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Abstract
Recently an optimized potential method (OPM) has been derived for ensembles
of excited states. Here an alternative OPM is proposed. The ensemble
Kohn–Sham potential in the generalized version of the Krieger–Li–Iafrate
approximation to the OPM method is obtained.

1. Introduction

There are several ways to treat excited states in density-functional theory [1]. To calculate
excitation energies Slater [2] introduced the so-called transition-state method. Density-
functional theory was first rigorously generalized for excited states by Theophilou [3]. A
more general treatment was given by Gross et al [4]. The relativistic generalization of this
formalism has also been performed [5]. Recently, Görling [6] presented a new density-
functional formalism for excited states generalizing recent perturbation theory [7]. Gross
et al [4] calculated the excitation energies of the He atom using the quasi-local-density
approximation of Kohn [8]. The ensemble method was applied to obtain excitation energies
of several atoms [9–12] and several approximate functionals have also been tested [13]. The
coordinate scaling for the density matrix of ensembles has been explored [14]. The ground-
state adiabatic connection formula has been extended to the ensemble exchange–correlation
energy and a simple local ensemble exchange potential has been proposed [15].

In addition to ensemble density-functional theory time-dependent density-functional
theory can also be used to calculate excitation energies [16]. (For reviews of excited-state
theories see [12, 17].) Recently, time-independent theories for a single excited state have also
been proposed [18–20].

Unfortunately, the exchange–correlation part of the ensemble Kohn–Sham potential is not
known exactly. In ground-state theory the exchange potential can be treated exactly using
the optimized potential method (OPM) [21–24]. In a previous paper the optimized potential
was defined for ensembles of excited states. It was based on the ensemble Hartree–Fock
method [25]. Here an alternative OPM is proposed. The ensemble Kohn–Sham potential in
the generalized version of the Krieger–Li–Iafrate (KLI) approximation to the OPM is obtained.
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2. Density-functional theory for ensembles

First the density-functional theory for ensembles is summarized [3,4]. The eigenvalue problem
of the Hamiltonian Ĥ is given by

Ĥ�k = Ek�k (k = 1, . . . , M) (1)

where

E1 � E2 � · · · (2)

are the energy eigenvalues. The generalized Rayleigh–Ritz variational principle [4] can be
applied to the ensemble energy

E =
M∑

k=1

wkEk, (3)

where w1 � w2 � · · · � wM � 0. The generalized Hohenberg–Kohn theorems read as
follows: (i) the external potential v(r) is determined within a trivial additive constant by the
ensemble density n defined as

n =
M∑

k=1

wknk. (4)

(ii) For a trial ensemble density n′(r) such that

n′(r) � 0 (5)

and ∫
n′(r) dr = N (6)

E[n] � E[n′]. (7)

The ensemble functional E takes its minimum at the correct ensemble density n.
The Kohn–Sham equations for the ensemble can also be derived:[− 1

2∇2 + vKS
]
ui(r) = εiui(r). (8)

The ensemble Kohn–Sham potential

vKS(r; w, nw) = v(r) + vc(r; w, nw) + vxc(r; w, nw), (9)

is a sum of the external, the ensemble Coulomb and the ensemble exchange–correlation
potentials.

3. Optimized potential method for ensembles of excited states

Though the Kohn–Sham approach is an exact scheme, unfortunately, the exchange–correlation
part of this Kohn–Sham potential is not known exactly. In ground-state theory the exchange
potential can be exactly determined by finding the optimized effective potential [21–24, 26].

