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Exact and approximate Kohn-Sham potentials in ensemble density-functional theory

Zeng-hui Yang,1 John R. Trail,2 Aurora Pribram-Jones,3 Kieron Burke,3 Richard J. Needs,2 and Carsten A. Ullrich1

1Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA
2Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom

3Department of Chemistry, University of California, Irvine, California 92697, USA
(Received 13 February 2014; revised manuscript received 1 September 2014; published 2 October 2014)

We construct exact Kohn-Sham potentials for the ensemble density-functional theory (EDFT) from the
ground and excited states of helium. The exchange-correlation (XC) potential is compared with the quasi-local-
density approximation and both single-determinant and symmetry-eigenstate ghost-corrected exact exchange
approximations. Symmetry-eigenstate Hartree exchange recovers distinctive features of the exact XC potential
and is used to calculate the correlation potential. Unlike the exact case, excitation energies calculated from these
approximations depend on ensemble weight, and it is shown that only the symmetry-eigenstate method produces
an ensemble derivative discontinuity. Differences in asymptotic and near-ground-state behavior of exact and
approximate XC potentials are discussed in the context of producing accurate optical gaps.
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I. INTRODUCTION

The balance of useful accuracy with computational effi-
ciency makes density-functional theory (DFT) popular for
finding the ground-state electronic properties of a wide range
of systems and materials [1]. While exact conditions [2] and
fitting to chemical data sets [3] are often used to construct
approximations, another major source of inspiration has been
highly accurate calculations of Kohn-Sham (KS) quantities
for simple systems, such as the He atom [4]. The exact
KS potential, orbitals, energies, and energy components have
been enormously useful in illustrating basic theorems of DFT
and testing approximations. Many algorithms now exist for
extracting the KS potential from accurate densities [5–7].

Time-dependent density-functional theory (TDDFT) [8,9]
has become the standard DFT method for calculating excita-
tion energies, at least for molecules, with typical accuracies
and efficiency comparable to what can be achieved in ground-
state DFT [10]. Once again, accurate KS energies, of both
occupied and unoccupied orbitals, play a vital role [11].
But alternative density-functional approaches for excitation
energies can be valuable both as practical tools and for gaining
physical insight [12,13]. The ensemble density-functional
theory (EDFT) formalism for excited states [14–19] is based
on a variational principle of ensembles comprising the ground
state and a chosen number of excited states. Despite its rigorous
formal framework and appealing physical motivation [20–25],
the EDFT excited-state formalism has seen only limited
practical success. The lack of good approximate exchange-
correlation (XC) functionals for EDFT leads to inaccurate
transition frequencies. Better approximations are needed for
EDFT to become more useful.

Here, we describe an algorithm that extracts the ensemble
KS and XC potentials from the various eigenstate densities
and apply that algorithm to highly accurate densities of the
helium atom. We use the exact results to analyze errors in
approximations that have been designed for use in EDFT, to
plot various potentials, and to check the virial theorem for the
ensemble correlation potential. We demonstrate the weight
independence of transition frequencies in the exact case but
also find a strong weight dependence in the individual elements

contributing to the exact expression, all of which cancels
in the final excitation energy. We show that approximations
all yield (incorrectly) weight-dependent transition frequencies
and demonstrate how this is related to the ensemble derivative
discontinuity.

II. THEORY

An ensemble in EDFT consists of the ground state and M

excited states. For the lowest M + 1 eigenstates �m of the
many-body Hamiltonian Ĥ , sorted by energy in ascending
order, each state is assigned a weight wM . EDFT states that for

w0 � w1 � w2 � · · · � wM � 0, (1)

there is a one-to-one correspondence between the ensemble
density

n(r) =
M∑

m=0

wm〈�m|n̂(r)|�m〉 (2)

and the external potential [17,18]. A KS scheme can then be
constructed in the usual way [18].

We consider only biensembles of the ground and first
excited states. For a nondegenerate ground state,

nw(r) = wn0(r) + gwn1(r), w � 1/(1 + g), (3)

Ew[nw] = wE0 + gwE1, (4)

where g is the degeneracy of the excited state, w = 1 − g w,
and subscripts 0 and 1 refer to the ground and excited states,
respectively. EDFT also holds for ensembles of states that
share a symmetry-projected Hamiltonian [26]. For helium, the
ground state is a singlet, the first excited state is a triplet, and
the second excited state is again a singlet, shown in Fig. 1. The
(unprojected) biensemble always includes the ground state and
the first excited state. Here we focus on calculations in the spin-
projected ensemble to find the transition to the lowest singlet.

The corresponding ensemble KS potential vs,w[nw](r) is
defined as the potential of the noninteracting system{− 1

2∇2 + vs(r)
}
φj (r) = εjφj (r), (5)
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FIG. 1. (Color online) Radial densities for the three lowest eigen-
states of helium.

which reproduces the exact ensemble density as

nw(r) = (1 + w)|φ1(r)|2 + g w |φ2(r)|2, (6)

where φj (r) are KS orbitals. Atomic units (e = � = me =
1/4πε0 = 1) are used throughout, and all KS quantities are w

dependent. Then

Ew[n] = Ts,w[n] +
∫

d3r n(r)v(r) + EHXC,w[n], (7)

where Ts,w[n] = (1 + w) t1 + g w t2 is the ensemble KS ki-
netic energy, with tj being the kinetic energy of φj . v(r) is the
external potential of the interacting system.

