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Spin-restricted
ensemble-referenced Kohn–Sham
method: basic principles and
application to strongly correlated
ground and excited states of
molecules
Michael Filatov∗

Ensemble density functional theory (DFT) is a novel theoretical approach that
is capable of exact treatment of non-dynamic electron correlation in the ground
and excited states of many-body fermionic systems. In contrast to ordinary DFT,
ensemble DFT has not found so far a way to the repertoire of methods of mod-
ern computational chemistry, probably owing to the lack of practically afford-
able implementations of the theory. The spin-restricted ensemble-referenced
Kohn–Sham (REKS) method represents perhaps the first computational scheme
that makes ensemble DFT calculations feasible. The REKS method is based on
the rigorous ensemble representation of the energy and the density of a strongly
correlated system and provides for an accurate and consistent description of molec-
ular systems the electronic structure of which is dominated by the non-dynamic
correlation. This includes the ground and excited states of molecules undergoing
bond breaking/bond formation, the low-spin states of biradicals and polyradicals,
symmetry forbidden chemical reactions and avoided crossings of potential energy
surfaces, real intersections between the energy surfaces of the ground and excited
states (conical intersections), and many more. The REKS method can be employed
in connection with any local, semi-local and hybrid (global and range-separated)
functional and affords calculations of large and very large molecular systems at a
moderate mean-field cost. © 2014 John Wiley & Sons, Ltd.
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INTRODUCTION

Inclusion of electron correlation1,2 in quantum
chemical calculations is crucial for the correct

description of chemical systems and their reactions.
Especially interesting and, at the same time, particu-
larly challenging for the existing theoretical methods
are situations where the non-dynamic (or static)
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electron correlation plays the dominant role for the
electronic structure.3 Such situations are typically
found in systems with dissociating chemical bonds,
in low-spin states of biradicals, in excited states of
molecules, in systems with anti-ferromagnetically
coupled paramagnetic centers, and many more. In
the domain of wavefunction theory (WFT), the
accurate quantum chemical treatment of these situa-
tions is achieved by the use of multi-reference (MR)
methods,4 in which the static correlation effects are
described by a superposition of several electronic
configurations and the dynamic correlation effects
are treated via many-body perturbation theory (PT),
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coupled cluster (CC), or configuration interaction
(CI) methods. Although the existing MR WFT
approaches, such as the second-order complete active
space PT (CASPT2),5 MR singles and doubles CI
(MRSDCI), MR CC with single and double substitu-
tions (MRCCSD),6,7 are capable of achieving a very
high accuracy when predicting molecular properties,
these methods are computationally quite involved and
can be routinely applied to small and medium size
molecular systems only.

The basic premise of the standard Kohn–Sham8

(KS) density functional theory (DFT)9 is that it should
be capable of describing all pertinent correlation
effects (dynamic and static) provided that the exact
(i.e., yet unknown) exchange-correlation (XC) func-
tional were employed. The existing approximations
to the XC functional are designed to cover primar-
ily the exchange (Fermi) and the dynamic electron
correlation,10 such as that which can be encoun-
tered in rare gas atoms or dense three-dimensional
(3D) electron gas. However, the self-interaction error
(SIE, residual self-repulsion of the electron) inher-
ent in the exchange (major SIE) and the correlation
(minor SIE) functionals lends approximate function-
als the ability of providing for some implicit coverage
of non-dynamic correlation effects.11 Hence, covering
both dynamic and static correlation effects (albeit the
latter non-specifically, incompletely, and implicitly),
approximate KS-DFT performs surprisingly well even
in the situations that are notoriously difficult for the
methods of WFT (e.g., ozone molecule).12

The implicit coverage of non-dynamic elec-
tron correlation by the approximate XC function-
als, although beneficial for the description of the
electronic structure of ordinary molecules near equi-
librium geometry, becomes insufficient in situations
typified by the strong static correlation. For example,
this is manifested in the inability of the closed-shell
KS-DFT to correctly describe the homolytic cleav-
age of a covalent bond or singlet-triplet energy
splittings in organic biradicals. A simple remedy in
the form of broken-symmetry (BS) spin-unrestricted
KS-DFT (BS-UDFT or BS-UKS) has been widely used
to describe the strongly correlated molecular sys-
tems, however, with alternating success. The BS-UKS
approach introduces a certain degree of MR character
via mixing states of different multiplicity (e.g., sin-
glet and triplet states),13,14 while retaining formally a
single determinant KS reference state. The pertinent
spin-contamination of the BS state, the high sensi-
tivity of the calculated spin state energy differences
on the employed approximate XC functional,15,16 the
necessity to employ a suitable mapping procedure to
obtain the desired spin state energy17,18 undermine the

credibility of BS-UKS results for the electronic struc-
ture and properties of strongly correlated systems.

A potential remedy for shortcomings of the con-
ventional KS DFT with regard to non-dynamic elec-
tron correlation is a merger between the MR methods
of WFT (for treatment of non-dynamic correlation)
with the correlation functionals of DFT (for treatment
of dynamic correlation).19–21 Although conceptually
simple, the hybrid approach runs into the problem
of double counting of electron correlation. Indeed,
the static and dynamic correlation effects cannot be
cleanly separated neither at the WFT level nor at the
DFT level and, as a result of the merger, certain cor-
relation effects are taken into account twice.19,21,22

This becomes problematic for the correct description
of multiplet states and energy splittings which may
show strong and erratic dependence on the choice of
the orbital active space in the MR WFT calculation.21

Furthermore, the conventional approximate correla-
tion functionals are designed to comply with the sum
rules valid for single determinant states (or, equiva-
lently, for idempotent density matrices)23 and their use
in connection with the densities from MR calculations
[with fractional occupation numbers (FONs) of natu-
ral orbitals] was discouraged.24 Although there was
some initial success in designing the hybrid WFT/DFT
schemes, the progress in this direction is relatively slow
and no generally applicable hybrid scheme is available
so far.

A different approach to the non-dynamic elec-
tron correlation is taken in ensemble DFT which goes
beyond the widely accepted paradigm of KS-DFT
that any physically meaningful fermionic ground state
density can be uniquely mapped onto the ground
state density of a fictitious system of non-interacting
particles represented by a single KS determinant (the
so-called pure-state V-representability, PS-VR).8 In
seminal works by Lieb,25 Englisch and Englisch,26,27

and later Kohn et al.28 it has been rigorously
proved that any ground state density is ensemble
V-representable (i.e., representable by a weighted
sum of several KS reference determinants, E-VR) and
that only some physical densities are PS-VR. For a
while, this notion remained a theoretical curiosity
until it has been practically demonstrated, in a series
of first principles simulations,29,30 that mapping of
the ground state density of certain molecular systems
onto a non-interacting KS reference requires the use
of ensemble representation which is manifested by the
FONs of several frontier KS orbitals. And these were
precisely the molecules in which the non-dynamic
correlation becomes dominant.

The notion of using the fractionally occupied
KS orbitals to simulate the non-dynamic correlation
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in the context of KS DFT actually predates12,31,32 the
first rigorous theoretical work on this subject. The first
attempts to implement the E-VR concept in the form of
practically accessible DFT-FON have confronted the
same difficulty as the WFT-DFT merger; namely, that
the approximate XC functionals were not designed to
comply with the fractional orbital occupations. The
latter difficulty was circumvented by the notion that,
if the same ensemble representation is used to con-
struct both the density and the ground state energy
of the strongly correlated molecule,25 the standard
approximate XC functionals can be used to calcu-
late the energies of the individual ensemble compo-
nents. This idea was implemented in the spin-restricted
ensemble-referenced Kohn–Sham (REKS) method,33

which was perhaps the first computationally feasi-
ble implementation of the E-VR concept. A consid-
erable advantage of the REKS approach is that it
enables one to study strongly correlated and ordi-
nary (that is without strong non-dynamic correlation)
molecular systems on the same theoretical footing, as
the ensemble representation merely collapses to the
single-reference (as in the conventional KS DFT) rep-
resentation, if no strong non-dynamic correlation is
present.

In the past, the REKS method has been success-
fully applied to investigate the electronic structure
of strongly correlated molecular systems, such as
the low-spin states of biradicals,33–35 magnetically
coupled metal centers,36–38 organic charge transfer
salts.39,40 Later, the method has been extended to treat
excited states of strongly correlated molecular species
and the resulting state-averaged REKS (SA-REKS)41

and state interaction SA-REKS (SI-SA-REKS)42,43

methods have been used to investigate the pho-
tochemistry of molecular motors and molecular
switches,44–47 to study the excited states of extended
𝜋-conjugated molecules,48 and to investigate pecu-
liarities of the excited state charge transfer in
donor–acceptor systems.49 Although the REKS
method has demonstrated its feasibility and ability
to accurately describe fine detail of the electronic
structure of strongly correlated molecular species, its
theoretical background and practical implementation
seem to be little known by the computational chem-
istry community at large. It is the purpose of this
review article to bridge this gap and to provide an
overview of the REKS method and its applications.