The OPM can be applied when the total energy is given as a functional of the one-electron
orbitals. In this case the total ensemble energy E is considered as a functional of the ensemble
Kohn–Sham orbitals. The energy Ek in equation (3) can be written as

Ek = Tk +
∫

nk(r)v(r) + Ek
c + Ek

xc, (10)
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where Ek
xc

Ek
c = 1

2

∫
nk(r)nk(r

′)
|r − r′| dr dr′, (11)

nk =
∑

j

λk
j |φj |2 (12)

and

Tk = − 1
2

∑
j

λk
j

∫
φ∗

j ∇2φj dr (13)

are the exchange–correlation energy, the Coulomb energy, the density and the kinetic energy
corresponding to the eigenvalue k, respectively. A different notation φj is used for the orbitals
because the solutions of equation (24) are not exactly the same as the Kohn–Sham ensemble
orbitals uj . The total ensemble energy can be written as

E[φj ] = T +
∫

n(r)v(r) + Ec + Exc (14)

where

T =
∑

k

wkTk = − 1
2

∑
j

αj

∫
φ∗

j ∇2φj dr, (15)

Ec =
∑

k

wkE
k
c , (16)

Exc =
∑

k

wkE
k
xc (17)

and

αj =
∑

k

wkλ
k
j (18)

are the ensemble occupation numbers. The local effective optimized potential V (r) minimizes
the total ensemble energy E :

δE
δV

=
∑

j

∫
δE

δφ∗
j (r

′)

δφ∗
j (r

′)

δV (r)
dr′ + c.c. = 0. (19)

The functional derivative of the one-electron orbitals φj with respect to the local effective
potential V can be calculated with the help of the Green function

δφ∗
j (r

′)

δV (r)
= −Gj(r

′, r)φj (r), (20)

and an integral equation for V can be derived:

0 =
∑

j

αj

∫ [
Vj (r

′) − Vc(r
′) − Vxc(r

′)
]
Gj(r

′, r)φ∗
j (r

′)φj (r) + c.c., (21)

where

Vj (r) = 1

αjφ
∗
j (r)

δ(Ec + Exc)

δφj (r)
(22)

and V (r) is written as a sum of the external, the classical Coulomb and exchange–correlation
potential

V (r) = v(r) + Vc(r) + Vxc(r). (23)
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It is very difficult to calculate the effective potential V because of some vast numerical
problems. So as an approximation the ensemble analogue of the KLI [24] approach is presented.

The variation of the total ensemble energy E with respect to the orbitals leads to the
equations [− 1

2∇2φj +
(
v + V j

c + V j
xc

)
φj

] = εjφj , (24)

where

V j
c =

∑
k wkλ

k
j v

k
c∑

k wkλ
k
j

(25)

and

V j
xc =

∑
k wkλ

k
j v

k
xcj∑

k wkλ
k
j

(26)

are orbital-dependent ensemble Coulomb and exchange–correlation potentials, respectively

vk
c =

∫
nk(r

′)
|r − r′| dr′ (27)

and

vk
xcj = 1

λj

δEk
xc[φj ]

δφ∗
j

. (28)

Note that these ensemble Coulomb and exchange-correlation potentials are different for
different orbitals.

Using the method of the author [26] new potentials (being the same for each orbital) are
derived. Introducing the Kj functions as

φj = Kjn
1/2, (29)

substituting this into equation (24) and summing for all orbitals, after some algebra, we arrive
at the equation[

1

8

(∇n

n

)2

− 1

4

∇2n

n

]
+

1

2

∑
j

αj |∇Kj |2 + v + VS =
∑

j

αj εj |Kj |2, (30)

where the Slater potential

VS = V c
S + V xc

S (31)

has both Coulomb and exchange–correlation parts

V c
S =

∑
j

αj |Kj |2V j
c (32)

V xc
S =

∑
j

αjKjV
j

xcKj . (33)

From expressions (25) and (26) these potentials have the form

V c
S =

∑
k

wk

nk

n
vk

c (34)

V xc
S =

∑
k

wk

nk

n
vk

xc, (35)

that is the ensemble average of the Coulomb and exchange–correlation potentials weighted
with the densities.
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Introducing kj functions with the definition

uj = kjn
1/2 (36)

the ensemble Kohn–Sham equations (8) can be rewritten as[
1

8

(∇n

n

)2

− 1

4

∇2n

n

]
+

1

2

∑
j

αj |∇kj |2 + vKS =
∑

j

αj εj |kj |2. (37)

A comparison of equations (30), (37) and (9) leads to the following expression for the sum of
the Coulomb and exchange–correlation potentials:

Vcxc = Vc + Vxc = VS +
∑

j

αj (εj − εj )|kj |2 −
∑

j

αj εj (|Kj |2 − |kj |2)

− 1
2

∑
j

αj [|∇kj |2 − |∇Kj |2]. (38)

This is an exact expression for the sum of the ensemble Coulomb and exchange–correlation
potentials.