EHX = w〈�0,w[n]||r − r′|−1|�0,w[n]〉
+ gw〈�1,w[n]||r − r′|−1|�1,w[n]〉 (8)

is the ensemble Hartree-exchange energy, and the ensemble
correlation energy EC = EHXC − EHX. �i,w[n] is the KS
many-body wave function, with i = 0 or 1 again indicating
the ground or excited state. Here we choose EH to be the
Hartree energy of the ensemble density, although it contains
“ghost” interactions [23]. The exchange energy is then defined
as the expectation of the electron-electron repulsion on the
KS ensemble minus the Hartree energy. This definition of
EHXC is consistent with our choice of spin eigenstates that are
necessarily multideterminant. The ensemble KS potential is

vs,w[n](r) = v(r) + vHXC,w[n](r), (9)

where vHXC,w[n](r) = δEHXC,w[n]/δn(r). The excitation en-
ergy is then independent of w:

ω = E1 − E0 = 	εw + ∂EHXC,w[n]/∂w|n=nw
, (10)

where 	εw = ε2,w − ε1,w.
The w dependence of the Hartree-exchange-correlation

(HXC) energy comes from both the w dependence of nw(r)
and the HXC energy functional. Equation (10) shows that the
correction to the KS gap originates from the w dependence
of XC, not from nw(r). Using a ground-state XC functional
in EDFT yields no correction to the KS excitation energy.
EDFT is a more general theory encompassing ground-state
DFT, and the ground-state XC functional is only a special
case (w = 0) of the ensemble XC functional. However, the
excitation energies can also be obtained from the difference of

two consecutive equiensemble energies. In contrast to Eq. (10),
the density-based w dependence of EHXC,w does not drop
out in that approach, and using ground-state XC functionals
would yield finite corrections. These two approaches for
the excitation energy yield the same result using the exact
functional, but no known approximations can achieve such
consistency.

III. INVERSION METHOD

The only unknown in the ensemble KS procedure is the
XC functional. Without this functional, an inversion method
for EDFT is needed to extract XC potentials from accurate
densities. Reference [20] presented an inversion scheme for
EDFT similar to the van Leeuwen–Baerends (LB) algorithm
in ground-state DFT [5], but we found its numerical stability
unsatisfactory. Reference [7] observed that a LB-type algo-
rithm cannot change the local sign of the KS potential during
the iteration. While not a fundamental problem, it makes the
algorithm less stable. Also, it can be hard to obtain the −1/r

asymptotic behavior of vXC using the LB algorithm without
having to build it in the initial guess. Reference [7] suggested
an alternative ground-state density-inversion algorithm, where
the XC potential is updated iteratively by

v
(i+1)
XC (r) = v

(i)
XC(r) + αrβ

[
n

(i)
KS(r) − n(r)

]

+ [
I

(i)
KS − I

][
θ (1 − r)rγ + θ (r − 1)

rδ

]
, (11)

where α, β, γ , δ are parameters controlling the speed of
convergence and I is the ionization energy. In the asymptotic
region, the density difference in the second term of Eq. (11) is
very small, so the convergence needs to be accelerated by the
use of the rβ in front of this term. Even so, the −1/r asymptotic
behavior of vXC can be hard to obtain, and the third term of
Eq. (11) is there to ensure this asymptotic behavior.

Our scheme for EDFT is based on the ground-state density-
inversion method of Ref. [7] and Eq. (11), producing the
ensemble XC potential from any given ensemble density. For
simplicity, we describe the scheme for spherical systems, but
it can be extended to other systems easily. We modify the
ground-state Eq. (11) for EDFT usage as

v(i+1)
xc,w (r) = v(i)

xc,w(r) + αrβ
[
n

(i)
KS,w(r) − nw(r)

]/
h(r), (12)

where h(r) is described below. Since the ionization energies of
Eq. (11) are not defined for an ensemble, a double-loop scheme
is used to ensure the correct −1/r asymptotic behavior.

In the first iterative loop, we update the ensemble XC
potential with Eq. (12) and set h(r) = 1. Convergence is
reached when ∫

d3r
∣∣n(i)

KS,w(r) − nw

∣∣ < 	1 (13)

for a chosen accuracy 	1. Even if large β values are used
to accelerate convergence in the large-r region, this first
loop is usually insufficient to produce the −1/r asymptotic
behavior in the ensemble XC potential, due to the exponential
asymptotic decay of the density. To compensate for this,
we use a second iterative loop. Starting from the result of
the first loop, the ensemble XC potential is updated using
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Eq. (12) with h(r) = nw(r) and new values of α and β. The
convergence of the second loop is also checked with Eq. (13),
but with a smaller 	2. This second loop updates the ensemble
XC potential with the relative error in the ensemble density,
so the correction in the large-r region for each iteration is
larger than in the first loop. The second loop is therefore
more sensitive to the initial guess than the first loop, so it
cannot be used independently. We consistently obtain −1/r

asymptotic behavior in the ensemble XC potentials produced
by this double-loop procedure, without having to build it in
the algorithm or in the initial guess. This double-loop scheme
guarantees both numerical stability and good convergence in
the asymptotic region.