ENSEMBLE DFT AND REKS
METHODOLOGY

Since its inception in the early 1960s, KS-DFT tac-
itly assumes that any physical fermionic ground state

density 𝜌
(
r⃗
)

can be mapped onto the ground state
density 𝜌s

(
r⃗
)

of a fictitious system of non-interacting
particles moving in a suitably modified external poten-
tial Vs, see Eq. (1)

Ĥs = −1
2

∑
i

�⃗�2
i + Vs

(
r⃗
)

(1)

where the first term represents the kinetic energy
operator of the non-interacting particles, T̂s. It is
also assumed that such a 𝜌s

(
r⃗
)

corresponds to a
single Slater determinant (KS determinant) con-
structed from N/2 (N is the number of electrons;
assumed to be even) lowest eigenfunctions of Ĥs,
see Eq. (2).
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The existence of such a non-interacting system
and the corresponding potential can be demon-
strated based on the adiabatic theorem of many-
body physics.50 Adiabatically switching off the
electron–electron interaction 1/rij in the full many-
body Hamiltonian Ĥ,

Ĥ = −1
2

N∑
i=1

�⃗�2
i + Vext

(
r⃗
)
+

N∑
i>j

1
rij

(3)

where Vext

(
r⃗
)

is the external potential (e.g., due to
the nuclei), and modifying the external potential such
that the ground state density remains unchanged51 the
non-interacting limit with the Hamiltonian (1) can
be reached and the density obtained from its lowest
eigenfunctions as in Eq. (2). Such an adiabatic con-
nection path exists provided that (i) the many-electron
system always remains in its ground state and (ii) the
PT remains valid (i.e., there is a finite gap between
the occupied and empty one-electron states) along
the whole path. If such a potential Vs can be found,
the ground state density constructed from its lowest
eigenfunctions is said to be PS-VR.

The fact that not any physical fermionic den-
sity is non-interacting PS-VR has been theoretically
proved already in the early days of KS DFT.25–27

In the studies by Lieb,25 Englisch and Englisch,26,27

and later Ullrich et al.,28 it was rigorously shown
that the ensemble representation of the density
is the only one that guarantees the existence of
the KS potential Vs for any physical fermionic
ground state density, that is any such density is E-VR
and only some of the densities are PS-VR. E-VR
implies that the density 𝜌s

(
r⃗
)

can be represented as a
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weighted sum (ensemble) of several KS determinants,
that is

𝜌s

(
r⃗
)
=

M∑
L=1

𝜆L𝜌L

(
r⃗
)
, 0 ≤ 𝜆L ≤ 1,

M∑
L=1

𝜆L = 1 (4)

a sum over a finite number (M) of ensemble compo-
nents. In terms of the one-particle eigenfunctions of
Eq. (1), the ensemble representation translates to the
FONs of the orbitals 𝜙k and the density is given by
Eq. (5),

𝜌s

(
r⃗
)
=

N∕2∑
i=1

ni
|||𝜙i

(
r⃗
)|||2 , 0 ≤ ni ≤ 2 (5)

where only a few KS orbitals are fractionally popu-
lated.

In spite of its formal exactness, the ensemble
representation in DFT was considered a mere the-
oretical curiosity until the end of 1990s a series
of works by Baerends and coworkers appeared,24,29

where it was shown that the ensemble representa-
tion has a practical merit. These authors used the
reverse engineering approach of Zhao-Morrison-Parr
(ZMP)52 for obtaining the KS potential Vs from
known exact (or very accurate) density. For several
strongly correlated systems, such as the C2 molecule
in its ground state near the equilibrium and at a
slightly stretched bondlength,29 and the H2 + H2
system in its ground state,24 it was demonstrated
that the FONs of several frontier orbitals (i.e., the
ensemble representation) should be invoked in order
to obtain physically meaningful potentials and pre-
cise mappings onto the target densities. A few years
later, their conclusions were confirmed by Morrison,30

who ran similar simulations on Be-like atomic ions.
Taken together with the theoretical arguments (a
recent development by Franck and Fromager53 is to be
added to this list), these findings have unambiguously
demonstrated the practical relevance of the ensemble
representation, which is the only rigorous represen-
tation for the density of a system with strong MR
character.

REKS Method: General Setup
A practical implementation of ensemble DFT in the
REKS method rests upon a rigorous statement that
the energy of a strongly correlated system can be
expressed, similar to its density (4), as a weighted sum
over a finite number of the energies of the ensemble
components, Eq. (6).a

E
[
𝜌s

]
=

M∑
L=1

𝜆LE
[
𝜌L

]
(6)

To make use of Eq. (6) and to derive the expres-
sion for the REKS energy, let us consider a prototypal
MR situation that arises in alkenes, such as ethylene,
when twisting about the 𝜋-bond. At the planar con-
formation, the highest occupied molecular orbital
(HOMO), let us denote it 𝜙a is doubly occupied and
the lowest unoccupied orbital (LUMO), 𝜙b, is empty
and there is a substantial energy gap between the
orbitals and the corresponding electronic configura-
tions,

(
… 𝜙

(2)
a 𝜙

(0)
b

)
and

(
… 𝜙

(0)
a 𝜙

(2)
b

)
. The ground

state of such a system can be accurately represented
by a single KS determinant. When applying a torsion
about the double bond (keeping the D2 symmetry
constraint, for simplicity), the gap between the two
configurations narrows down and they become nearly
degenerate at about 90∘ of twist, at which point
the strong non-dynamic correlation ensues and the
ground state density needs to be represented by an
ensemble of the

(
… 𝜙

(2)
a 𝜙

(0)
b

)
and

(
… 𝜙

(0)
a 𝜙

(2)
b

)
den-

sities. Thus, the non-interacting KS reference energy
of such a system is to be given by a weighted sum
over the KS energies of the two configurations taken
with the weighting factors that are related to the
FONs of the orbitals 𝜙a and 𝜙b, that is, na/2 and
nb/2. According to the exact KS simulations24,29 and
theoretical arguments54 the fractionally occupied
orbitals become degenerate and lie at the Fermi level
of the system. The FONs of the orbitals are defined
by the condition of stationarity of the KS energy with
respect to the orbital population variations.24,29,54

Let us now follow the adiabatic connection
path and turn the electron–electron interaction back
on. At an infinitesimal coupling strength (consider a
prefactor 𝛼 ≈ 0 before the last term in Eq. (3)) only
the two electrons occupying the fractionally populated
(hence, degenerate) KS orbitals will be affected by
the electron–electron interaction term. Applying the
quasi-degenerate PT to calculate the energy of such a
system leads to an expression

E
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]
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2
E
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]
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2
E
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(
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)1∕2
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2
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2
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− 1

2
E
[
… 𝜙a𝜙b

])
(7)

in which the bracketed term in the second line repre-
sents the negative of the exchange integral (𝜙a𝜙b|𝜙b𝜙a)
involving the fractionally occupied orbitals expressed
via the energy differences between the singlet and
triplet configurations with singly occupied frontier
KS orbitals. Note that the bracketed term does not
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contribute to the total density, as the densities of these
configurations cancel each other identically. If no other
degeneracies occur along the adiabatic path, it is plau-
sible to assume that expression (7) will be valid at the
full electron–electron interaction strength as well.

Equation (7) yields the energy of a system
described by an E-VR reference state, for example,
the ethylene molecule near 90∘ of twist about the dou-
ble bond. For a system that is described by a single
determinant KS reference state (PS-VR), the energy (7)
should collapse to the usual DFT energy expression.
Analyzing the dependence of the single reference
KS DFT energy of the frontier orbital’s FON’s near
na ≈2 and nb ≈ 0, an expression similar to (7) can
be obtained, with the only difference that the factor
(nanb)1/2 is replaced by (nanb)1.12,33 Thus, introducing
a function f (na, nb) that interpolates between E-VR
and PS-VR limits, one arrives at the working formula
for the REKS (2,2) ground state energy, Eq. (8),
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where the function f (na, nb) is given by Eq. (9).

f
(
na,nb

)
=
(
nanb

)1− 1
2

(
nanb+𝛿

1+𝛿

)
(9)

A damping factor 𝛿 in Eq. (9) is set to 𝛿 =0.4 to
provide for a more stable convergence of the REKS
self-consistent field (SCF) iterations when the E-VR
solution (i.e., when na ≈ nb ≈1) collapses to the PS-VR
solution (i.e., when na ≈ 2 and nb ≈ 0).38 FONs of
the frontier orbitals are constrained to sum up to
two electrons, that is, na +nb = 2. With the restriction
to two active electrons in two fractionally occupied
orbitals, Eq. (5) for the density becomes

𝜌REKS(2,2)
s

(
r⃗
)
=

core∑
i

2 |||𝜙i

(
r⃗
)|||2+ na

|||𝜙a

(
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)|||2+ nb

|||𝜙b

(
r⃗
)|||2

(10)

where all the KS orbitals but two are doubly occupied.
In Eq. (8), E

[
… 𝜙a𝜙a

]
, etc., are the energies of

single KS determinants constructed for the respective
electronic configurations. As these are the single
determinant configurations, the use of the approxi-
mate XC functionals for obtaining their energies is
legitimate. Furthermore, the REKS(2,2) total energy is
not obtained by substituting the ensemble density into
an approximate density functional directly, which is

known to lead to double counting of the non-dynamic
electron correlation21,22; instead, an explicit account
of this correlation is done via the ensemble formula,
Eq. (8), which eliminates the double counting.22 The
outlined formalism for obtaining REKS energy and
density is derived for a situation with two active
electrons in two fractionally occupied orbitals. Such
an active space is sufficient for describing a low-spin
state of a biradical and a molecule with completely or
partially dissociated bond. By analogy with ab initio
MR WFT, this version of the REKS method is denoted
REKS(2,2) which implies its similarity (however, not
an equivalence) to the respective CASSCF method.