In the following the method is detailed in the exchange-only case, where the exchange
energy Ek is given by

Ek
x = −1

2

∑
i

∑
j

λk
i λ

k
j

∫
u∗

i (r)u∗
j (r

′)uj (r)ui(r
′)

|r − r′| dr dr′. (39)

Then the generalized ensemble KLI [24] approximation to the OPM follows with the
assumption that Ki ≈ ki :

Vcx = VS +
∑

j

αj

|uj |2
n

〈uj |Vcx − V j
cx|uj 〉, (40)

where

V j
cx = V j

c + V j
x (41)

is the sum of the Coulomb and exchange potentials of orbital j .

4. Example and discussion

As an illustration the ensemble and excitation energies of the He atom were determined using
the KLI approximation presented here. Following Oliveira and co-workers [4] the average
energies of the singlet and triplet levels were calculated. Table 1 contains the ensemble
energies. For comparison the experimental energies [28] and the values calculated by Oliveira
and co-workers [4] are also shown. The latter were computed using the quasi-local-density
approximation proposed by Kohn [8]. In the calculations the maximum possible values of
the weighting factors are selected. The present KLI method gives much better results than
the quasi-local-density approximation. We have found that, especially for larger ensembles
(larger M), the present KLI ensemble energies are very close to the experimental values.

Table 2 presents the eigenenergies and the excitation energies. Note that the present KLI
method gives a remarkably good approximation to the eigenenergies. This is especially true
for the higher excited states. For the ground state the KLI is not so good (but still much better
than the quasi-local values). This also means that the correlation energy is smaller for the
higher excited states than for the ground state. KLI gives a worse result for the first excited
state than the Hartree–Fock method [27].
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Table 1. He ensemble energies E(MI ) and ensemble energy differences �E(MI ) = E(MI ) −
E(MI−1) calculated using both the quasi-local-density approximation and the KLI (present)
method, compared with the corresponding experimental values (in Ry).

I State MI E(MI )
GOK E(MI )

KLI E(MI )
exp �E(MI )

GOK �E(MI )
KLI �E(MI )

exp

1 1S 1 −5.672 −5.723 −5.807
2 2S 5 −4.452 −4.563 −4.630 1.2398 1.1606 1.1770
3 2P 17 −4.111 −4.332 −4.370 0.3458 0.2307 0.2601
4 3S 21 −4.070 −4.291 −4.325 0.0406 0.0408 0.0450
5 3P 33 −3.990 −4.223 −4.249 0.0829 0.0681 0.0765
6 3D 53 −3.925 −4.178 −4.197 0.0670 0.0452 0.0518
7 4S 57 −3.917 −4.170 −4.188 0.0082 0.0079 0.0088
8 4P 69 −3.896 −4.151 −4.166 0.0200 0.0190 0.0215

Table 2. He energies and excitation energies calculated with the quasi-local-density approximation
and the KLI (present) method, compared with the corresponding experimental values (in Ry).

I EGOK EKLI EHF Eexp �EGOK �EKLI �EHF �Eexp

1 −5.672 −5.723 −5.723 −5.807
2 −4.147 −4.273 −4.346 −4.336 1.525 1.451 1.377 1.471
3 −3.969 −4.236 −4.262 1.703 1.487 1.545
4 −3.894 −4.117 −4.132 1.778 1.607 1.675
5 −3.850 −4.104 −4.116 1.822 1.619 1.691
6 −3.818 −4.103 −4.111 1.854 1.620 1.696
7 −3.811 −4.065 −4.068 1.861 1.658 1.739
8 −3.795 −4.059 −4.060 1.877 1.664 1.747