For ensembles of the helium atom, we found that parameters
α ∈ [0,2] and β ∈ [0,2] guarantee convergence of the first
loop. For the second loop, α ∈ [0,0.0001] and β ∈ [0,2]
guarantee convergence if w is not close to zero. As w

approaches zero, the value of α needs to be smaller to prevent
the second loop from becoming unstable. The double-loop
scheme has had good numerical performance in all types of
grids and discretizations of the Hamiltonian tested thus far.

IV. EXACT RESULTS FOR HE ATOM

We apply this scheme to highly accurate helium densities.
Figure 1 shows the ground- and first two excited-state densities
for helium, which are essentially numerically exact. Two-body
electronic wave functions were obtained by optimizing an
expansion in Hylleraas functions [27]. Analytic integration
of the density matrix associated with the optimum wave
function provides an accurate spherically averaged charge
density at each radius as a sum of terms. Basis sets composed
of 376 and 406 Hylleraas functions for the singlet and triplet
states, respectively, result in total energies within 10−11 a.u.
of accurate estimates [28]. The errors in the virial are below
10−12 a.u. for the ground state and 10−8 a.u. for the first singlet
excited state, used in the singlet biensemble. Our calculation
for w = 0 agrees with the known exact ground-state DFT
quantities of helium [4].

The exact equiensemble density and potential are plotted
in Fig. 2, along with those resulting from an equal mixture
of orbitals from the ground-state KS potential. The subtle
shell-like structure in the ensemble density corresponds to
the crossover between the ground-state density and the first
singlet excited-state density. The upward bump near r = 2.5
in the ensemble KS potential ensures its ensemble density
matches the interacting one, unlike the ensemble of orbitals
from the ground-state KS potential. This bump is shifted left
in the XC potential for the unprojected biensemble (Fig. 3).

Figure 4 shows the exact ensemble XC potentials at various
w values, which have been found by subtracting the Hartree
potential of the ensemble density from the KS potential. The
bump near r = 2.5 develops as w increases. Even when w

is close to zero, vXC,w(r) differs from the w = 0 (ground-
state) XC potential in Fig. 4. The potentials shift farther and
farther from the ground-state curve in the small-r region as w

increases.
This discrepancy between small-w and w = 0 potentials

is due to the ensemble derivative discontinuity [29]. For any
nonzero w, the asymptotic behavior of the ensemble density
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FIG. 2. (Color online) Radial densities and KS potentials for
helium in singlet EDFT. The black solid lines are equiensemble prop-
erties. The red dashed line in the top panel shows an equiensemble
density constructed from orbitals of the ground-state KS potential;
the red dashed line in the bottom panel shows the exact ground-state
KS potential.

is dominated by that of the excited state. Levy [29] proved an
analog of the derivative discontinuity of ground-state DFT: the
ensemble KS highest-occupied-molecular-orbital (HOMO)
energy has a finite change as w changes from 0 (ground state)
to 0+:

	vXC(r) = lim
w→0

vHXC,w[nw](r) − vHXC[n](r) (14)

= lim
w→0

∂EHXC,w[n]/∂w|n=nw
. (15)

This is an exact property of number-conserving excita-
tions [30]. According to Eqs. (10) and (15), we obtain
	vXC = 0.0116 a.u. for the singlet biensemble.
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FIG. 3. (Color online) XC potentials for the helium ground state,
biensemble, and symmetry-projected singlet ensemble, produced by
inverting ensemble densities constructed from the states shown in
Fig. 1.
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FIG. 4. (Color online) The exact XC potential for the helium
singlet ensemble at various ensemble weights.

Figure 5 shows the exact XC potential jump for small w

values. A step structure occurs since the ensemble density at
small r is dominated by the HOMO density, and at large r

the dominating behavior switches to the lowest-unoccupied-
molecular-orbital (LUMO) density, which decays more slowly
than the HOMO density. As w decreases, the switching point
rC moves to the right. In the limit of w → 0, the HOMO density
dominates nw(r) for finite r , so 	vXC(r) becomes a constant.
The ground-state limit is thus recovered since an additional
constant on a potential has no physical effect. Though this
difference is not close to a constant in the small-r region for
larger w (Fig. 6), evidence of the step down remains in the
shoulder present before the sharp decrease to the ground-state
potential. We showed [31] that the switching point rC for
small values of w depends on log w, so the w → 0 limit
is achieved slowly as w decreases. The large-w difference
between the ground-state and ensemble XC potentials (Fig. 4)
appears to emerge continuously from the steplike small-w
behavior, suggesting that the derivative discontinuity is crucial
for replication of the bump in vXC(r).

With the exact ensemble XC potentials available, we can
numerically verify exact conditions of EDFT, such as the virial
theorem [32,33]. With traditionally defined Hartree, its form
is similar to its ground-state counterpart [34]:

TC,w[n] = −EXC,w[n] −
∫

d3r n(r)r · ∇vXC,w(r). (16)
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FIG. 5. (Color online) The exact potential jump 	vXC as w → 0.
The location of the step depends logarithmically on w. As w → 0,
the drop off to the w = 0 value moves infinitely far from the origin.
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FIG. 6. (Color online) The exact potential jump 	vXC, showing
the shoulder in the XC potential developing from the small-w step as
w increases. Since w is no longer near zero, the asymptotic formula
for the position of the drop off no longer holds.