REKS Method: One-Electron Equations
The REKS total energy is minimized with respect to the
REKS orbitals and FONs of the active orbitals. Strictly
speaking, such a minimization does not result in a
local multiplicative potential Vs as in Eq. (1). How-
ever, for obtaining such a potential it would be nec-
essary to employ a variant of the optimized effective
potential (OEP) approach, which is known to suffer
from steep computation time scaling and certain sta-
bility issues when used in connection with the localized
basis sets for expanding the KS orbitals.55 Therefore,
one typically resorts to optimizing the total energy
with respect to the orbitals, as is being commonly
done in connection with the hybrid and meta gen-
eralized gradient approximation (GGA) density func-
tionals, thus avoiding the necessity to handle with the
density–density response function.

Varying the REKS total energy (8) (which for
the sake of convenience is represented in the form
of Eq. (6) with the respective weighting factors)
with respect to the orbitals, one arrives at a set of
one-electron equations

F̂k𝜙k =
core∑

l

𝜙l 𝜀lk +
act∑
w

𝜙w 𝜀wk; k ∈ core

fv F̂v𝜙v =
core∑

l

𝜙l 𝜀lv +
act∑
w

𝜙w 𝜀wv; v ∈ act (11)

in which 𝜀qp are the Lagrange multipliers that carry
out the orbital orthogonality constraints, the orbitals
𝜙q are labeled by the indices l, k when they belong in
the core (doubly occupied orbitals) and by v, w when
they belong in the fractionally occupied active orbitals
(𝜙a and 𝜙b in Eqs. (8) and (10)), f v =nv/2, and the
one-electron KS operators F̂q (q∈ {core, act}) are given
by Eq. (12)

F̂q = n−1
q

∑
L

𝜆L

(
n𝛼

q,LF̂𝛼
L + n𝛽

q,LF̂𝛽

L

)
(12)
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in which 𝜆L are the respective weighting factors, cf
Eqs. (6) and (8), of the single determinant configura-
tions (microstates), n𝛼

q,L and n𝛽

q,L are the populations
of the respective spin-orbitals in the microstate L (0
or 1), and F̂𝛼

L and F̂𝛽

L are the usual KS operators for
the 𝛼 and 𝛽 spin-orbitals of the respective microstates.
The weighting factors 𝜆L are repeated for convenience
in Eq. (13),

𝜆1 =
na

2
; 𝜆2 =

nb

2
; 𝜆3 = −𝜆4 = 𝜆5 = −𝜆6 = 1

2
f
(
na,nb

)
(13)

where they are given in the order of their appearance
in Eq. (8).

Although the one-electron equations (11) look
similar to the usual KS (or HF) equations, they can-
not be solved by applying recurrent diagonalization as
is being typically done when solving the closed-shell
or spin-unrestricted open-shell KS equations. At the
variational minimum of the REKS energy, the matrix
of the Lagrange multipliers becomes Hermitian, that
is, 𝜀pq = 𝜀∗qp, or in terms of the one-electron opera-
tors (12) ⟨p|nqF̂q|q⟩ = ⟨p|npF̂p|q⟩ (14)

and—because the energy within the spin-restricted
open-shell formalism is not invariant with respect
to orthogonal transformation of the core and active
orbitals—this matrix should not be diagonalized. The
one-electron equations (11) are thus solved by the
use of the coupling operator technique of Hirao
and Nakatsuji56 which provides for obtaining the
true variational minimum of the REKS energy at a
typical mean-field cost. Note however that, due to
arbitrariness in the choice of the diagonal Lagrange
multipliers in the open-shell SCF theory,57 the REKS
Lagrange multipliers 𝜀pp do not obey Koopmans’
theorem and do not represent good approximations
to the ionization potentials of the respective orbitals.

Minimization of the REKS energy (8) with
respect to the FONs of the active orbitals is carried out
at each SCF iteration by applying a Newton–Raphson
technique and a constraint na + nb =2. Under the latter
constraint, the REKS energy is to be minimized with
respect to the FON of a single active orbital, which
leads to the following equation

𝜕f (x)
𝜕x

+
𝜕2f (x)
𝜕x2

(
xmin − x

)

=
2
(
Eaa − E

bb

)
Eab − E

ab
+ E

ab
− Eab

= Δ (15)

solved iteratively for the value of x= na/2 that min-
imizes the REKS energy at the current iteration (in
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FIGURE 1 | Optimal value of the parameter x = na/2 as a function
of the ratio Δ on the right-hand side of Eq. (15).

practical calculations, 𝜙a is always the strongest
populated active orbital). In Eq. (15), the function
f (na, nb) of Eq. (9) is written utilizing the variable x
and the above constraint on the active orbital’s FONs.
Figure 1 shows the optimal value of the variable x as
a function of the right-hand side of Eq. (15) obtained
for several values of the damping factor 𝛿 of Eq. (9). It
is seen that, for 𝛿 ≈ 0.4 or greater, the dependence of
the active orbital’s FONs (as given by x) on the ratio
Δ of the energy gap between the

(
… 𝜙

(2)
a 𝜙

(0)
b

)
and(

… 𝜙
(0)
a 𝜙

(2)
b

)
microstates and the effective exchange

integral −
(
𝜙a𝜙b|𝜙b𝜙a

)
≈
(
Eab − E

ab
+ E

ab
− Eab

)
∕2

(that defines coupling between the former microstates)
becomes smooth and does not cause any insta-
bility of the iterative solution of the one-electron
equations (11).

The described SCF approach to solving the
REKS equations does not yield canonical Lagrange
multipliers that can be interpreted as the one-electron
energies in the same sense as it is done in the case
of closed-shell single-reference systems. However, had
these Lagrange multipliers been obtained when min-
imizing the REKS energy, the one-electron energies
of the active electrons (that is electrons in the frac-
tionally occupied frontier orbitals) would be exactly
degenerate, because the total REKS energy is station-
ary with respect to FONs of the active orbitals.54

Obtaining such one-electron energies would however
require imposing an additional constraint for the num-
ber of particles conservation,54 which could make
the self-consistent solution of the REKS one-electron
equations more time consuming and was therefore
avoided when deriving these equations.

For automatic search for local stationary points
on the molecular potential energy surfaces (PESs) the
analytic energy gradient is available for the REKS
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method. The derivation is straightforward and results
in the following general formula for the derivative
of the total REKS energy with respect to an external
perturbation X (atomic displacement, external field,
etc.),33

𝜕EREKS

𝜕X
=
∑

L

𝜆L
𝜕′EL

𝜕X
+

occ∑
p,q

(⟨p|npF̂p|q⟩+ ⟨p|nqF̂q|q⟩)s
UX

qp

+
occ∑
p,q

(⟨p|npF̂p|q⟩ − ⟨p|nqF̂q|q⟩)a
UX

qp (16)

where EL are the energies of the individual microstates
in Eq. (8) and 𝜆L are their weighting factors, Eq. (13),
the prime at the differentiation symbol implies that
only the molecular integrals over the basis functions
(and not the density matrix elements) have to be
differentiated, and sUX

ji and aUX
ji are the symmetric and

antisymmetric parts of the orbital response matrix,
where the former is (C is the matrix of the KS orbital
coefficients and S is the matrix of the overlap integrals
between the basis functions)

sUX = −1
2

C† 𝜕S
𝜕X

C (17)

and the latter is to be obtained with the use of the
coupled-perturbed formalism. As the REKS orbitals
are obtained self-consistently and satisfy the varia-
tional conditions in Eq. (14), the last term in Eq. (16)
vanishes and the REKS gradient can be obtained
through the derivatives of the molecular integrals only,
which has the same cost as in a conventional KS calcu-
lation. The expression in Eq. (16) however is also valid
for situations when non-self-consistent orbitals are
used to calculate the REKS energy, as in the SA-REKS
and SI-SA-REKS methods to be described later on.

