sham approach. For example, recent
work showed that tuning based on Eq. (4) results in a very
good prediction of both fundamental gaps and IP’s for both
atoms18, 60 and organic systems.18, 20 Consequently, the deriva-
tive discontinuity – the discrepancy between the HOMO-
LUMO gap and the fundamental gap – is nearly vanishing in
the generalized Kohn-Sham system selected due to the tuning,
also allowing for a successful mimicking of exciton binding
when comparing the HOMO-LUMO gap to the optical gap
obtained from time-dependent DFT.6 This can be a significant
advantage in practical applications, in addition to the success-
ful treatment of charge transfer energies.21, 24, 25, 61–64

Thus, it is worthwhile to discuss the possibilities for im-
proving concepts of RSH functionals with a system dependent
range separation. Some suggestions towards this goal were al-
ready made in the literature.65 Here, we present some further
thoughts, based on the perspective that the limitations of the
current tuning process and the strong violation of size con-
sistency could be rooted in the dependence of the tuning pro-
cedure only on the frontier orbitals. All the different tuning
conditions, from Eq. (2) to Eq. (4), address frontier orbitals,
which is of course related to the intention of producing reli-
able results for fundamental gaps and optical (in particular
charge-transfer) excitations. Other properties, like the total
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energy, that depend on the entire system may be described
poorly, as discussed in the present work. The reason for this
is that γ enters the functional via the well known long-range
exchange energy expression

ELR
x = −1

2

∑
σ

∫∫
dr3

1 dr3
2

erf(γ |�r1 − �r2|)
|�r1 − �r2|

×
∑
ij

φ∗
iσ (�r1)φ∗

jσ (�r2)φjσ (�r1)φiσ (�r2) (11)

and in this way influences all orbital-orbital interactions (see,
e.g., Eq. (4) of Ref. 9), despite having been adjusted only for
the frontier orbitals. Because the orbitals of a specific system
have various shapes and sizes, the description of their inter-
action may require distinct separations into long and short-
range. This is especially true if we compare inner shell with
outer shell or binding orbitals. One possibility could be to as-
sign a range separation parameter γ ij to each orbital pair {ij}
in order to describe their interaction accurately by a mix of
semi-local short-range and exact long-range exchange. Con-
sequently we would obtain

ELR
x = −1

2

∑
σ

∫∫
dr3

1 dr3
2

∑
ij

erf(γ σ
ij |�r1 − �r2|)

|�r1 − �r2|
×φ∗

iσ (�r1)φ∗
jσ (�r2)φjσ (�r1)φiσ (�r2) (12)

for the long-range exchange energy expression with orbital
pair-dependent γ σ

ij ’s. Because the semi-local short-range ex-
pression, which is also γ -dependent, does not depend on
orbital-orbital exchange directly, we could use the mean value

γSR = ∑
ijσ

γ σ
ij

2N2 instead. The question is how to determine the
values for these γ σ

ij ’s. One approach may be to assign them
according to the spatial extension of the orbitals that form the
pair {ij} and the distance between their centers of mass. The
advantages of such an approach would be a generalization of
the range separation in principle and a possible elimination
of the time-consuming tuning step involving the anions and
cations. Whether such a scheme can be realized in practice
and how accurate it may be needs to be left to future work. In
any case, considerations such as this one show that the idea of
implicitly, numerically defined functionals does hold the po-
tential for extensions that may increase the application range
of concepts such as the optimal tuning.
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