The virial as defined by Nagy yields the same results as directly
calculated kinetic correlation to within 1%.

Equation (10) converts the w-dependent KS transition en-
ergies 	εw into the exact, w-independent transition frequency.
The last term in Eq. (10) is significant for all values of w and is
strongly w dependent. Figure 7 shows the exact cancellation of
the w dependence as required by Eq. (10). If this cancellation
is incomplete, as it is in existing approximations, w-dependent
excitation energies will result.

The strong w dependence in the exact KS gap 	εw is related
to the bumps in the exact XC potentials (Fig. 4). The bump near
r = 2.5 creates a local confinement effect near the nucleus,
shifting the KS eigenvalues upward from the ground-state
values. The effect is smaller for the 1s orbital because the 1s

orbital density is already small and monotonically decaying at
the position of the bump. The KS gap becomes larger as the
bump is more prominent, as can be seen in the large-w region
of Fig. 7. The sharp change of 	εw in the small-w region of
Fig. 7 is due to the ensemble derivative discontinuity since
	vXC(r) effectively creates a bump in the XC potential in the
small-r region.
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FIG. 7. (Color online) Equation (10) applied to the exact helium
singlet ensemble, demonstrating the exact cancellation of all w

dependence in KS gaps (red bottom line for small w) and corrections
to the KS gap (green top line for small w), leading to no w dependence
in the calculated optical gap (blue middle line). Gaps are shifted by
the true optical gap ω for ease of comparison.
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V. APPROXIMATIONS

To illustrate the usefulness of these results, we test the few
existing approximations to EDFT, including the quasi-local-
density approximation (qLDA) [19,35], the single-Slater-
determinant ghost-corrected exact exchange (SD) [21,23], and
the symmetry-eigenstate Hartree exchange (SEHX) [23,31].
Both SD and SEHX are approximations that fall under
the overarching work on ghost interactions by Gidopoulos,
Papaconstantinou, and Gross [23], which we denote here as
GPG. The flexibility of GPG lies in its general approach to the
description and elimination of ghost interactions introduced by
the exchange and traditionally defined Hartree energies. These
ghosts occur when one uses the ensemble density as input into
these terms, as there are spurious interactions between the
ground and excited states. If one uses the ensemble definition
of Hartree exchange in Eq. (8), these ghosts are avoided.

As a general methodology, GPG can be used in various
forms. When faced with degenerate states, one always has
choices about which states to use to describe the system of
interest. Two obvious choices are single- and multideterminant
descriptions. When the GPG methodology is applied to
ensemble Hartree exchange using symmetry eigenstates with
the Krieger-Li-Iafrate approximation [36], one produces the
SEHX approximation. Alternatively, one may choose to use
single-determinant states within the GPG methodology. We
show this SD approach alongside the SEHX approximation
to clarify the effect of using full eigenstates to describe
ensemble ghosts since previous calculations [22,25,37–39] can
be reevaluated in light of these comparisons.

The general equation of the SEHX energy for an ensem-
ble up to the I th group of degenerate states (“multiplet”)
is [31]

ESEHX
HX =

∫
d3rd3r ′

|r − r′|

⎛
⎝ ∑

μ,ν>μ

{
norb

μ (r)norb
ν (r′) − Re[norb

μ (r′,r)norb
ν (r,r′)]δσμ,σν

} I∑
i=1

gi∑
k=1

wi,k

g̃ĩ∑
p=1

|Ci,k,p|2fĩ,p,μfĩ,p,ν

+
∑

μ,ν > μ

κ,λ > κ

[
φ∗

μ(r)φ∗
ν (r′)φκ (r)φλ(r′)δσμ,σκ

δσν,σλ
− φ∗

μ(r)φ∗
ν (r′)φλ(r)φκ (r′)δσμ,σλ

δσν,σκ

]

×
I∑

i=1

gi∑
k=1

wi,k

g̃ĩ∑
p,q 	=p

C∗
i,k,pCi,k,qfĩ,p,μfĩ,p,νfĩ,q,κfĩ,q,λ

∏
η 	=μ,ν,κ,λ

δfĩ,p,η,fĩ,q,η

⎞
⎠, (17)

where i denotes a multiplet (i = 1 being the ground state);
k denotes a specific state in the ith multiplet; gi is the
degeneracy of the ith multiplet; g̃ĩ is the degeneracy of the
corresponding KS multiplet; p,q denote specific KS single
Slater determinants; μ,ν,κ,λ,η denote KS orbitals; wi,k is
the weight of the kth state in the ith multiplet; Ci,k,p is the
mixing coefficient of the pth determinant to make up the kth
state in the ith multiplet; fĩ,p,μ is the occupation number of
the μth orbital in the pth determinant of the ĩth KS multiplet;
σ denotes spin; φ denotes KS orbitals; norb

μ (r) is the orbital
density of the μth orbital; and norb

μ (r,r′) = φμ(r)φ∗
μ(r′).