REKS Method: Prospects of Extension
Further development of the REKS method will require
extension of its active space to include more electrons
and fractionally occupied orbitals. Such an exten-
sion can be achieved by the same argument as was
used when deriving Eq. (7), i.e., starting from a sys-
tem of non-interacting particles and employing the
quasi-degenerate PT. In this way, the energy expression
for the (2,m) active space (m is the number of fraction-
ally occupied orbitals) can be derived by retaining only
doubly excited electronic configurations with both
electrons excited to the same orbital. The coupling
matrix elements between these configurations can be
obtained similar to Eq. (7) as the energy differences
between singly excited singlet and triplet electronic
configurations. As the fractionally occupied orbitals

are variationally optimized, the energy contribution of
the singly excited configurations is introduced via the
orbital optimization. By exploiting the particle-hole
symmetry, the energy expression for the (2m-2,m)
active space can be obtained. The orbital optimization
scheme for described extension of REKS has not yet
been implemented and only non-self-consistent calcu-
lations have been carried out for a few model systems
with (2,3) and (4,3) active spaces, which shown feasi-
bility of the method.

With the setup described above the number of
free variables in REKS (the FONs of active orbitals)
is the same as the leading dimension of the secular
problem (m × m) resulting from the application
of quasi-degenerate PT. The further extension of
REKS to (4,4), (6,6), etc. active spaces will require
a certain reduction of the secular problem resulting
from PT, as there are fewer fractionally occupied
orbitals than the dimension of the secular problem.
This implies that there is no simple relationship
between the FONs and the eigenvectors of the secular
problem, which may complicate the derivation of the
total energy expression. To bypass this problem, a
model approach similar to the one used in generalized
valence bond method58 can be used, namely restricting
possible double excitations to dedicated orbitals pairs.
The feasibility of such a method has not yet been
assessed.

ILLUSTRATIVE APPLICATIONS
OF REKS METHOD

The REKS methodology outlined in the preceding
section is suitable for describing chemical systems
in which homolytic bond breaking/bond formation
processes occur, such as dissociation of a chemical
bond, avoided crossing of several electronic configura-
tions, as well as systems with loosely coupled unpaired
electrons, such as biradicals. Computational model-
ing of these situations is also possible with the use
of the BS-UKS approach; however, in this case one
has to deal with the excessive spin-contamination
that results from mixing of the states of different
spin-multiplicity, e.g., a singlet and a triplet. By con-
trast, the REKS method is free of this drawback
and enables one to unambiguously describe the true
singlet states of strongly correlated molecular sys-
tems. In the following, several illustrative examples
of application of the REKS method to the aforemen-
tioned chemical systems will be presented. The pur-
pose of this presentation is to give the reader an
idea of what can be done with the use of REKS
and not to provide for an exhaustive review of its
applications.
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Bond Dissociation
Perhaps the simplest situation where the strong
non-dynamic correlation can be met in chemistry is
the situation of a dissociating chemical bond. Depend-
ing on the relative electronegativity of the fragments
the cleavage can occur by a heterolytic mechanism,
when both electrons in the bond are shifted toward
the more electronegative fragment, or by a homolytic
mechanism, when the electron pair is equally split
between the fragments. In the latter case, the ground
state of the system is dominated by a configuration
with two loosely coupled electrons localized on the
opposite ends of the dissociating bond.

A paradigmatic example of bond cleavage is
the dissociating dihydrogen molecule.33 Near the
equilibrium interatomic distance RHH (0.74144 Å,67

1.401 bohr59) the ground state of the molecule is dom-
inated by the (1𝜎g)2 electronic configuration with the
doubly occupied totally symmetric MO that can be
described as the in-phase superposition of the hydro-
gen atomic orbitals (AOs). Along the H–H bond
stretching coordinate, the doubly excited electronic
configuration (1𝜎u)2 with the doubly occupied anti-
bonding MO becomes lower in energy, as the overlap
between the AOs decreases, and at some interatomic
separation (known as the Coulson–Fischer point)60

the energy gap between the two electronic configu-
rations narrows down to a limit that allows for an
efficient mixing of the configurations and the strong
non-dynamic electron correlation ensues.33 Referring
to the plot in Figure 1, the strong non-dynamic corre-
lation sets in when the absolute value of the ratio Δ
defined in Eq. (15) becomes smaller than ca 4 and the
population of the bonding 1𝜎g orbital deviates notice-
ably from 2 electrons.

Figure 2 compares the ground state poten-
tial energy curves obtained using the CC with
single and double substitutions (CCSD), the usual
single-reference spin-restricted KS (RKS) method, the
BS-UKS, and the REKS(2,2) methods in connection
with the cc-pV5Z basis set modified as in Ref 24.
The DFT calculations employ the range-separated
CAM-B3LYP functional.61 For a molecule with only
two electrons, such as H2, the CCSD method is equiv-
alent to full configuration interaction (FCI) approach.
Figure 2 also shows the population of the bonding
orbital of H2 obtained from analysis of the density
matrix (relaxed density matrix in the case of CCSD)
Note however, that the natural orbital’s occupation
numbers (NOONs) obtained for the correlated WFT
or the BS-UKS methods are not fully equivalent to
the FONs of the frontier orbitals in the ensemble
KS theory. Generally, the NOONs are non-integer
for all orbitals in the molecule (some closer to 2,
some closer to 0), while the FONs are allowed to
be non-integer for a few frontier orbitals only; for
the case of dissociating H2, the bonding 1𝜎g and the
antibonding 1𝜎u MOs.

The single-reference RKS method is well known
to fail to describe the homolytic bond dissocia-
tion correctly and, at long interatomic separations,
it approaches a wrong dissociation limit, a 50–50
mix of ionic and covalent electronic configurations.60

REKS and BS-UKS describe the dissociation cor-
rectly; however, the switch over from the PS-VR
solution near the equilibrium H–H distance and the
E-VR solution at the stretched bond occurs abruptly
in the case of BS-UKS method (see the BS-UKS
NOON plot near RHH = 2.8 bohr in Figure 2), while
REKS describes a smooth transition between the two
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FIGURE 2 | Dissociation curve of the H2 molecule in the 1Σ+
g ground electronic state as obtained using the REKS(2,2) (red), RKS (green), BS-UKS

(yellow), and CCSD (blue) methods. The solid curves refer to the relative energy with respect to the dissociation limit of two neutral atoms, the dashed
curves refer to the population of the 1𝜎g bonding orbital (HOMO) obtained as the natural orbital population for the respective method.
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regimes.33 The sudden onset of the non-dynamic cor-
relation as described by BS-UKS may result in dis-
continuities of the PES when one applies an a poste-
riori spin-purification scheme,62,63 see e.g., Figure 1
of Ref 63. It is also noteworthy that the BS-UKS
energy curve deviates stronger from the exact (CCSD)
curve than the REKS energy curve in the region
where the transition between the single-reference and
MR situation occurs, between ca 2.8 and 4.2 bohr.
The XC functional derived from the random phase
approximation (RPA) was demonstrated to be capa-
ble of producing the correct dissociation limit for
H2.64 Being computationally more demanding than
REKS, the RPA XC functional yields an unphysical
hump (ca 1 eV) at the intermediate distances64,65;
the behavior that can be corrected only by using
the considerably more expensive approach based on
solving the Bethe-Salpeter equation of many-body
physics.65

A more interesting situation occurs during dis-
sociation of an ionic bond, such as the 𝜎-bond in
LiH.66 Near the equilibrium bondlength (1.5957 Å)67

the electronic structure of lithium hydride molecule
is dominated by a Li𝛿+–H𝛿− electronic configuration
which corresponds to the doubly occupied 𝜎-type
bonding MO. Figure 3 shows the LiH dissociation
curves obtained using the CCSD (the 1s electrons of
Li were put into the frozen core), BS-UKS, RKS, and
REKS methods in connection with the cc-pV5Z basis
set24 and CAM-B3LYP functional. Along with the
energy curves, the variation of the Mulliken charge on
Li is shown as a function of the interatomic distance.
Near the equilibrium distance, there is a substantial
transfer of charge (ca 0.4 e) to the hydrogen atom.
As the Li–H bond dissociates, the charge is back

transferred to Li and, at the dissociation limit, the
ground state is dominated by a biradical (covalent)
valence configuration Li•–H•. The transition between
the ionic and covalent electronic configurations is
described by the REKS and BS-UKS methods qualita-
tively correctly, as displayed in the energy and charge
curves in Figure 3. Similar to the hydrogen molecule
case, BS-UKS describes an abrupt transition between
the closed shell (ionic) and open-shell (covalent,
biradical) electronic configurations, as can be seen
in the charge curve near RLiH = 5.5 bohr in Figure 3.
The single-reference RKS method fails to describe the
Li–H bond dissociation properly and, at the limit of
dissociated bond, it yields an ionic configuration with
QLi = 0.43 e.

The presented examples demonstrate the abil-
ity of REKS to take proper account of non-dynamic
correlation during dissociation of a single chemical
bond.33 It is gratifying that near the equilibrium geom-
etry, REKS yields the same total molecular energy
as the single-reference RKS approach. This implies
that, for molecules correctly described by the stan-
dard single-reference KS DFT, the REKS method
avoids double counting of the non-dynamic correla-
tion, which plagues the approaches based on merging
MR WFT with DFT.