The ensemble energy (3) depends on the weighting factors wk . The excitation energies,
however, are independent of wk provided that the exact ensemble Kohn–Sham potential is used.
In the exchange-only case, however, there is a slight dependence on the weighting factors wk .
Considering, for instance, the ensemble constructed from the ground and the first excited states

E = (1 − w)E1 + wE2 (42)

the first excitation energy is given by

�E = E2 − E1 = E − E1

w
. (43)

The first derivative of �E with respect to w disappears:

∂(�E)

∂w
=
∑

j

∫ (
δ(�E)

δu∗
j

∂u∗
j

∂w
+ c.c.

)
dr =

∑
j

εj

∫ (
u∗

j

∂uj

∂w
+ uj

∂u∗
j

∂w

)
dr

=
∑

j

εj

∂

∂w

∫
|uj |2 dr = 0, (44)

where the Kohn–Sham equations and the normalization of the Kohn–Sham orbitals were used.
Thus the dependence of the excitation energies on the weighting factors is of second or higher
order.

Table 3 shows the first excitation energy determined for several values of the weighting
factor w. For comparison the Hartree–Fock [27] values are also presented. The Hartree–Fock
first excitation energy is worse than the KLI value, although the first-excited-state energy is
better predicted by the Hartree–Fock than the KLI method. In the previous generalized KLI
approximation [26] denoted by KLI∗ in table 3, there is a linear dependence on the weighting
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Table 3. First excitation energy (in Ry) of the He atoms for several values of the weighting factor
w.

Electron
w configuration KLI KLI∗ HF GOK Expt

0.05 1s1.82s0.2 1.489 0.918
0.10 1s1.62s0.4 1.480 1.020
0.15 1s1.42s0.6 1.469 1.138
0.20 1s1.22s0.8 1.451 1.265 1.377 1.525 1.471

factor in the excitation energy. The fact that in the present KLI method there is only a slight
dependence on w means that the present version of the ensemble KLI is more appealing.

The derivation of the ensemble KLI approximation goes exactly the same way as in the
ground state and the form of the KLI potential is also the same. As the KLI is so successful
for the ground state we might expect the same for the ensemble state. The results presented
here are in accord with this expectation.

The calculations discussed in this paper are exchange-only calculations. The inclusion
of correlation is straightforward in principle. One only needs a correlation functional as a
functional of the orbitals and then the methods used for the derivation and calculation are
exactly the same. Unfortunately, we do not have ensemble correlation functionals. In ground-
state theory finding an appropriate correlation functional, i.e. a correlation functional that
performs well together with the KLI exchange, is a fundamental problem. In the existing
approximating functionals exchange and correlation are treated together and if we change
only the exchange part (into KLI) the balance between the exchange and correlation is ruined
and we might receive worse results than in the exchange-only case. Gross and co-workers [29]
found that the Colle–Salvetti correlation functional is the best. In a lot of cases KLI + Colle–
Salvetti functional gives better results than any other. It is possible that the KLI + Colle–Salvetti
approximation will also be appropriate for the ensemble states, or, for example, correlation
functionals arising from second-order perturbation theory.

The development of modern density functionals is becoming increasingly fundamental
in the sense that a great variety of known exact properties have to be fulfilled by a density
functional. There are a great number of papers on this concerning ground-state theory [30–33].
Recently, there has been growing interest in finding such exact properties in the time-dependent
case [16,34]. For the ensemble excited-states theory there are only a couple of papers covering
this topic [14, 35, 36].

We would like to emphasize that ensemble calculations are only slightly more complicated
than ground-state calculations and thus ensemble calculations can be routinely performed just
like ground-state calculations. These can be regarded as rivalling the powerful time-dependent
density-functional approach for the calculation of excitation energies. The practical troubles
one has to face in dealing with bigger systems are exactly the same as in the ground state. (For
a recent review of ground-state OPM and KLI calculations see [29].)
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[18] Nagy Á 1998 Int. J. Quantum Chem. 70 681
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