This form is more explicit than the one given in our
previous work [31] in order to facilitate the use of the SEHX
version of GPG. Reference [23] presents the general frame-
work and a single-determinant example based on the exact
exchange optimized-effective-potential (OEP) formalism of
Nagy [21,40]. However, the authors use the ensemble Hartree-
exchange definition of Eq. (8) and symmetry eigenstates
to calculate their reported results. We have denoted such
a procedure as SEHX. SEHX, as written out here and in
Ref. [31], yields self-consistent results that agree to within
0.03 eV with those presented in Table I of Ref. [23], with
this difference assumed to be due to numerical differences in
implementation.

VI. APPROXIMATE RESULTS

Comparison of exact and approximate quantities exposes
differences in single- and multideterminant approximations, as

well as the shortcomings both share. Figure 8 shows exact and
approximate XC potentials using the exact ensemble density.
Both the SD and the SEHX are OEPs, which guarantees their
correct −1/r asymptotic behavior in the XC potential (Fig. 8).
However, only the SEHX potential shows the large w bump
and recovers the general shape of the exact vXC,w(r).

The correlation potential vC,w(r) displays two distinct
bumps, shown in Fig. 9. The w = 0 correlation potential
matches perfectly with the exact ground-state correlation
potential in Ref. [4]. The first bump at about r = 1 also exists
in the ground-state vC(r), while the second bump at about
r = 2.5, which vanishes rapidly as w decreases, is unique to
EDFT.
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FIG. 8. (Color online) The exact and approximated vXC(r) for the
helium singlet equiensemble. The approximated vXC’s are evaluated
using the exact ensemble density as input.
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FIG. 9. (Color online) The exact vC(r) for the helium singlet
equiensemble shows two upward bumps and does not depend on
the definition of the Hartree potential used. These are obtained by
subtracting the SEHX vX,w(r) of the exact ensemble density from the
exact vXC,w(r).

Figure 10 shows that, in the small-w region, only SEHX
generates a steplike form for the ensemble derivative disconti-
nuity. The SEHX XC potential is also the only approximation
that has the characteristic bump of the exact XC potential.
Both SEHX and SD are OEP methods, but the former satisfies
the exact condition of the ensemble derivative discontinuity,
while the latter does not. The SEHX potential is obtained by
applying the KLI approximation [36] to the OEP equation [21].
Equations for vSEHX

HX,w (r) of the helium singlet biensemble are
given in Eqs. (41)–(43) of Ref. [31].

To understand the absence of the derivative discontinuity
in SD, we compare the small-w behavior of both SD and
SEHX [31]. The SD potential for the spin-up electron is

vSD
HX↑,w(r) = {

(1 − w)norb
1↑ (r)[v1↑(r) + v̄HX1↑,w − v̄1↑]

+wnorb
2↑ (r)[v2↑(r) + v̄HX2↑,w − v̄2↑]

}/
n↑,w(r),

(18)

where n↑,w(r) = (1 − w)norb
1↑ (r) + wnorb

2↑ (r) and

v1↑(r) = v2↑(r) =
∫

d3r ′

|r − r′|n
orb
1↓ (r′). (19)

Barred quantities are defined

v̄j =
∫

d3r vj (r)norb
j (r), (20)
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FIG. 10. (Color online) Self-consistent 	vXC(r) of various ap-
proximations at w = 0.0001. Only SEHX (long-dashed red line)
replicates a shift similar to that of the exact curve (solid black line).

so that v̄HX1↑,w, for instance, is the expectation value of the
spin-up HX potential with respect to norb

1↑ (r).
Comparing the SEHX [31] and SD expressions for the

HX potentials makes the disappearance of the derivative
discontinuity in the SD approximation clear. When w is very
small, in the region where r is smaller than a certain rC,
nw(r) is dominated by the (2 − w)norb

1 (r) term [see Eq. (41)
of Ref. [31]]. In the r > rC region, however, it is dominated
by the wnorb

2 (r) term due to the slower decay of norb
2 (r). Thus,

when w is very small, we have

vSEHX
HX,w≈0(r) ≈

{
v1(r) + v̄HX1 − v̄1, r < rC,

v2(r) + v̄HX2 − v̄2, r > rC,
(21)

and

vSD
HX↑,w≈0(r) ≈

{
v1↑(r) + v̄HX1↑,w − v̄1↑, r < rC,

v2↑(r) + v̄HX2↑,w − v̄2↑, r > rC.
(22)

For any w, v1↑(r) = v2↑(r), so the SD approximation yields
the same behavior at large or small w. In contrast, when w is
very small within the SEHX approximation,

v1(r) ≈
∫

d3r ′

|r − r′|n1(r′), (23)

and

v2(r) =
∫

d3r ′

|r − r′|
[
norb

1 (r′) + φ∗
1 (r)φ∗

2 (r′)φ1(r′)
φ∗

2 (r)

]

= v1(r) + f (r). (24)

v1(r) and v2(r) therefore have a finite difference even at w = 0.
We have shown that rC ≈ −0.621 ln w in Ref. [31], so the
constant terms in Eq. (21) are

v̄HX1(r) − v̄1(r) =
∫

d3r norb
1 (r)

[
vSEHX

HX,w≈0(r) − v1(r)
]