The described bond dissociation situations may
not seem particularly interesting when only the ground
electronic state is addressed. It becomes more difficult
(and, for BS-UKS, nigh impossible) to describe the
excited states of a molecule that undergoes bond
dissociation. However, REKS formalism is capable of
providing a correct and accurate description of such
systems, which will be discussed later on. For now,
let us continue with the molecular ground state and
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FIGURE 3 | Dissociation curve of the LiH molecule in the 1Σ+ ground electronic state as obtained using the REKS(2,2) (red), RKS (green), BS-UKS
(yellow), and CCSD (blue) methods. The solid curves refer to the relative energy with respect to the dissociation limit of two neutral atoms, the dashed
curves refer to the Mulliken charge on Li atom.
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SCHEME 1 | Geometric parameters and frontier orbitals of H2 +H2

system. (Reprinted with permission from Ref 34 Copyright 2000
American Chemical Society)

discuss systems where avoided crossing of electronic
configurations takes place.

Avoided Crossings
Situations of avoided crossing typically occur in sym-
metry forbidden reactions such as electrocyclic reac-
tions and cycloadditions.68–70 At some point along the
reaction coordinate, the excited electronic configura-
tion becomes near degenerate with the ground state
configuration and that leads to a significant activa-
tion barrier of the reaction.68–70 Perhaps the simplest
example of such a process is the 2+ 2 cycloaddi-
tion of two H2 molecules which has been investigated
at the MRSDCI level of theory using large cc-pV5Z
basis set.24 Along the rectangular reaction mode (D2h
point group) shown in Scheme 1 crossing between the
(… b2u

2b3u
0) and (… b2u

0b3u
2) electronic configura-

tions occurs at an approximately square geometry of
H4. This results in a strong mixing between the two
electronic configurations near the transition state for
this reaction mode and to an avoided crossing between
the ground and doubly excited states. For this system,
the exact KS solutions have been obtained in Ref 24
starting from the MRSDCI density and it was unam-
biguously demonstrated that one has to switch to the
ensemble representation for the KS reference near the
square geometry of H4. From the exact KS/CI simula-
tions of Ref 24 the FONs of the frontier (b2u and b3u)
orbitals are available and are shown in Figure 4 along
with the energy profile along the reaction coordinate.

The PES profile and the FONs obtained34 with
the REKS, BS-UKS (NOON is used in lieu of FON),
and RKS calculations are compared in Figure 4 with
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FIGURE 4 | Profile of the PES of H2 + H2 reaction and populations
of the b2u orbital as obtained from the KS/CI24 (blue), BS-UKS (yellow),
RKS (green), and REKS (red) calculations. The relative energies are
calculated with respect to two isolated H2 molecules. Solid curves show
the energies and dashed curves show the occupation numbers as a
function of R (see Scheme 1 for definition). DFT calculations employ the
CAM-B3LYP functional.

the results of the exact KS/CI calculations.24 The
single-reference RKS approach is not capable of tak-
ing proper account of the non-dynamic correlation
near the top of reaction barrier and yields a cusp
on the PES instead of a smooth transition between
the (… b2u

2b3u
0) and (… b2u

0b3u
2) electronic con-

figurations. The BS-UKS and REKS methods yield a
smooth transition between the two configurations;
however, the BS-UKS PES deviates stronger from
the exact (MRSDCI) one and the reaction barrier is
underestimated, which is typical for this approach.
According to BS-UKS, the non-dynamic correlation
sets in abruptly, after ca R = 2.75 bohr, and the
NOON of the b2u orbital deviates noticeably from the
exact KS/CI FON indicating certain overestimation of
the non-dynamic correlation by BS-UKS. By contrast,
REKS yields a smooth onset of the non-dynamic cor-
relation (as seen from the FON curve in Figure 4) and
provides a more accurate description of the reaction
barrier.

Yet another situation of avoided crossing of
the ground and excited states occurs in alkenes, such
as ethylene, when torsion about the double bond is
involved.33,34 The ground electronic state of ethylene
near its equilibrium geometry can be sufficiently accu-
rately described by the (… b3u

2b2g
0) configuration

where the 𝜋-bonding MO (b3u) is doubly occupied
and the 𝜋*-antibonding MO (b2g) is empty. When
torsion about the double bond reaches near 90∘ of
twist, the doubly excited electronic configuration
(… b3u

0b2g
2) becomes near degenerate with the
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respect to the planar conformation. The cc-pVTZ basis set is employed in connection with the CAM-B3LYP density functional.

(… b3u
2b2g

0) configuration and this leads to a strong
mixing of the two configurations in the ground state
which acquires MR character.

With the use of single-reference RKS method,
the mixing between the configurations and the
non-dynamic correlation in the ground state of
twisted ethylene molecule cannot be described at all
and the RKS method yields a cusp on the ethylene PES
at 90∘ of torsion, see Figure 5. The REKS and BS-UKS
methods capture the non-dynamic correlation; how-
ever, BS-UKS describes the onset of MR state at ca
50∘ of torsion abruptly as can be judged from the b3u
orbital NOON, which begins suddenly deviate from
the closed-shell value of 2 (Figure 5). REKS describes
the transition between the single-reference PS-VR
state and the MR E-VR state smoothly and yields a
somewhat higher torsion barrier (67.2 kcal/mol) than
BS-UKS (63.2 kcal/mol). From the b3u population
curves in Figure 5 it can be seen that BS-UKS popula-
tions deviate noticeably from the REKS ones for the
intermediate torsion angles. Likely, this is caused by
the spin contamination of the BS-UKS reference wave-
function due to mixing singlet and triplet electronic
configurations.

Some other examples of application of the REKS
method to description of avoided crossings can be
found in the literature.34,71 Together with the afore-
mentioned systems, they confirm that REKS is capa-
ble of accurately describing avoided crossings and can
be used with confidence to study symmetry-forbidden
reactions. A number of chemically relevant examples
of the calculation of the ground and excited states of
symmetry-forbidden reactions will be presented later
on, when discussing the SA-REKS and SI-SA-REKS
methods. In the next subsection, however, let us briefly

review application of REKS to another interesting sit-
uation, the low-spin states of biradicals.

Biradicals and Magnetic Coupling
Molecules with two unpaired and loosely coupled
electrons are commonly known as biradicals (or dirad-
icals). Typically, biradicals have low lying singlet and
triplet electronic states either of which may happen to
be their ground state.72 However, as the singlet–triplet
(ST) gap is sufficiently narrow, quite often the upper
state can be thermally populated as well. In this way,
the physical properties and reactivity of biradicals,
which may often occur as intermediates of chemical
reactions, are defined by the magnitude of the ST
energy gap.

The REKS method has been applied to study
the ST splitting in a wide range of biradicals, includ-
ing organic molecules and metal complexes.33–38 It
was found to be more reliable than the commonly
employed BS-UKS methods, especially when the ST
gap is substantially large, on the order of a few
kcal/mol or more.22 Naturally, the spin-restricted
open-shell KS (ROKS) method is to be used for com-
puting the triplet state in connection with REKS for
the singlet. Using the spin-restricted methods for mod-
eling both the singlet and the triplet helps to avoid
the erroneous spin-contamination inherent in the
spin-unrestricted methods, such as UKS and BS-UKS.
However, the results of REKS/ROKS calculations of
the ST gaps were found to be sensitive to the choice
of the XC functional, though perhaps to a somewhat
lesser extent than BS-UKS ones,36–38 mainly due to the
SIE of density functionals.22 It was thus recommended
to mitigate the SIE as much as possible and to employ
the hybrid density functionals with sufficiently large
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fraction of the exact exchange. As the REKS method
reproduces the results of the conventional RKS calcu-
lations for the ordinary (i.e., not strongly correlated)
molecular systems, the benchmarks of the XC func-
tionals carried out at the RKS level may serve as a
guidance when choosing a functional for the REKS
calculations. Typically, BH&HLYP, CAM-B3LYP and
similar XC functionals provide for a balanced descrip-
tion of the static and dynamic correlation effects in the
context of the REKS method.

To illustrate the performance of REKS in the cal-
culation of ST gaps in biradicals, the results of the
calculations of a series of didehydrobenzene biradi-
cals (or benzynes) are reported here. More results
on various organic biradicals and binuclear cop-
per complexes can be found in the original pub-
lications.22,33–38 The reported here ST gaps in the
ortho- (1), meta- (2), and para-benzyne (3) are
obtained using the range-separated hybrid CAM-
B3LYP functional in connection with the cc-pVTZ
basis set and the geometries optimized for the respec-
tive computational method.

2 31

Table 1 compares the REKS/ROKS and
BS-UKS/UKS ST energy gaps for 1, 2, and 3 with
the theoretical results and experimental data avail-
able in the literature.73–75 Compared to the golden
standard of current computational chemistry, the
CCSD(T) method, REKS/ROKS formalism is coming
out quite well both in terms of the ST energy splittings
and the diradical character (the latter was evalu-
ated from the population of the weakly fractionally
populated frontier orbital).22 The BS-UKS approach
strongly overestimates the diradical character of m-
and p-benzynes; however, yields a closed-shell config-
uration for the ground singlet state of o-benzyne. The
absolute magnitude of the ST energy gaps of benzynes
is underestimated by the BS-UKS/UKS approach; for
m-benzyne by almost a factor of two as compared to
CCSD(T), see Table 1.

Another interesting application of the REKS
method worth mentioning is establishing the shape
of the PESs of the lowest singlet and triplet states
of tetramethyleneethane (TME) biradical.35 TME is a
disjoint, non Kekulé diradical, the electronic structure
of which is dominated by two resonance structures
shown Scheme 2. Depending on the coupling between
the unpaired electrons, TME may exist in the triplet
or the singlet ground state.

TABLE 1 Singlet-Triplet Energy Gap (kcal/mol) in Benzyne Biradicals

Method o-Benzyne m-Benzyne p-Benzyne

REKS/ROKS1 32.3 (8)2 15.9 (33) 3.1 (61)

BS-UKS/UKS1 29.8 (0) 9.9 (46) 2.3 (80)

CCSD(T)3 35.1 (11)4 17.1 (20) 3.1 (65)

Exp.5 37.5± 0.3 21.0± 0.3 3.8± 0.3

1DFT calculations employ CAM-B3LYP functional and cc-pVTZ basis set.
2Diradical character (%) is given in parentheses.
3CCSD(T)/cc-pVTZ results from Ref 73.
4CCSD(T) diradical character from Ref 74.
5Gas phase experimental enthalpy differences from Ref 75.
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H2C

θ

SCHEME 2 | TME biradical.

The REKS/ROKS calculations35 predicted that
the preference for either triplet or singlet state depends
on the torsion angle 𝜗 (see Scheme 2) and that, at
an intermediate torsion angle 𝜗 ≈ 45∘, the triplet
becomes TME’s ground state, while, at the orthogonal
orientation of the two allyl fragments, the ground
state becomes singlet (see Figure 6). Qualitatively,
this assignment is supported by the experimental
EPR measurements, which yield a linear Curie-Weiss
temperature dependence of the EPR intensity,76 and
by recent quantum Monte-Carlo (QMC) calculations,
which predict that the triplet becomes a metastable
ground state at an intermediate torsion angle. As was
recently analyzed by Borden et al.77 the metastable
character of triplet TME, which is slowly decaying
to singlet under the experimental conditions, is the
only way to reconcile the observation of its magnetism
and the results of the negative ion photoelectron
spectroscopy that unambiguously put the singlet state
below the triplet.78

To round up this section, the REKS method
has proved its ability to provide qualitatively and
quantitatively accurate description of various strongly
correlated molecular systems. An advantage of REKS
methodology, especially before the approaches based
on merging MR WFT with density functionals specif-
ically designed to match the WFT part,21 is that the
method can be used in connection with any existing
pure or hybrid density functional, including the dis-
persion corrected functionals.79,80 Besides that, the
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FIGURE 6 | Relaxed potential energy curves of TME diradical along
the torsion mode 𝜗. The REKS/ROKS calculations are carried out using
the CAM-B3LYP density functional in connection with the cc-pVTZ basis
set.

REKS method does not suffer from effects of the erro-
neous spin-contamination, which plagues the BS-UKS
approach and undermines its credibility. Although the
application of REKS to strongly correlated molecular
species offers a theoretically sound and numerically
accurate way of analyzing their ground state elec-
tronic structure and reactivity, the greatest advantage
of the REKS formalism is in its ability to accurately
describe the excited states of these species, which are
beyond the reach of the most popular computational
approaches in the domain of DFT. Application of the
REKS formalism to excited states will be reviewed in
the following section.

REKS METHODOLOGY FOR EXCITED
STATES

Presently, the most popular approach to excited states
in the framework of DFT is the linear-response
time-dependent DFT (TD-DFT) in which the exci-
tation energies are obtained from the poles of the
density–density response function.81 Despite its pop-
ularity, TD-DFT experiences well-known difficulties
with describing certain types of excitations, which
include charge transfer excitations, double excita-
tions, and excitations of a system with strongly cor-
related ground state.82 There have been proposed
a number of remedies to cure these deficiencies
of TD-DFT,83 in particular, going beyond the lin-
ear response approximation was put forward as the
way to improve the description of charge transfer
excitations.84,85

An alternative to using the density response
to obtain the excitation energies is in the use of
ensemble formalism. The ensemble DFT formalism
has been extended to the domain of excited states by
Gross, Oliveira, and Kohn (GOK)86 who proved the
applicability of the variational principle—and hence

the existence of the Hohenberg-Kohn theorem, that is
the exact mapping of the ensemble density of the type
(4) onto the external potential Vext—for ensembles of
ground and several excited states (as in Eq. (6) but
for interacting states). In this way, the GOK approach
represents a continuation of the line of research set
out by Lieb25 and Englisch and Englisch.26,27 For
instance, considering an ensemble of the ground E0
and a single excited E1 states with the energy and
density given by

E𝜔 = (1 − 𝜔)E0 + 𝜔E1 ; 0 ≤ 𝜔 ≤ 1 (18)

𝜌𝜔
(
r⃗
)
= (1 − 𝜔) 𝜌0

(
r⃗
)
+ 𝜔𝜌1

(
r⃗
)

(19)

and variationally minimizing the energy E𝜔 with
respect to the density 𝜌𝜔 one obtains the excitation
energy ΔE12 from Eq. (20).81

ΔE12 =
E𝜔 − E0

𝜔
(20)

Although it rests on a rigorous physical
foundation,53,81,86 until recently, this formalism was
not developed into a useful practical computational
scheme, probably due to perceived lack of suitable
XC functionals that would conform with ensemble
densities. The latter hurdle can be circumvented by
employing for the individual energies, E0 and E1, the
same ensemble representation as was used in Eqs. (4)
and (6), and in the REKS method in general.

SA-REKS Method
Let us consider a model system with two strongly
correlated electrons, such as the H2 molecule at
the bondlength stretched beyond the Coulson–Fischer
point. Restricting ourselves to a minimal basis, the
ground state wavefunction of such a system can be
represented by Eq. (21),

Φ0 =
√

na

2
|||𝜙a𝜙a

||| −
√

nb

2
|||𝜙b𝜙b

||| (21)

where 𝜙a and 𝜙b can be the bonding (1𝜎g) and
antibonding (1𝜎u) orbitals of H2. Excitation of a
single electron in the (2,2) active space leads to a
singlet excited state Φ1 that can be represented by the
wavefunction in Eq. (22).

Φ1 =
√

1
2
|||𝜙a𝜙b

||| +
√

1
2
|||𝜙b𝜙a

||| (22)

As, for a homosymmetric biradical such as the
dissociating H2, the two states, Φ0 and Φ1, belong to
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different symmetry species and, hence, do not inter-
act with one another, an ensemble of the two states
can be constructed and the orbitals 𝜙a and 𝜙b be
obtained from variational optimization of the ensem-
ble energy.41 In the framework of REKS methodol-
ogy, the energy of the Φ0 state can be obtained using
the REKS(2,2) method and the energy of the Φ1 state
can be obtained with the use of the ROKS method
for an open-shell singlet (OSS) state.87,88 In the latter
approach, the energy of the OSS state Φ1 is given by
Eq. (23).87,88

EROKS [𝜌s

]
= E

[
… 𝜙a𝜙b

]
− 1

2
E
[
… 𝜙a𝜙b

]
+ E

[
… 𝜙a𝜙b

]
− 1

2
E
[
… 𝜙a𝜙b

]
(23)

Thus, this leads to the SA-REKS energy expres-
sion (24),

ESA-REKS
𝜔

= (1 − 𝜔)EREKS(2,2) + 𝜔EROKS (24)

which is to be minimized with respect to the orbitals
and FONs of the active orbitals of the REKS(2,2)
energy (8). Typically, equal weighting factors, that
is 𝜔= 1/2, are used in practical calculations with
the SA-REKS method.41 Having minimized the
energy (24) and obtained the orbitals, the individ-
ual energies, EREKS(2,2) and EROKS, are calculated
using the common set of orbitals and the excitation
energy is obtained from Eq. (20). For obtain-
ing the SA-REKS orbitals, the same one-electron
equations as were used for the REKS method could
be employed, however with modified weighting
factors 𝜆L in Eqs. (12) and (13), which now become
Eq. (25).