≈
∫

d�

∫ ∞

rC

dr norb
1 (r)f (r) (25)

because the integrand vanishes when r < rC and w is small.
Similarly,

v̄HX2(r) − v̄2(r) ≈ −
∫

d�

∫ rC

0
dr norb

2 (r)f (r). (26)

Equation (24) shows that f (r) decreases rapidly as r increases
since φ1(r) decays faster asymptotically than φ2(r). Since
f (r) is a part of v2(r), which only dominates the large-r
behavior of vSEHX

HX,w≈0(r), the difference between the large-r
and small-r behaviors of vSEHX

HX,w≈0(r) is due to the constant
terms in Eqs. (25) and (26). In the w → 0 limit, Eq. (25)
vanishes, and Eq. (26) approaches a finite negative value.
The additive constant in the HX potential obtained needs to
be determined by matching with the known 1/r behavior,
and the resulting potential would show the upward ensemble
derivative discontinuity step illustrated in Fig. 5. Since both
v̄HX1↑,w − v̄1↑ and v̄HX2↑,w − v̄2↑ vanish in the w → 0 limit,
there is no ensemble derivative discontinuity for SD.

Figures 11, 12, and 13 demonstrate that qLDA, SD, and
SEHX approximations are unable to generate w-independent
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FIG. 11. (Color online) Equation (10) applied to self-consistent
quasi-LDA results. The correction to the quasi-LDA KS gap (dashed
green line) is not zero, but it is too small to be noticed on this scale.
This correction is inadequate to cancel the w dependence in the qLDA
KS gap (dot-dashed red line), resulting in inaccurate, w-dependent
calculated optical gaps (dotted blue line). The gaps have been shifted
by the optical gap ω for easier comparison, and the exact results of
Fig. 7 are also shown for context.

excitation energies. The less severe w dependence of the SEHX
KS gap is due to its closer replication of the exact ensemble
derivative discontinuity, although the SEHX cancellation of
excitation-energy w dependence is not exact. Figure 8 shows
that the position of the large w bump of SEHX is at smaller
r values than the exact one. This agrees with the less rapid
change of the SEHX KS gap in the large-w region. In Fig. 13,
the sharp change of the SEHX KS gap in the small-w region
is similar to that of the exact ensemble, which is due to the
bump created by the step in 	vXC. qLDA and SD potentials
have neither the large-w bump nor the small-w derivative
discontinuity step, so the w dependencies of their KS gaps
are very different from the exact one. Comparing Fig. 9 to
Figs. 4 and 8, the r = 2.5 bump in the correlation potential
(Fig. 9) fixes the position of the bump in the exchange-only
(SEHX) potential and thereby sets the w dependence of the
KS gap and its correction.
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FIG. 12. (Color online) Equation (10) applied to self-consistent
SD results. The spin-up SD KS gap (dot-dashed red line) is
insufficiently corrected by the SD corrections to the KS gap (dashed
green line), yielding calculated optical gaps that are too small (dotted
blue line). Although the w dependence is less severe than for qLDA,
it is still non-negligible. The gaps have been shifted by the optical
gap ω for easier comparison, and the exact results of Fig. 7 are also
shown for context.
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FIG. 13. (Color online) Equation (10) applied to approximate
self-consistent SEHX results. SEHX produces far less variation in
calculated excitation energies with w (dotted blue line), which appears
to be the result of its ensemble derivative discontinuity. This produces
approximate KS gaps (dot-dashed red line) and KS gap corrections
(dashed green line) that most closely resemble the exact curves
in overall shape. The exact results (as in Fig. 7) are also shown
for context. The gaps have been shifted by the optical gap ω for
easier comparison, and the exact results of Fig. 7 are also shown for
context.

VII. CONCLUSION

This work provides a method for inverting ensemble
densities, so that the resulting exact ensemble KS systems
can be used as references for developing approximated
EDFT functionals. We show the density-inversion method
for spherically symmetric systems in this paper, but it is not
difficult to generalize the method for other types of systems.
We have tested the density-inversion method in cylindrically
symmetric systems, and it also yields good results [31]. For
systems with lower symmetry, the real-space approach shown
in this paper would not yield accurate results without a massive
grid-point set. Although expression in a basis set may solve
this problem, further study is required to determine the effect
this would have on the density-inversion method’s stability
and performance.

We applied the density-inversion method on the helium
singlet biensemble for its simplicity. This exposes the con-
tinuous emergence of the exact XC potential bump from the
ensemble derivative discontinuity and facilitates comparison
with approximations. The singlet biensemble is by no means
the limit of the applicability of the density-inversion method,
however. In Ref. [31], we applied the method to ensembles
of various real and model two-electron systems, in which
it retains the numerical stability and accuracy seen in this
paper. This work illustrates that EDFT properties deviate from
ground-state DFT ones in previously unseen ways. Also, some
exact conditions, such as Eq. (10), do not suggest obvious
methods for their satisfaction by approximations. Of the
approximations we tested, the SEHX version of GPG, the only
one with an ensemble derivative discontinuity, generated the
most accurate XC potentials and excitation energies. These
complications make developing a good EDFT functional
considerably harder than in the ground state, and we hope
the exact results shown in this work can alleviate some burden
on EDFT developers.
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[22] Á. Nagy, J. Phys. B 34, 2363 (2001).
[23] N. I. Gidopoulos, P. G. Papaconstantinou, and E. K. U. Gross,