𝜆1 = (1 − 𝜔)
na

2
; 𝜆2 = (1 − 𝜔)

nb

2
;

𝜆3 = 𝜆5 = 𝜔 − 1 − 𝜔

2
f
(
na,nb

)
;

𝜆4 = 𝜆6 = 1 − 𝜔

2
f
(
na,nb

)
− 𝜔

2
(25)

The analytic energy derivatives for the aver-
aged state can be calculated by Eq. (16) where
no orbital-response part is needed as the SA-REKS
orbitals satisfy the variational condition (14) for the
averaged energy functional. However, for obtaining
the energy gradient of the individual states, the REKS
and the OSS states, the orbital response part in
Eq. (16) has to be calculated. The elements aUX

ji of
the orbital response matrix can be obtained from
the coupled-perturbed REKS (CP-REKS) equations
derived by differentiation of the variational conditions
in Eq. (14).

SI-SA-REKS Method
The defined SA-REKS method is capable of describing
the ground and one of the singlet excited states
of a homosymmetric biradical. If one deals with a
heterosymmetric system, such as, e.g., dissociating
LiH molecule, the two states defined in the minimal
basis set in Eqs (21) and (22) will no longer be
decoupled from one another.42,43 To decouple them
and to construct an ensemble as in Eq. (18) one can
obtain new states from EREKS(2,2) and EROKS by solving
a 2× 2 secular problem with the Hamiltonian matrix
spanning the two energies as the diagonal elements
and the off-diagonal element given in Eq. (26),

H01 =
√

na⟨𝜙b|naF̂a|𝜙a⟩ −√
nb⟨𝜙a|nbF̂b|𝜙b⟩

=
(√

na −
√

nb

)
𝜀ab (26)

which was obtained by the application of
Slater-Condon rules to a 2×2 problem in the space of
the two configuration state functions (CSFs) Φ0 and
Φ1 and the variational condition for the orbitals, Eq.
(14).42,43 In Eq. (26), 𝜀ab is the Lagrange multiplier
between the active orbitals, 𝜙a and 𝜙b, see Eq. (11). As
the two states, Φ0 and Φ1, are mutually orthogonal,
a sum of the new energies E0 and E1 obtained from
the above secular problem remains invariant and
the orbitals can still be obtained from the SA-REKS
one-electron equations, provided that 𝜔=1/2 was
used in Eq. (24). This modification of the SA-REKS
formalism was dubbed SI-SA-REKS method and it
was found that the use of the state-interaction proce-
dure is important for obtaining the correct shape of
the ground and excited state PESs in the vicinity of
conical intersections.42,43 For other situations, when
the energy gap between the S0 and S1 states is suffi-
ciently large, the SI-SA-REKS method yields almost
the same excitation energies as the SA-REKS ones.49

The SA-REKS and SI-SA-REKS methods
described above operate with only two many-electron
states, the ground and one of the excited states. In
principle, it is possible to extend this formalism to
multiple excited states; however, one would need to
derive proper energy expressions for the extra excited
states. Perhaps, the simplest procedure to extend
SI-SA-REKS beyond two states is to include a state
obtained by double excitation of the Φ0 state (21),
which is given in Eq. (27).49

Φ2 =
√

nb

2
|||𝜙a𝜙a

||| +
√

na

2
|||𝜙b𝜙b

||| (27)

Usually, this is a high lying state with the energy
EREKS(2,2)

2 that can be obtained using Eq. (8) in which
the sign of the coefficients 𝜆k, k∈ [3, 6] (see Eq. (13)) is
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inverted and the coefficients 𝜆1 and 𝜆2 are swapped.49

The inclusion of this state may however become
important in the situations when the Eaa − E

bb
energy

difference becomes very small, e.g., during electron
transfer caused by the application of external stimuli
(electric field, geometric distortion).49 The effect of
this state on the SI-SA-REKS energies can be taken
into account via a secular problem in the space of
three states, Φ0, Φ1, and Φ2, and the matrix that
spans the EREKS(2,2), EROKS, and EREKS(2,2)

2 energies as
the diagonal elements and the off-diagonal elements
defined in Eq. (26) and in Eq. (28) that was obtained
similarly to (26).49

H12 =
(√

na +
√

nb

)
𝜀ab ; H02 = 0 (28)

In the following, a number of examples that
illustrate the use and performance of the described
SA-REKS and SI-SA-REKS methods will be given.
Similar to the section about applications of the REKS
method, the emphasis will be on qualitative aspects
of the problems that can be solved by the use of
these approaches rather than on collecting MAD
(mean absolute deviation) numbers characterizing the
quantitative aspects.

Applications of the SA-REKS
and SI-SA-REKS Methods
Perhaps the simplest situation where the use of the
SA-REKS (or SI-SA-REKS) method becomes necessary
is the description of the ground and lowest singlet
excited state of a system with dissociating bond.41,89

Let us take the H2 molecule as an example and inspect
its ground 1Σ+

g and its lowest excited 1Σ+
u states.

Near the equilibrium distance, the ground state is
represented by a single KS determinant |||𝜎g𝜎g

||| and the

excited state is a state of the OSS type 1√
2

|||𝜎g𝜎u
||| −

1√
2

|||𝜎g𝜎u
|||. When the H–H bond is stretched beyond

the Coulson–Fischer point, the ground state becomes
a MR state of the type given in Eq. (21), whereas
the excited state still remains the OSS type. As was
discussed earlier, the description of the ground state
breaks down at the single-reference RKS level and
the correct dissociation curve of the H2 molecule
cannot be recovered (see Figure 2). As a consequence,
the traditional linear-response TD-DFT based on the
single KS reference state fails to describe correctly the
dependence of the 1Σ+

u ←1 Σ+
g excitation energy of the

H–H distance and, for long interatomic separations,
the TD-DFT excitation energy vanishes.89

The SA-REKS method (SI-SA-REKS and
SA-REKS are identical for a homosymmetric system),
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FIGURE 7 | Potential energy curves (upper panel) of the 1Σ+
g and

1Σ+
u states of H2 and the 1Σ+

u ←1Σ+
g excitation energy (lower panel) as

a function of the H–H distance. Solid colored curves (blue for the ground
state and red for the excited state) represent the results of the SA-REKS
calculations, dashed colored curves refer to TD-DFT, and black curve is
the exact excitation energy obtained from the results of Ref 59. DFT
calculations employ the CAM-B3LYP density functional and the cc-pV5Z
basis set modified as in Ref 24.

due to the correct inclusion of the MR description for
the ground state, is capable of recovering the correct
distance dependence of the ground and excited state
potential energy curves and, consequently, of the
excitation energy.41 This is illustrated in Figure 7
where the results of the TD-DFT and SA-REKS cal-
culations carried out with the use of the CAM-B3LYP
density functional and the cc-pV5Z basis set24 are
compared with the exact excitation energy curve from
Ref 59. Although the SA-REKS excitation energy
curve is shifted down as compared with the exact
curve (this feature is XC functional dependent and
other functionals yield smaller discrepancy),41 it has
a shallow minimum at RHH ca 4.3 bohr, which is
similar to the exact curve that minimizes at 4.1 bohr.
The H–H bond dissociation is correctly described
at the SA-REKS level: The ground state at long
distances has a purely covalent diradical character
and flattens out at the energy level of two neutral
H atoms. The excited state has a purely ionic char-
acter and corresponds to two resonating valence
configurations, H+–H− and H−–H+. These results
demonstrate that the SA-REKS method is capable of
correctly describing the ground and excited states of
dissociating homopolar chemical bond.
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results, dashed curves—TD-DFT results. DFT calculations employ the
CAM-B3LYP functional and aug-cc-pVTZ basis set. The reference RASCI
excitation energy curve (solid black) is taken from Ref 90.

Turning to dissociation of a heteropolar chemi-
cal bond, let us briefly review the ground and excited
states of dissociating LiH molecule. The x1Σ+ ← a1Σ+

excitation energy dependence on the Li–H inter-
atomic distance has been recently studied90 using
the restricted active space CI (RASCI) method with
aug-cc-pVTZ basis set. Figure 8 shows the potential
energy curves and the excitation energy curve of LiH
obtained from the SI-SA-REKS and TD-DFT calcu-
lations. As is apparent from Figure 8 (see also the
discussion around Figure 3), the ground and excited
states of LiH undergo an avoided crossing near ca 7.0
bohr and the ground state changes its character from
ionic to covalent. This is correctly described by the
SI-SA-REKS approach which yields the correct pro-
file of the ground and excited state potential energy
curves in a semi-quantitative agreement with the ref-
erence ab initio calculations. The TD-DFT method
fails to take into account the change of the charac-
ter of the ground state (this is inherited from the RKS
calculation) and, consequently, fails to produce the
correct description of the excited state of LiH. The
TD-DFT excitation energy goes gradually to zero with
the increasing Li–H distance and does not show any
signature of an avoided crossing between the ionic and
covalent states.
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FIGURE 9 | Profile of the potential energy surfaces of the ground
1A1 and excited 1B1 states (under the D2 symmetry) along the double
bond torsion mode of C2H4. Black lines—CASPT2/6-31G* results from
Ref 41 solid colored lines—SI-SA-REKS results, and dashed colored
lines—TD-DFT results. DFT calculations employ the CAM-B3LYP density
functional and 6-31G* basis set.

The above two examples, H2 and LiH, demon-
strate that the SI-SA-REKS method is capable
of describing the bond dissociation proper way.
Although these were only small diatomic molecules,
the same observation holds true for polyatomic
molecules.41 To illustrate this statement, Figure 9
shows profiles of the ground 1A1 and excited 1B1
PESs of ethylene along the double bond torsion mode.
In Ref 41 this system has been studied using the
SA-REKS methodology where it was compared with
the results of the CASPT2 calculations. The CASPT2
curves are reproduced in Figure 9 and compared with
the SA-SA-REKS and TD-DFT curves obtained using
the CAM-B3LYP functional (not used in Ref 41). This
comparison demonstrates that the REKS methodol-
ogy correctly describes the ground and excited state
PESs along the torsion mode, while TD-DFT fails to
produce correct results near ca 90∘ of torsion, where
the ground state of C2H4 becomes strongly correlated.

The SI-SA-REKS method has been also
benchmarked48 for valence excitations in ordinary
(that is not strongly correlated) organic molecules
and was found to be as accurate as the linear
response methods, such as TD-DFT and ADC(2)91–94

(second-order algebraic diagrammatic construction;
a method based on second-order polarization prop-
agator approach). For instance, when using the
aug-cc-pVTZ basis set to describe valence 𝜋→𝜋* and
n→𝜋* excitations in a set of 15 aliphatic and aromatic
hydrocarbons, the MAD of the calculated excitation
energies from the best estimates95 was 0.43 eV for
SI-SA-RE-BH&HLYP, 0.47 eV for TD-BH&HLYP,
and 0.43 eV for ADC(2).48 Generally, for valence
electronic transitions, the accuracy of the SI-SA-REKS
excitation energies is defined by the density functional
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TABLE 2 Excitation Energies (eV) of the Lowest CT Transitions of the Ar-TCNE Adducts49

BLYP B3LYP CAM-B3LYP

Arene TD-DFT SI-SA-REKS TD-DFT SI-SA-REKS TD-DFT SI-SA-REKS Lit.1 Exp.2

Benzene 1.54 3.53 2.06 3.70 3.03 3.68 3.8 3.59

Naphthalene 0.34 2.28 0.90 2.54 1.96 2.61 2.7 2.60

Toluene 1.37 2.72 1.81 3.11 2.72 3.46 3.4 3.36

o-Xylene 1.47 2.61 1.54 2.95 2.46 3.15 3.0 3.15

MAD3 2.00 0.39 1.60 0.16 0.63 0.05 0.13

1Literature data: results of TD-DFT calculations using the tuned range-separated BNL functional from Ref 100.
2Gas phase excitation energies of CT transitions from Ref 101.
3Mean absolute deviation from the experimental data.
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employed, much in the same way as it occurs for
TD-DFT.48

Obviously, the ability of SI-SA-REKS method
to describe electronic transitions in strongly corre-
lated molecules enables one to apply this method
beyond the realm of applicability of the conven-
tional linear-response TD-DFT. Thus the SI-SA-REKS
method has been successfully used to study conical
intersections (CIs, intersections between PESs of the
electronic states with the same spin and space symme-
try) between the ground and the lowest singlet excited
states in a series of organic molecules, biological chro-
mophores, and synthetic molecular machines.42,43,96,97

The geometries of molecules at the minimum energy
CIs optimized using SI-SA-REKS in connection with
several density functionals deviate from the reference
geometries obtained using the high-level ab initio MR
methods, CASPT2 and MRSDCI, by less than 0.1 Å
on average.43 This is illustrated in Figure 10 where,
for a few organic molecules, the root mean square

deviations (RMSDs) of the SI-SA-REKS geometries
at the minimum energy CI points from the MR
ab initio geometries are shown.43 The SI-SA-REKS
method is also capable of accurately computing
the non-adiabatic coupling parameters between the
ground and excited states in the form of the branching
plane vectors98 of conical intersections.99 The branch-
ing plane vectors are obtained by differentiation of the
respective parts of the SI-SA-REKS energy expression,
see Refs 96, 97, and 99 for the detailed expressions.

Besides the described strongly correlated and
ordinary systems, the SI-SA-REKS method has been
applied to study the charge transfer excitations
in organic donor–acceptor systems.49 Although it
was not originally designed to specifically target
this type of excitations, the accurate description of
which is notoriously difficult for the linear-response
methods,84,85 the SI-SA-REKS method was found to
be surprisingly accurate even when used in connec-
tion with the usual GGA density functionals. Table 2
reports excitation energies of the lowest CT transi-
tions in a series of arene-TCNE (tetracyanoethylene)
complexes, for which gas phase absorption ener-
gies are available.101 For these excitations, TD-DFT
results deviate by a wide margin from the exper-
imental figures even when a range-separated XC
functional (CAM-B3LYP) is used. Only fine tuning
of the parameters of a range-separated XC func-
tional (these functionals were specifically designed
to treat the CT excitations) brings the MAD to an
acceptable level.100 The accuracy of the fine tuned
range-separated functional is easily surpassed by the
SI-SA-REKS method employed in connection with
the stock parameterization of a hybrid (B3LYP or
BH&HLYP) or a range-separated (CAM-B3LYP)
functional.49 The observed excellent performance of
SI-SA-REKS, which implements the ΔSCF approach
to obtaining excitation energies, is consistent with
the analysis of the description of various types of
excitations undertaken by Ziegler et al.84,85 who
showed that it is the linear response approximation

© 2014 John Wiley & Sons, Ltd.



Advanced Review wires.wiley.com/wcms

and not the density functional that is to blame
for a ludicrous performance of TD-DFT. Although
SI-SA-REKS can be used in connection with the fine
tuned range-separated functionals,100 no such tuning
is necessary as evidenced by the results in Table 2.

To round up this section, ensemble DFT for
excited states as implemented in the SI-SA-REKS
method is a versatile and accurate approach to the
calculation of various types of excitations in molec-
ular systems. A wide range of excited states, which
are otherwise not accessible with the use of TD-DFT,
can be studied, including the CT excitations,49 exci-
tations in extended 𝜋-conjugated systems, such as
cyanines and polyacenes,48 excitations in molecules
undergoing bond breaking/bond formation,41 con-
ical intersections between the ground and excited
electronic states,42,43,97,99 etc. It is also noteworthy
that the SI-SA-REKS results can be obtained at an
essentially mean-field cost, avoiding a steeper scaling
of the linear response formalism of TD-DFT.

CONCLUSIONS AND OUTLOOK

Ensemble DFT is an active field of research that
holds promise to considerably improve the level of
theoretical description of the ground and excited states
of strongly correlated molecular systems. Although
there is an ongoing effort to further develop the
theoretical background of ensemble DFT, this theory
still did not find its way to the wide practical use
by computational chemists. Perhaps, the perceived
lack of practical implementations of ensemble DFT
holds down its adoption by a wider computational
chemistry community. It was thus the purpose of this
review to introduce the theoretical background and
practical capabilities of a method that implements
ensemble DFT, the REKS method.

REKS method makes ensemble DFT feasible; it
has been already successfully applied to study vari-
ous types of strongly correlated molecular systems,
including biradicals, anti-ferromagnetically coupled
molecules and molecular crystals, excited states and
conical intersections, to name just a few. An important

advantage of the REKS method is that it makes com-
putational study of large molecular systems affordable
by providing accurate theoretical description of their
electronic structure at a moderate mean-field compu-
tational cost.

The current implementation of the method is
not without certain limitations. The size of the active
space (the number of strongly correlated electrons) is
currently limited to two electrons in two fractionally
occupied orbitals. This limitation is to be lifted in
the near future; there has been already work on the
method extension and this work will be continued.
The number of excited states accessible through the
state-averaged REKS formalism needs to be increased
to afford computation of complete molecular elec-
tronic spectra. Such an extension of the method can be
achieved by merging it with the response approach to
the calculation of excitation energies84,85 and deriving
a time-dependent extension of the REKS method.
This task is closely related with the implementation of
the analytic energy derivatives (first and higher order)
of the SA-REKS and SI-SA-REKS methods which will
considerably improve the prospects of practical appli-
cability of the methods. Taken together, the foreseen
developments will bring the REKS methodology on an
equal footing with the currently used methods of com-
putational chemistry and will enable one to routinely
study molecular systems of realistic (i.e., large and
very large) size without a frightening perspective that
the wall-clock time may exceed the life expectancy.

NOTE
a Equation (6) is proved in Theorem 4.2 of Ref 25
for the ensemble density (4) (or, equivalently, (5))
and Theorem 4.3 of Ref 25 proves the equivalence
of the ensemble energy functional in Eq. (6) and
the Hohenberg-Kohn functional for PS-VR densities.
The fact that any positive definite physical density is
fermion E-VR is proved in Theorem 5.1 of Refs 26
and 27 and Theorem 6.1 of Refs 26 and 27 proves the
differentiability of the energy functional (6) on the set
of E-VR densities.
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