Phys. Rev. Lett. 88, 033003 (2002).
[24] E. Pastorczak, N. I. Gidopoulos, and K. Pernal, Phys. Rev. A 87,

062501 (2013).
[25] E. Pastorczak and K. Pernal, J. Chem. Phys. 140, 18A514 (2014).
[26] R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689

(1989).
[27] G. W. F. Drake and Z.-C. Yan, Chem. Phys. Lett. 229, 486

(1994).
[28] R. A. Nistor, M.Sc. Thesis, University of Windsor, 2004.
[29] M. Levy, Phys. Rev. A 52, R4313 (1995).
[30] There appears to be a sign error in Eq. (16) of Ref. [29]: the two

terms on the right-hand side should be swapped.
[31] A. Pribram-Jones, Z.-H. Yang, J. R. Trail, K. Burke, R. J. Needs,

and C. A. Ullrich, J. Chem. Phys. 140, 18A541 (2014).
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[37] F. Tasnádi and Á. Nagy, J. Phys. B 36, 4073 (2003).
[38] J. Cullen, M. Krykunov, and T. Ziegler, Chem. Phys. 391, 11

(2011).
[39] E. Kraisler and L. Kronik, Phys. Rev. Lett. 110, 126403 (2013).
[40] Á. Nagy, Int. J. Quant. Chem. 70, 681 (1998).

042501-8

http://dx.doi.org/10.1063/1.4704546
http://dx.doi.org/10.1063/1.4704546
http://dx.doi.org/10.1063/1.4704546
http://dx.doi.org/10.1063/1.4704546
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.78.1396
http://dx.doi.org/10.1103/PhysRevLett.78.1396
http://dx.doi.org/10.1103/PhysRevLett.78.1396
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1103/PhysRevA.50.3827
http://dx.doi.org/10.1103/PhysRevA.50.3827
http://dx.doi.org/10.1103/PhysRevA.50.3827
http://dx.doi.org/10.1103/PhysRevA.50.3827
http://dx.doi.org/10.1103/PhysRevA.49.2421
http://dx.doi.org/10.1103/PhysRevA.49.2421
http://dx.doi.org/10.1103/PhysRevA.49.2421
http://dx.doi.org/10.1103/PhysRevA.49.2421
http://dx.doi.org/10.1103/PhysRevA.52.1870
http://dx.doi.org/10.1103/PhysRevA.52.1870
http://dx.doi.org/10.1103/PhysRevA.52.1870
http://dx.doi.org/10.1103/PhysRevA.52.1870
http://dx.doi.org/10.1103/PhysRevA.67.012505
http://dx.doi.org/10.1103/PhysRevA.67.012505
http://dx.doi.org/10.1103/PhysRevA.67.012505
http://dx.doi.org/10.1103/PhysRevA.67.012505
http://dx.doi.org/10.1021/ct100119e
http://dx.doi.org/10.1021/ct100119e
http://dx.doi.org/10.1021/ct100119e
http://dx.doi.org/10.1021/ct100119e
http://dx.doi.org/10.1103/PhysRevLett.90.043005
http://dx.doi.org/10.1103/PhysRevLett.90.043005
http://dx.doi.org/10.1103/PhysRevLett.90.043005
http://dx.doi.org/10.1103/PhysRevLett.90.043005
http://dx.doi.org/10.1103/PhysRevA.59.3359
http://dx.doi.org/10.1103/PhysRevA.59.3359
http://dx.doi.org/10.1103/PhysRevA.59.3359
http://dx.doi.org/10.1103/PhysRevA.59.3359
http://dx.doi.org/10.1103/PhysRevLett.83.4361
http://dx.doi.org/10.1103/PhysRevLett.83.4361
http://dx.doi.org/10.1103/PhysRevLett.83.4361
http://dx.doi.org/10.1103/PhysRevLett.83.4361
http://dx.doi.org/10.1088/0022-3719/12/24/013
http://dx.doi.org/10.1088/0022-3719/12/24/013
http://dx.doi.org/10.1088/0022-3719/12/24/013
http://dx.doi.org/10.1088/0022-3719/12/24/013
http://dx.doi.org/10.1103/PhysRevA.32.720
http://dx.doi.org/10.1103/PhysRevA.32.720
http://dx.doi.org/10.1103/PhysRevA.32.720
http://dx.doi.org/10.1103/PhysRevA.32.720
http://dx.doi.org/10.1103/PhysRevA.37.2805
http://dx.doi.org/10.1103/PhysRevA.37.2805
http://dx.doi.org/10.1103/PhysRevA.37.2805
http://dx.doi.org/10.1103/PhysRevA.37.2805
http://dx.doi.org/10.1103/PhysRevA.37.2809
http://dx.doi.org/10.1103/PhysRevA.37.2809
http://dx.doi.org/10.1103/PhysRevA.37.2809
http://dx.doi.org/10.1103/PhysRevA.37.2809
http://dx.doi.org/10.1103/PhysRevA.37.2821
http://dx.doi.org/10.1103/PhysRevA.37.2821
http://dx.doi.org/10.1103/PhysRevA.37.2821
http://dx.doi.org/10.1103/PhysRevA.37.2821
http://dx.doi.org/10.1002/qua.560560833
http://dx.doi.org/10.1002/qua.560560833
http://dx.doi.org/10.1002/qua.560560833
http://dx.doi.org/10.1002/qua.560560833
http://dx.doi.org/10.1002/(SICI)1097-461X(1998)69:3<247::AID-QUA4>3.0.CO;2-V
http://dx.doi.org/10.1002/(SICI)1097-461X(1998)69:3<247::AID-QUA4>3.0.CO;2-V
http://dx.doi.org/10.1002/(SICI)1097-461X(1998)69:3<247::AID-QUA4>3.0.CO;2-V
http://dx.doi.org/10.1002/(SICI)1097-461X(1998)69:3<247::AID-QUA4>3.0.CO;2-V
http://dx.doi.org/10.1088/0953-4075/34/12/305
http://dx.doi.org/10.1088/0953-4075/34/12/305
http://dx.doi.org/10.1088/0953-4075/34/12/305
http://dx.doi.org/10.1088/0953-4075/34/12/305
http://dx.doi.org/10.1103/PhysRevLett.88.033003
http://dx.doi.org/10.1103/PhysRevLett.88.033003
http://dx.doi.org/10.1103/PhysRevLett.88.033003
http://dx.doi.org/10.1103/PhysRevLett.88.033003
http://dx.doi.org/10.1103/PhysRevA.87.062501
http://dx.doi.org/10.1103/PhysRevA.87.062501
http://dx.doi.org/10.1103/PhysRevA.87.062501
http://dx.doi.org/10.1103/PhysRevA.87.062501
http://dx.doi.org/10.1063/1.4866998
http://dx.doi.org/10.1063/1.4866998
http://dx.doi.org/10.1063/1.4866998
http://dx.doi.org/10.1063/1.4866998
http://dx.doi.org/10.1103/RevModPhys.61.689
http://dx.doi.org/10.1103/RevModPhys.61.689
http://dx.doi.org/10.1103/RevModPhys.61.689
http://dx.doi.org/10.1103/RevModPhys.61.689
http://dx.doi.org/10.1016/0009-2614(94)01085-4
http://dx.doi.org/10.1016/0009-2614(94)01085-4
http://dx.doi.org/10.1016/0009-2614(94)01085-4
http://dx.doi.org/10.1016/0009-2614(94)01085-4
http://dx.doi.org/10.1103/PhysRevA.52.R4313
http://dx.doi.org/10.1103/PhysRevA.52.R4313
http://dx.doi.org/10.1103/PhysRevA.52.R4313
http://dx.doi.org/10.1103/PhysRevA.52.R4313
http://dx.doi.org/10.1063/1.4872255
http://dx.doi.org/10.1063/1.4872255
http://dx.doi.org/10.1063/1.4872255
http://dx.doi.org/10.1063/1.4872255
http://dx.doi.org/10.1002/qua.560560406
http://dx.doi.org/10.1002/qua.560560406
http://dx.doi.org/10.1002/qua.560560406
http://dx.doi.org/10.1002/qua.560560406
http://dx.doi.org/10.1103/PhysRevA.32.2010
http://dx.doi.org/10.1103/PhysRevA.32.2010
http://dx.doi.org/10.1103/PhysRevA.32.2010
http://dx.doi.org/10.1103/PhysRevA.32.2010
http://dx.doi.org/10.1103/PhysRevA.34.737
http://dx.doi.org/10.1103/PhysRevA.34.737
http://dx.doi.org/10.1103/PhysRevA.34.737
http://dx.doi.org/10.1103/PhysRevA.34.737
http://dx.doi.org/10.1016/0375-9601(90)90975-T
http://dx.doi.org/10.1016/0375-9601(90)90975-T
http://dx.doi.org/10.1016/0375-9601(90)90975-T
http://dx.doi.org/10.1016/0375-9601(90)90975-T
http://dx.doi.org/10.1088/0953-4075/36/20/002
http://dx.doi.org/10.1088/0953-4075/36/20/002
http://dx.doi.org/10.1088/0953-4075/36/20/002
http://dx.doi.org/10.1088/0953-4075/36/20/002
http://dx.doi.org/10.1016/j.chemphys.2011.05.021
http://dx.doi.org/10.1016/j.chemphys.2011.05.021
http://dx.doi.org/10.1016/j.chemphys.2011.05.021
http://dx.doi.org/10.1016/j.chemphys.2011.05.021
http://dx.doi.org/10.1103/PhysRevLett.110.126403
http://dx.doi.org/10.1103/PhysRevLett.110.126403
http://dx.doi.org/10.1103/PhysRevLett.110.126403
http://dx.doi.org/10.1103/PhysRevLett.110.126403
http://dx.doi.org/10.1002/(SICI)1097-461X(1998)70:4/5<681::AID-QUA14>3.0.CO;2-5
http://dx.doi.org/10.1002/(SICI)1097-461X(1998)70:4/5<681::AID-QUA14>3.0.CO;2-5
http://dx.doi.org/10.1002/(SICI)1097-461X(1998)70:4/5<681::AID-QUA14>3.0.CO;2-5
http://dx.doi.org/10.1002/(SICI)1097-461X(1998)70:4/5<681::AID-QUA14>3.0.CO;2-5



